
[Elbe, Magdeburg]

Tseitin or not Tseitin?

The Impact of CNF Transformations on Feature-Model Analyses

MCW@SAT 2023 (ASE 2022) — July 4 — Alghero, Italy

Elias Kuiter1, Sebastian Krieter2, Chico Sundermann2, Thomas Thüm2, Gunter Saake1

University of Magdeburg1, Ulm2

https://dl.acm.org/doi/abs/10.1145/3551349.3556938

Software Engineering Meets Automated Reasoning

Software
Engineering

Configurable
Systems

Automated
Reasoning

Feature
Modeling

this
talk

Model
Counting

Satisfiability
Solving

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 2

Implementing Configurable Software Systems

A Configurable Graph

class Node {
#ifdef LABELED
std::string label;

#endif
#ifdef COLORED
std::string color;

#endif
};

class Edge {
#ifdef DIRECTED
Node from, to;

#elif UNDIRECTED && HYPER
std::set<Node> nodes;

#endif
};

#define

LABE
LED

DIRECT
ED

#defineCOLOREDUNDIRECTEDHYPER

A Labeled Directed Graph

class Node {
std::string label;

};

class Edge {
Node from, to;

};

A Colored Undirected Hypergraph

class Node {
std::string color;

};

class Edge {
std::set<Node> nodes;

};

Product Line Implementation
(here: C++ with C preprocessor)

Configuration Product Implementation

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 3

Implementing Configurable Software Systems

A Configurable Graph

class Node {
#ifdef LABELED
std::string label;

#endif
#ifdef COLORED
std::string color;

#endif
};

class Edge {
#ifdef DIRECTED
Node from, to;

#elif UNDIRECTED && HYPER
std::set<Node> nodes;

#endif
};

#define

LABE
LED

DIRECT
ED

#defineCOLOREDUNDIRECTEDHYPER

A Labeled Directed Graph

class Node {
std::string label;

};

class Edge {
Node from, to;

};

A Colored Undirected Hypergraph

class Node {
std::string color;

};

class Edge {
std::set<Node> nodes;

};

Product Line Implementation
(here: C++ with C preprocessor)

Configuration Product Implementation

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 3

Implementing Configurable Software Systems

A Configurable Graph

class Node {
#ifdef LABELED
std::string label;

#endif
#ifdef COLORED
std::string color;

#endif
};

class Edge {
#ifdef DIRECTED
Node from, to;

#elif UNDIRECTED && HYPER
std::set<Node> nodes;

#endif
};

#define

LABE
LED

DIRECT
ED

#defineCOLOREDUNDIRECTEDHYPER

A Labeled Directed Graph

class Node {
std::string label;

};

class Edge {
Node from, to;

};

A Colored Undirected Hypergraph

class Node {
std::string color;

};

class Edge {
std::set<Node> nodes;

};

Product Line Implementation
(here: C++ with C preprocessor)

Configuration Product Implementation

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 3

Modeling Features and their Dependencies

Feature Models

• tree models features

• cross-tree constraints model
dependencies

• solver-based analyses can be
used to understand the con-
figuration space better

Graph

Node

Labeled Colored

Edge

Directed Undirected Hyper

¬(Directed ∧ Undirected) feature conflict

Hyper → Undirected missing implementation

Directed ↔/ (Undirected ∧ Hyper) well-defined #ifdef

Feature

Mandatory

Optional

The Linux Kernel

• > 13000 features [2018]

• > 10700 products [2007]

• 114 dead features [2013]

• 151 reverse
dependency bugs [2019]

A BDD for Linux?
The Knowledge Compilation Challenge for Variability

Thomas Thüm
University of Ulm, Germany
thomas.thuem@uni-ulm.de

Figure 1: Excerpt of a feature model for Linux 2.6.33.3 with 6,467 features and 3,545 cross-tree constraints in FeatureIDE.

ABSTRACT
What is the number of valid configurations for Linux? How to gen-
erate uniform random samples for Linux? Can we create a binary
decision diagram for Linux? It seems that the product-line com-
munity tries hard to answer such questions for Linux and other
configurable systems. However, attempts are often not published
due to the publication bias (i.e., unsuccessful attempts are not pub-
lished). As a consequence, researchers keep trying by potentially
spending redundant effort. The goal of this challenge is to guide
research on these computationally complex problems and to foster
the exchange between researchers and practitioners.

CCS CONCEPTS
• Software and its engineering � Formal software verifica-
tion; Software testing and debugging; Software verification;
Automated static analysis; Consistency; Software configura-
tion management and version control systems; Preproces-
sors; • Theory of computation� Program verification; Pro-
gram analysis; Logic and verification
.
KEYWORDS
software product line, configurable system, software configuration,
product configuration, feature models, decision models, artificial
intelligence, satisfiability solving, knownledge compilation, binary
decision diagrams

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’20, October 19–23, 2020, Montreal, QC, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7569-6/20/10. . . $15.00
https://doi.org/10.1145/3382025.3414943

ACM Reference Format:
Thomas Thüm. 2020. A BDD for Linux?: The Knowledge Compilation Chal-
lenge for Variability. In 24th ACM International Systems and Software Product
Line Conference (SPLC ’20), October 19–23, 2020, Montreal, QC, Canada. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3382025.3414943

1 MOTIVATION
What is the holy grail of the product-line community? A binary
decision diagram for Linux.

Linux is an operating system with thousands of configuration
options (cf. Figure 1). These options cannot be arbitrarily combined,
as every option typically comes with constraints with respect to
several other options. Constraints are specified in KConfig [21],
but can be translated into feature models or propositional logic [11,
32, 34, 37, 40, 49, 57, 65, 68, 71, 77, 81–83]. Whenever we analyze
the Linux kernel for errors, ignoring those constraints would lead
to false positives. That is, tools would report errors for invalid
configurations, which cannot be used to compile a kernel. Hence,
these constraints are crucial for any kind of analysis of Linux.

A binary decision diagram (short BDD) is data structure repre-
senting a propositional formula. While there are multiple represen-
tations of propositional formulas, BDDs can have the advantage of
reducing NP-complete problems into more tractable problems (aka.
knowledge compilation) [14, 31]. For instance, checking whether a
formula represented as a BDD is satisfiable is an operation with
constant effort. While operations on BDDs might scale well, the
downside of BDDs is that their construction can be intractable.
The main reason for the scalability challenge is that the variable
ordering heavily influences the size of the BDD and they tend to
explode for most variable orderings.

Why do we argue that a BDD for Linux is the holy grail of the product-
line community?

First, it seems to be a challenging task. To the best of our knowl-
edge, no one has been able to create a BDD for Linux so far. In
recent work, we tried to create a BDD for hundreds of large feature

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 4

https://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf
https://paulgazzillo.com/papers/esecfse21.pdf
https://dl.acm.org/doi/abs/10.1145/3382025.3414943

Modeling Features and their Dependencies

Feature Models

• tree models features

• cross-tree constraints model
dependencies

• solver-based analyses can be
used to understand the con-
figuration space better

Graph

Node

Labeled Colored

Edge

Directed Undirected Hyper

¬(Directed ∧ Undirected) feature conflict

Hyper → Undirected missing implementation

Directed ↔/ (Undirected ∧ Hyper) well-defined #ifdef

Feature

Mandatory

Optional

The Linux Kernel

• > 13000 features [2018]

• > 10700 products [2007]

• 114 dead features [2013]

• 151 reverse
dependency bugs [2019]

A BDD for Linux?
The Knowledge Compilation Challenge for Variability

Thomas Thüm
University of Ulm, Germany
thomas.thuem@uni-ulm.de

Figure 1: Excerpt of a feature model for Linux 2.6.33.3 with 6,467 features and 3,545 cross-tree constraints in FeatureIDE.

ABSTRACT
What is the number of valid configurations for Linux? How to gen-
erate uniform random samples for Linux? Can we create a binary
decision diagram for Linux? It seems that the product-line com-
munity tries hard to answer such questions for Linux and other
configurable systems. However, attempts are often not published
due to the publication bias (i.e., unsuccessful attempts are not pub-
lished). As a consequence, researchers keep trying by potentially
spending redundant effort. The goal of this challenge is to guide
research on these computationally complex problems and to foster
the exchange between researchers and practitioners.

CCS CONCEPTS
• Software and its engineering � Formal software verifica-
tion; Software testing and debugging; Software verification;
Automated static analysis; Consistency; Software configura-
tion management and version control systems; Preproces-
sors; • Theory of computation� Program verification; Pro-
gram analysis; Logic and verification
.
KEYWORDS
software product line, configurable system, software configuration,
product configuration, feature models, decision models, artificial
intelligence, satisfiability solving, knownledge compilation, binary
decision diagrams

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’20, October 19–23, 2020, Montreal, QC, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7569-6/20/10. . . $15.00
https://doi.org/10.1145/3382025.3414943

ACM Reference Format:
Thomas Thüm. 2020. A BDD for Linux?: The Knowledge Compilation Chal-
lenge for Variability. In 24th ACM International Systems and Software Product
Line Conference (SPLC ’20), October 19–23, 2020, Montreal, QC, Canada. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3382025.3414943

1 MOTIVATION
What is the holy grail of the product-line community? A binary
decision diagram for Linux.

Linux is an operating system with thousands of configuration
options (cf. Figure 1). These options cannot be arbitrarily combined,
as every option typically comes with constraints with respect to
several other options. Constraints are specified in KConfig [21],
but can be translated into feature models or propositional logic [11,
32, 34, 37, 40, 49, 57, 65, 68, 71, 77, 81–83]. Whenever we analyze
the Linux kernel for errors, ignoring those constraints would lead
to false positives. That is, tools would report errors for invalid
configurations, which cannot be used to compile a kernel. Hence,
these constraints are crucial for any kind of analysis of Linux.

A binary decision diagram (short BDD) is data structure repre-
senting a propositional formula. While there are multiple represen-
tations of propositional formulas, BDDs can have the advantage of
reducing NP-complete problems into more tractable problems (aka.
knowledge compilation) [14, 31]. For instance, checking whether a
formula represented as a BDD is satisfiable is an operation with
constant effort. While operations on BDDs might scale well, the
downside of BDDs is that their construction can be intractable.
The main reason for the scalability challenge is that the variable
ordering heavily influences the size of the BDD and they tend to
explode for most variable orderings.

Why do we argue that a BDD for Linux is the holy grail of the product-
line community?

First, it seems to be a challenging task. To the best of our knowl-
edge, no one has been able to create a BDD for Linux so far. In
recent work, we tried to create a BDD for hundreds of large feature

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 4

https://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf
https://paulgazzillo.com/papers/esecfse21.pdf
https://dl.acm.org/doi/abs/10.1145/3382025.3414943

Analyzing Feature Models with SAT and #SAT Solvers

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

A Feature Model FM

G

N

L C

E

D U H

¬(D ∧ U)
H → U

D ↔/ (U ∧ H)

Φ−→

As a Formula Φ(FM)

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C) → N)

∧ ((D ∨ U ∨ H) → E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Core Features

{G ,N,E}

Feature Model Cardinality

8

←

←

Core Feature F?

SAT (Θ(Φ(FM))∧¬F)

Products in FM?

#SAT (Θ(Φ(FM)))

←

←

As a CNF Θ(Φ(FM))

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 5

Analyzing Feature Models with SAT and #SAT Solvers

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

A Feature Model FM

G

N

L C

E

D U H

¬(D ∧ U)
H → U

D ↔/ (U ∧ H)

Φ−→

As a Formula Φ(FM)

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C) → N)

∧ ((D ∨ U ∨ H) → E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Core Features

{G ,N,E}

Feature Model Cardinality

8

←

←

Core Feature F?

SAT (Θ(Φ(FM))∧¬F)

Products in FM?

#SAT (Θ(Φ(FM)))

←

←

As a CNF Θ(Φ(FM))

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 5

Analyzing Feature Models with SAT and #SAT Solvers

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

A Feature Model FM

G

N

L C

E

D U H

¬(D ∧ U)
H → U

D ↔/ (U ∧ H)

Φ−→

As a Formula Φ(FM)

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C) → N)

∧ ((D ∨ U ∨ H) → E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Core Features

{G ,N,E}

Feature Model Cardinality

8

←

←

Core Feature F?

SAT (Θ(Φ(FM))∧¬F)

Products in FM?

#SAT (Θ(Φ(FM)))

←

←

As a CNF Θ(Φ(FM))

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 5

Analyzing Feature Models with SAT and #SAT Solvers

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

A Feature Model FM

G

N

L C

E

D U H

¬(D ∧ U)
H → U

D ↔/ (U ∧ H)

Φ−→

As a Formula Φ(FM)

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C) → N)

∧ ((D ∨ U ∨ H) → E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Core Features

{G ,N,E}

Feature Model Cardinality

8

←

←

Core Feature F?

SAT (Θ(Φ(FM))∧¬F)

Products in FM?

#SAT (Θ(Φ(FM)))

←

←

As a CNF Θ(Φ(FM))

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 5

Analyzing Feature Models with SAT and #SAT Solvers

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

A Feature Model FM

G

N

L C

E

D U H

¬(D ∧ U)
H → U

D ↔/ (U ∧ H)

Φ−→

As a Formula Φ(FM)

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C) → N)

∧ ((D ∨ U ∨ H) → E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Core Features

{G ,N,E}

Feature Model Cardinality

8

←

←

Core Feature F?

SAT (Θ(Φ(FM))∧¬F)

Products in FM?

#SAT (Θ(Φ(FM)))

←

←

As a CNF Θ(Φ(FM))

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 5

Analyzing Feature Models with SAT and #SAT Solvers

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

A Feature Model FM

G

N

L C

E

D U H

¬(D ∧ U)
H → U

D ↔/ (U ∧ H)

Φ−→

As a Formula Φ(FM)

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C) → N)

∧ ((D ∨ U ∨ H) → E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Core Features

{G ,N,E}

Feature Model Cardinality

8

←

←

Core Feature F?

SAT (Θ(Φ(FM))∧¬F)

Products in FM?

#SAT (Θ(Φ(FM)))

←

←

As a CNF Θ(Φ(FM))

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 5

Feature Modeling Meets Model Counting

Variability Factor

Void Feature Moddel

Degree of Orthogonality

Cost Savings

Maintainability Prediction

Configuration Relevance

Rating Errors

Variability Reduction

Subset Variability

Homogeneity

Payoff Threshold

Degree of Reuse

Core, Dead & False-Optional

Atomic Set Candidates

Feature Prioritization

CTC Restrictiveness

Optimize Configuring

Uniform Random Sampling

Atomic Sets

Rate Interactions

Configuration Derivation

Variability Factor

Void Feature Moddel

Degree of Orthogonality

Cost Savings

Maintainability Prediction

Configuration Relevance

Rating Errors

Variability Reduction

Subset Variability

Cardinality of
Feature Models

Homogeneity

Payoff Threshold

Degree of Reuse

Core, Dead & False-Optional

Atomic Set Candidates

Feature Prioritization

CTC Restrictiveness

Optimize Configuring

DD

+
Radio

Cardinality of
Features

Uniform Random Sampling

Atomic Sets

Rate Interactions

Configuration Derivation

DD

DD

DD

DD

DD

+

Cardinality of
Partial Configurations

3Chico Sundermann, Heß, Nieke, Bittner, Young, Schaefer, Thüm Analyzing Industrial Feature Models with #SAT: Are we there yet? - FOSD’21

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 6

https://github.com/SoftVarE-Group/Slides/blob/main/2021/2021-04-14-FOSD-AnalyzingFeatureModelsWithSharpSAT.pdf

Often Overlooked: Conjunctive Normal Form (CNF)

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

Conjunctive Normal Form

• conjunction ∧ of disjunc-
tions ∨ of literals X , ¬X

• here: a set of clauses,
which are sets of literals

• used by almost all solvers

From Formula . . .

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C) → N)

∧ ((D ∨ U ∨ H) → E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Our Goal: Raise Awareness for CNF Transformations [ASE’22]

• how to transform feature-model formulas into CNF?
⇒ describe and classify CNF transformations

• does this impact the work of practitioners and researchers?
⇒ evaluate efficiency and correctness on feature models

. . . to CNF

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 7

https://dl.acm.org/doi/abs/10.1145/3551349.3556938

Often Overlooked: Conjunctive Normal Form (CNF)

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

Conjunctive Normal Form

• conjunction ∧ of disjunc-
tions ∨ of literals X , ¬X

• here: a set of clauses,
which are sets of literals

• used by almost all solvers

From Formula . . .

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C) → N)

∧ ((D ∨ U ∨ H) → E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Our Goal: Raise Awareness for CNF Transformations [ASE’22]

• how to transform feature-model formulas into CNF?
⇒ describe and classify CNF transformations

• does this impact the work of practitioners and researchers?
⇒ evaluate efficiency and correctness on feature models

. . . to CNF

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 7

https://dl.acm.org/doi/abs/10.1145/3551349.3556938

Often Overlooked: Conjunctive Normal Form (CNF)

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

Conjunctive Normal Form

• conjunction ∧ of disjunc-
tions ∨ of literals X , ¬X

• here: a set of clauses,
which are sets of literals

• used by almost all solvers

From Formula . . .

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C) → N)

∧ ((D ∨ U ∨ H) → E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Our Goal: Raise Awareness for CNF Transformations [ASE’22]

• how to transform feature-model formulas into CNF?
⇒ describe and classify CNF transformations

• does this impact the work of practitioners and researchers?
⇒ evaluate efficiency and correctness on feature models

. . . to CNF

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 7

https://dl.acm.org/doi/abs/10.1145/3551349.3556938

CNF Transformations

Distributive Θ = D

apply laws of logic (De Mor-
gan’s laws and distributivity)

Tseitin Θ = T [’83]

abbreviate a subformula ϕ with
an auxiliary variable xϕ ↔ ϕ

Plaisted-Greenbaum Θ = PG [’86]

abbreviate a subformula ϕ with
an auxiliary variable xϕ → ϕ

D ↔/ (U ∧ H)

D−→(D∨(U∧H))∧(¬D∨¬(U∧H))

D−→{{D,U},{D,H},{¬D,¬U,¬H}}

D ↔/ (U ∧ H)

T−→ (D ↔/ x) ∧ x ↔ (U ∧ H)

D−→ {{D, x}, {¬D,¬x}, {¬x,U},
{¬x,H}, {¬U,¬H, x}}

D ↔/ (U ∧ H)

PG−−→ (D ↔/ x) ∧ x → (U ∧ H)

D−→ {{D, x}, {¬D,¬x}, {¬x,U},
{¬x,H}}

✓ equivalence
SAT ✓, #SAT =4

✓ easy to implement

✕ exponential complexity

✓ quasi-equivalence
SAT ✓, #SAT =4

✓ linear complexity

✕ take care of new variables

✓ equi-assignability SAT ✓

✓ linear complexity < T

✕ equi-countability #SAT = 5

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 8

https://link.springer.com/chapter/10.1007/978-3-642-81955-1_28
https://www.sciencedirect.com/science/article/pii/S0747717186800281

CNF Transformations

Distributive Θ = D

apply laws of logic (De Mor-
gan’s laws and distributivity)

Tseitin Θ = T [’83]

abbreviate a subformula ϕ with
an auxiliary variable xϕ ↔ ϕ

Plaisted-Greenbaum Θ = PG [’86]

abbreviate a subformula ϕ with
an auxiliary variable xϕ → ϕ

D ↔/ (U ∧ H)

D−→(D∨(U∧H))∧(¬D∨¬(U∧H))

D−→{{D,U},{D,H},{¬D,¬U,¬H}}

D ↔/ (U ∧ H)

T−→ (D ↔/ x) ∧ x ↔ (U ∧ H)

D−→ {{D, x}, {¬D,¬x}, {¬x,U},
{¬x,H}, {¬U,¬H, x}}

D ↔/ (U ∧ H)

PG−−→ (D ↔/ x) ∧ x → (U ∧ H)

D−→ {{D, x}, {¬D,¬x}, {¬x,U},
{¬x,H}}

✓ equivalence
SAT ✓, #SAT =4

✓ easy to implement

✕ exponential complexity

✓ quasi-equivalence
SAT ✓, #SAT =4

✓ linear complexity

✕ take care of new variables

✓ equi-assignability SAT ✓

✓ linear complexity < T

✕ equi-countability #SAT = 5

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 8

https://link.springer.com/chapter/10.1007/978-3-642-81955-1_28
https://www.sciencedirect.com/science/article/pii/S0747717186800281

CNF Transformations

Distributive Θ = D

apply laws of logic (De Mor-
gan’s laws and distributivity)

Tseitin Θ = T [’83]

abbreviate a subformula ϕ with
an auxiliary variable xϕ ↔ ϕ

Plaisted-Greenbaum Θ = PG [’86]

abbreviate a subformula ϕ with
an auxiliary variable xϕ → ϕ

D ↔/ (U ∧ H)

D−→(D∨(U∧H))∧(¬D∨¬(U∧H))

D−→{{D,U},{D,H},{¬D,¬U,¬H}}

D ↔/ (U ∧ H)

T−→ (D ↔/ x) ∧ x ↔ (U ∧ H)

D−→ {{D, x}, {¬D,¬x}, {¬x,U},
{¬x,H}, {¬U,¬H, x}}

D ↔/ (U ∧ H)

PG−−→ (D ↔/ x) ∧ x → (U ∧ H)

D−→ {{D, x}, {¬D,¬x}, {¬x,U},
{¬x,H}}

✓ equivalence
SAT ✓, #SAT =4

✓ easy to implement

✕ exponential complexity

✓ quasi-equivalence
SAT ✓, #SAT =4

✓ linear complexity

✕ take care of new variables

✓ equi-assignability SAT ✓

✓ linear complexity < T

✕ equi-countability #SAT = 5

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 8

https://link.springer.com/chapter/10.1007/978-3-642-81955-1_28
https://www.sciencedirect.com/science/article/pii/S0747717186800281

Evaluation

Research Questions

RQ1 efficiency of CNF transformations?

RQ2 CNF transformation → efficiency of analyses?

RQ3 CNF transformation → correctness of analyses?

Experimental Setup

• 22 configurable software systems

• 3 CNF transformation tools

• 23 SAT and #SAT solvers

.kconfig

KConfigReader

KClause

8 FOSS systems

.xml

FeatureIDE
(Distributive)

Z3
(Tseitin)

KConfigReader
(Plaisted-Greenbaum)

Void/FMC

Dead/FC

Core

SAT Solver

#SAT Solver

Stage 1: Formula Extraction Stage 2: CNF Transformation Stage 3: Automated Analysis

10 FOSS, 4 industrial systems

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 9

Evaluation

Research Questions

RQ1 efficiency of CNF transformations?

RQ2 CNF transformation → efficiency of analyses?

RQ3 CNF transformation → correctness of analyses?

Experimental Setup

• 22 configurable software systems

• 3 CNF transformation tools

• 23 SAT and #SAT solvers

.kconfig

KConfigReader

KClause

8 FOSS systems

.xml

FeatureIDE
(Distributive)

Z3
(Tseitin)

KConfigReader
(Plaisted-Greenbaum)

Void/FMC

Dead/FC

Core

SAT Solver

#SAT Solver

Stage 1: Formula Extraction Stage 2: CNF Transformation Stage 3: Automated Analysis

10 FOSS, 4 industrial systems

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 9

Evaluation

Research Questions

RQ1 efficiency of CNF transformations?

RQ2 CNF transformation → efficiency of analyses?

RQ3 CNF transformation → correctness of analyses?

Experimental Setup

• 22 configurable software systems

• 3 CNF transformation tools

• 23 SAT and #SAT solvers

.kconfig

KConfigReader

KClause

8 FOSS systems

.xml

FeatureIDE
(Distributive)

Z3
(Tseitin)

KConfigReader
(Plaisted-Greenbaum)

Void/FMC

Dead/FC

Core

SAT Solver

#SAT Solver

Stage 1: Formula Extraction Stage 2: CNF Transformation Stage 3: Automated Analysis

10 FOSS, 4 industrial systems

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 9

Efficiency of CNF Transformations (RQ1) and Analyses (RQ2)

60.0% 59.6%59.3%60.0% 60.0% 83.3% 58.4%56.0%83.3% 83.3% 100.0% 82.7%80.0%100.0% 100.0%
0.1

1.0

10.0

100.0

Transformation Void Core/Dead Feature Model Cardinality Feature Cardinality

A
lg

or
ith

m
 R

un
tim

e
(lo

g1
0,

 r
el

. t
o

Z
3)

CNF Transformation Tool FeatureIDE KConfigReader Z3

RQ1: D often fails,
tools differ significantly

RQ2 (SAT): almost all calls succeed,
solve time varies by factor 0.31–16.27

RQ2 (#SAT): 81.6% of calls succeed,
solve time varies by factor 0.11–32.7

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 10

Efficiency of CNF Transformations (RQ1) and Analyses (RQ2)

60.0% 59.6%59.3%60.0% 60.0% 83.3% 58.4%56.0%83.3% 83.3% 100.0% 82.7%80.0%100.0% 100.0%
0.1

1.0

10.0

100.0

Transformation Void Core/Dead Feature Model Cardinality Feature Cardinality

A
lg

or
ith

m
 R

un
tim

e
(lo

g1
0,

 r
el

. t
o

Z
3)

CNF Transformation Tool FeatureIDE KConfigReader Z3

RQ1: D often fails,
tools differ significantly

RQ2 (SAT): almost all calls succeed,
solve time varies by factor 0.31–16.27

RQ2 (#SAT): 81.6% of calls succeed,
solve time varies by factor 0.11–32.7

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 10

Efficiency of CNF Transformations (RQ1) and Analyses (RQ2)

60.0% 59.6%59.3%60.0% 60.0% 83.3% 58.4%56.0%83.3% 83.3% 100.0% 82.7%80.0%100.0% 100.0%
0.1

1.0

10.0

100.0

Transformation Void Core/Dead Feature Model Cardinality Feature Cardinality

A
lg

or
ith

m
 R

un
tim

e
(lo

g1
0,

 r
el

. t
o

Z
3)

CNF Transformation Tool FeatureIDE KConfigReader Z3

RQ1: D often fails,
tools differ significantly

RQ2 (SAT): almost all calls succeed,
solve time varies by factor 0.31–16.27

RQ2 (#SAT): 81.6% of calls succeed,
solve time varies by factor 0.11–32.7

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 10

Efficiency of CNF Transformations (RQ1) and Analyses (RQ2)

60.0% 59.6%59.3%60.0% 60.0% 83.3% 58.4%56.0%83.3% 83.3% 100.0% 82.7%80.0%100.0% 100.0%
0.1

1.0

10.0

100.0

Transformation Void Core/Dead Feature Model Cardinality Feature Cardinality

A
lg

or
ith

m
 R

un
tim

e
(lo

g1
0,

 r
el

. t
o

Z
3)

CNF Transformation Tool FeatureIDE KConfigReader Z3

RQ1: D often fails,
tools differ significantly

RQ2 (SAT): almost all calls succeed,
solve time varies by factor 0.31–16.27

RQ2 (#SAT): 81.6% of calls succeed,
solve time varies by factor 0.11–32.7

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 10

Efficiency of CNF Transformations (RQ1) and Analyses (RQ2)

60.0% 59.6%59.3%60.0% 60.0% 83.3% 58.4%56.0%83.3% 83.3% 100.0% 82.7%80.0%100.0% 100.0%
0.1

1.0

10.0

100.0

Transformation Void Core/Dead Feature Model Cardinality Feature Cardinality

A
lg

or
ith

m
 R

un
tim

e
(lo

g1
0,

 r
el

. t
o

Z
3)

CNF Transformation Tool FeatureIDE KConfigReader Z3

RQ1: D often fails,
tools differ significantly

RQ2 (SAT): almost all calls succeed,
solve time varies by factor 0.31–16.27

RQ2 (#SAT): 81.6% of calls succeed,
solve time varies by factor 0.11–32.7

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 10

Efficiency of CNF Transformations (RQ1) and Analyses (RQ2)

60.0% 59.6%59.3%60.0% 60.0% 83.3% 58.4%56.0%83.3% 83.3% 100.0% 82.7%80.0%100.0% 100.0%
0.1

1.0

10.0

100.0

Transformation Void Core/Dead Feature Model Cardinality Feature Cardinality

A
lg

or
ith

m
 R

un
tim

e
(lo

g1
0,

 r
el

. t
o

Z
3)

CNF Transformation Tool FeatureIDE KConfigReader Z3

RQ1: D often fails,
tools differ significantly

RQ2 (SAT): almost all calls succeed,
solve time varies by factor 0.31–16.27

RQ2 (#SAT): 81.6% of calls succeed,
solve time varies by factor 0.11–32.7

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 10

Efficiency of CNF Transformations (RQ1) and Analyses (RQ2)

60.0% 59.6%59.3%60.0% 60.0% 83.3% 58.4%56.0%83.3% 83.3% 100.0% 82.7%80.0%100.0% 100.0%
0.1

1.0

10.0

100.0

Transformation Void Core/Dead Feature Model Cardinality Feature Cardinality

A
lg

or
ith

m
 R

un
tim

e
(lo

g1
0,

 r
el

. t
o

Z
3)

CNF Transformation Tool FeatureIDE KConfigReader Z3

RQ1: D often fails,
tools differ significantly

RQ2 (SAT): almost all calls succeed,
solve time varies by factor 0.31–16.27

RQ2 (#SAT): 81.6% of calls succeed,
solve time varies by factor 0.11–32.7

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 10

Correctness of #SAT-Based Analyses (RQ3)

How Many Valid Configurations in BusyBox 1.35.0?

FeatureIDE (Distributive) says:
47842046044873008384 13517649496919484532 17980737275928522342 35800557238486733859

78971326945465595845 72908124465341304467 84732350200161989505 38440744692509401678

99136000000000000000 000000000

Tseitin (Z3) says:
47842046044873008384 13517649496919484532 17980737275928522342 35800557238486733859

78971326945465595845 72908124465341304467 84732350200161989505 38440744692509401678

99136000000000000000 000000000

KConfigReader (Plaisted-Greenbaum) says:
15751357446718468213 90135655996554596226 77965648288591932216 37368937605749145888

80850342078354075798 38471914912986177301 71318442740266744344 68038795993960163378

18607616000000000000 000000000 0 ⇒ off by factor 3.292

RQ3

• with PG , ≈ 70% of #SAT calls return
incorrect results

• incorrect by factor ≈ 3 (median)

• incorrect by factor ≈ 1077 (worst)

Our Recommendations

RQ1 D for small, T for large models

RQ2 largely depends on the model
⇒ future work

RQ3 do not use PG for #SAT

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 11

Correctness of #SAT-Based Analyses (RQ3)

How Many Valid Configurations in BusyBox 1.35.0?

FeatureIDE (Distributive) says:
47842046044873008384 13517649496919484532 17980737275928522342 35800557238486733859

78971326945465595845 72908124465341304467 84732350200161989505 38440744692509401678

99136000000000000000 000000000

Tseitin (Z3) says:
47842046044873008384 13517649496919484532 17980737275928522342 35800557238486733859

78971326945465595845 72908124465341304467 84732350200161989505 38440744692509401678

99136000000000000000 000000000

KConfigReader (Plaisted-Greenbaum) says:
15751357446718468213 90135655996554596226 77965648288591932216 37368937605749145888

80850342078354075798 38471914912986177301 71318442740266744344 68038795993960163378

18607616000000000000 000000000 0 ⇒ off by factor 3.292

RQ3

• with PG , ≈ 70% of #SAT calls return
incorrect results

• incorrect by factor ≈ 3 (median)

• incorrect by factor ≈ 1077 (worst)

Our Recommendations

RQ1 D for small, T for large models

RQ2 largely depends on the model
⇒ future work

RQ3 do not use PG for #SAT

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 11

Correctness of #SAT-Based Analyses (RQ3)

How Many Valid Configurations in BusyBox 1.35.0?

FeatureIDE (Distributive) says:
47842046044873008384 13517649496919484532 17980737275928522342 35800557238486733859

78971326945465595845 72908124465341304467 84732350200161989505 38440744692509401678

99136000000000000000 000000000

Tseitin (Z3) says:
47842046044873008384 13517649496919484532 17980737275928522342 35800557238486733859

78971326945465595845 72908124465341304467 84732350200161989505 38440744692509401678

99136000000000000000 000000000

KConfigReader (Plaisted-Greenbaum) says:
15751357446718468213 90135655996554596226 77965648288591932216 37368937605749145888

80850342078354075798 38471914912986177301 71318442740266744344 68038795993960163378

18607616000000000000 000000000 0 ⇒ off by factor 3.292

RQ3

• with PG , ≈ 70% of #SAT calls return
incorrect results

• incorrect by factor ≈ 3 (median)

• incorrect by factor ≈ 1077 (worst)

Our Recommendations

RQ1 D for small, T for large models

RQ2 largely depends on the model
⇒ future work

RQ3 do not use PG for #SAT

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 11

Perspective: Model Counting Meets Feature Modeling?

Scalability #SAT

0 2 4 6 8 10 12 14 16

10−2

10−1

100

101

102

103

Model Index (Sorted by #Features)

Ru
nt

im
e

in
Se

co
nd

s
(L

og
ar

ith
m

ic)

PicoSAT
SharpCDCL

Relsat
Cachet

sharpSAT
countAntom(4T)
countAntom(1T)

Ganak
c2d
d4

dSharp
Minic2d

CNF2EADT
CNF20BDD

BuDDy
Cudd

Timeout
Error/Memory

13 of 15 systems evaluated within one second
Insights

2 of 15 systems not evaluated within a week
Limits

How to scale to hard systems?
Future Work

Abb.: Runtime in Seconds for All Exact #SAT Solvers

6Chico Sundermann, Heß, Nieke, Bittner, Young, Schaefer, Thüm Analyzing Industrial Feature Models with #SAT: Are we there yet? - FOSD’21

Compiling to d-DNNFs [Chico Sundermann]

works on most models (but not Linux/Automotive)
15 software systems, 130 models (some industrial)

6 Tobias Heß, C. Sundermann, T. Thüm | Binary Decision Diagrams in Product-Line Analysis | FOSD Online Meeting 2021 | 15.04.2021

And today?

Feature models have “evolved”
� 1-2 orders of magnitude larger
� Often: #features ≈ #constraints
� ECR: 5% - 95%

BDD tooling has not “evolved”
� BuDDy (1996) and CUDD (1995)
� Expert knowledge required
� Not included in current frameworks

︸ ︷︷ ︸
116 CDL feature models
� 1,178 - 1,408 features
� 816 - 956 constraints
� ECR: 80% - 90%

0% success rate

Compiling to BDDs [Tobias Heß]

works on most small models (but not Linux/CDL)
largely depends on variable ordering

our opinion: feature models are interesting, diverse, and potentially hard problem instances for benchmarking
(#)SAT and knowledge compilation. maybe they could contribute to the SAT and MC competition as well?

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 12

https://github.com/SoftVarE-Group/Slides/blob/main/2021/2021-04-14-FOSD-AnalyzingFeatureModelsWithSharpSAT.pdf
https://www.uni-ulm.de/in/sp/team/chico-sundermann/
https://github.com/SoftVarE-Group/Slides/blob/main/2021/2021-04-15-FOSD-BDDsInPLA.pdf
https://www.uni-ulm.de/in/sp/team/tobias-hess/

Perspective: Model Counting Meets Feature Modeling?

Scalability #SAT

0 2 4 6 8 10 12 14 16

10−2

10−1

100

101

102

103

Model Index (Sorted by #Features)

Ru
nt

im
e

in
Se

co
nd

s
(L

og
ar

ith
m

ic)

PicoSAT
SharpCDCL

Relsat
Cachet

sharpSAT
countAntom(4T)
countAntom(1T)

Ganak
c2d
d4

dSharp
Minic2d

CNF2EADT
CNF20BDD

BuDDy
Cudd

Timeout
Error/Memory

13 of 15 systems evaluated within one second
Insights

2 of 15 systems not evaluated within a week
Limits

How to scale to hard systems?
Future Work

Abb.: Runtime in Seconds for All Exact #SAT Solvers

6Chico Sundermann, Heß, Nieke, Bittner, Young, Schaefer, Thüm Analyzing Industrial Feature Models with #SAT: Are we there yet? - FOSD’21

Compiling to d-DNNFs [Chico Sundermann]

works on most models (but not Linux/Automotive)
15 software systems, 130 models (some industrial)

6 Tobias Heß, C. Sundermann, T. Thüm | Binary Decision Diagrams in Product-Line Analysis | FOSD Online Meeting 2021 | 15.04.2021

And today?

Feature models have “evolved”
� 1-2 orders of magnitude larger
� Often: #features ≈ #constraints
� ECR: 5% - 95%

BDD tooling has not “evolved”
� BuDDy (1996) and CUDD (1995)
� Expert knowledge required
� Not included in current frameworks

︸ ︷︷ ︸
116 CDL feature models
� 1,178 - 1,408 features
� 816 - 956 constraints
� ECR: 80% - 90%

0% success rate

Compiling to BDDs [Tobias Heß]

works on most small models (but not Linux/CDL)
largely depends on variable ordering

our opinion: feature models are interesting, diverse, and potentially hard problem instances for benchmarking
(#)SAT and knowledge compilation. maybe they could contribute to the SAT and MC competition as well?

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 12

https://github.com/SoftVarE-Group/Slides/blob/main/2021/2021-04-14-FOSD-AnalyzingFeatureModelsWithSharpSAT.pdf
https://www.uni-ulm.de/in/sp/team/chico-sundermann/
https://github.com/SoftVarE-Group/Slides/blob/main/2021/2021-04-15-FOSD-BDDsInPLA.pdf
https://www.uni-ulm.de/in/sp/team/tobias-hess/

Perspective: Model Counting Meets Feature Modeling?

Scalability #SAT

0 2 4 6 8 10 12 14 16

10−2

10−1

100

101

102

103

Model Index (Sorted by #Features)

Ru
nt

im
e

in
Se

co
nd

s
(L

og
ar

ith
m

ic)

PicoSAT
SharpCDCL

Relsat
Cachet

sharpSAT
countAntom(4T)
countAntom(1T)

Ganak
c2d
d4

dSharp
Minic2d

CNF2EADT
CNF20BDD

BuDDy
Cudd

Timeout
Error/Memory

13 of 15 systems evaluated within one second
Insights

2 of 15 systems not evaluated within a week
Limits

How to scale to hard systems?
Future Work

Abb.: Runtime in Seconds for All Exact #SAT Solvers

6Chico Sundermann, Heß, Nieke, Bittner, Young, Schaefer, Thüm Analyzing Industrial Feature Models with #SAT: Are we there yet? - FOSD’21

Compiling to d-DNNFs [Chico Sundermann]

works on most models (but not Linux/Automotive)
15 software systems, 130 models (some industrial)

6 Tobias Heß, C. Sundermann, T. Thüm | Binary Decision Diagrams in Product-Line Analysis | FOSD Online Meeting 2021 | 15.04.2021

And today?

Feature models have “evolved”
� 1-2 orders of magnitude larger
� Often: #features ≈ #constraints
� ECR: 5% - 95%

BDD tooling has not “evolved”
� BuDDy (1996) and CUDD (1995)
� Expert knowledge required
� Not included in current frameworks

︸ ︷︷ ︸
116 CDL feature models
� 1,178 - 1,408 features
� 816 - 956 constraints
� ECR: 80% - 90%

0% success rate

Compiling to BDDs [Tobias Heß]

works on most small models (but not Linux/CDL)
largely depends on variable ordering

our opinion: feature models are interesting, diverse, and potentially hard problem instances for benchmarking
(#)SAT and knowledge compilation. maybe they could contribute to the SAT and MC competition as well?

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 12

https://github.com/SoftVarE-Group/Slides/blob/main/2021/2021-04-14-FOSD-AnalyzingFeatureModelsWithSharpSAT.pdf
https://www.uni-ulm.de/in/sp/team/chico-sundermann/
https://github.com/SoftVarE-Group/Slides/blob/main/2021/2021-04-15-FOSD-BDDsInPLA.pdf
https://www.uni-ulm.de/in/sp/team/tobias-hess/

Perspective: Model Counting Meets Feature Modeling?

Scalability #SAT

0 2 4 6 8 10 12 14 16

10−2

10−1

100

101

102

103

Model Index (Sorted by #Features)

Ru
nt

im
e

in
Se

co
nd

s
(L

og
ar

ith
m

ic)

PicoSAT
SharpCDCL

Relsat
Cachet

sharpSAT
countAntom(4T)
countAntom(1T)

Ganak
c2d
d4

dSharp
Minic2d

CNF2EADT
CNF20BDD

BuDDy
Cudd

Timeout
Error/Memory

13 of 15 systems evaluated within one second
Insights

2 of 15 systems not evaluated within a week
Limits

How to scale to hard systems?
Future Work

Abb.: Runtime in Seconds for All Exact #SAT Solvers

6Chico Sundermann, Heß, Nieke, Bittner, Young, Schaefer, Thüm Analyzing Industrial Feature Models with #SAT: Are we there yet? - FOSD’21

Compiling to d-DNNFs [Chico Sundermann]

works on most models (but not Linux/Automotive)
15 software systems, 130 models (some industrial)

6 Tobias Heß, C. Sundermann, T. Thüm | Binary Decision Diagrams in Product-Line Analysis | FOSD Online Meeting 2021 | 15.04.2021

And today?

Feature models have “evolved”
� 1-2 orders of magnitude larger
� Often: #features ≈ #constraints
� ECR: 5% - 95%

BDD tooling has not “evolved”
� BuDDy (1996) and CUDD (1995)
� Expert knowledge required
� Not included in current frameworks

︸ ︷︷ ︸
116 CDL feature models
� 1,178 - 1,408 features
� 816 - 956 constraints
� ECR: 80% - 90%

0% success rate

Compiling to BDDs [Tobias Heß]

works on most small models (but not Linux/CDL)
largely depends on variable ordering

our opinion: feature models are interesting, diverse, and potentially hard problem instances for benchmarking
(#)SAT and knowledge compilation. maybe they could contribute to the SAT and MC competition as well?

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 12

https://github.com/SoftVarE-Group/Slides/blob/main/2021/2021-04-14-FOSD-AnalyzingFeatureModelsWithSharpSAT.pdf
https://www.uni-ulm.de/in/sp/team/chico-sundermann/
https://github.com/SoftVarE-Group/Slides/blob/main/2021/2021-04-15-FOSD-BDDsInPLA.pdf
https://www.uni-ulm.de/in/sp/team/tobias-hess/

Perspective: How Hard can Linux be, Really?

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 13

Perspective: How Hard can Linux be, Really?

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 13

Perspective: How Hard can Linux be, Really? [SharpSAT-td+Arjun, d4]

2003
2.5.54

2004
2.6.1

2005
2.6.11

2006
2.6.15

2007
2.6.20

2008
2.6.24

2009
2.6.29

2010
2.6.33

2011
2.6.37

2012
3.2

2013
3.8

2014
3.13

2015
3.19

2016
4.4

2017
4.10

2018
4.15

2019
5.0

2020
5.5

2021
5.11

2022
5.16

2023
6.2

Year / First Release in Year

P
ro

ce
ss

or
 A

rc
hi

te
ct

ur
e

alpha

arc

arm

arm26

arm64

avr32
blackfin

c6x

cris

csky

frv

h8300

hexagon

i386
ia64

loongarch

m32r

m68k

m68knommu

metag

microblaze

mips
mips64

mn10300

nds32

nios2

openrisc

parisc

powerpc

ppc
ppc64

riscv

s390

s390x

score

sh

sh64

sparc
sparc64

tile
unicore32

v850

x86

x86_64

xtensa

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 14

Conclusion

The Impact of CNF Transformations on Feature-Model Analyses

Distributive

apply laws of logic

Tseitin

abbreviate ϕ with xϕ ↔ ϕ

Plaisted-Greenbaum

abbreviate ϕ with xϕ → ϕ

✓ equivalence

✓ easy to implement

✕ exponential complexity

✓ quasi-equivalence

✓ linear complexity

✕ take care of new variables

✓ equi-assignability

✓ linear complexity

✕ equi-countability

FeatureIDE

often fails on large models

Z3

succeeds correctly on all models

KConfigReader

often incorrect for #SAT calls

Compiling to d-DNNFs Compiling to BDDs Counting Linux is hard

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 15

find out more:

github.com/ekuiter/tseitin-or-not-tseitin

https://github.com/ekuiter/tseitin-or-not-tseitin
https://github.com/ekuiter/tseitin-or-not-tseitin

.kconfig
(8)

KConfigReader

KClause

KConfig models (8 FOSS systems)

.model
(8)

.kclause
(8)

.model
(8)

.xml
(14)

FeatureIDE
(Distributive)

Z3
(Tseitin)

KConfigReader
(Plaisted-

Greenbaum)

.smtlib2
(30)

.model
(30)

.dimacs
(30)

.dimacs
(25)

.dimacs
(18)

.dimacs
(511)

Void/FMC

Dead/FC

Core

SAT Solver for
Void/Dead/Core

(18)

#SAT Solver for
FMC/FC

(5)

Stage 1: Formula Extraction
Result: 30 feature models as .model and .xml files

Stage 2: CNF Transformation
Result: 73 / 90 formulas in CNF as .dimacs files

Stage 3: Automated Analysis
Result: 9176 / 9198 SAT calls, 1192 / 1460 #SAT calls

Feature diagrams (10 FOSS, 4 industrial systems) 3 features

.dimacs
(292)

12 timeouts

5 timeouts

22 timeouts

268 timeouts

0 timeouts

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 17

60.0% 59.6%59.3%60.0% 60.0% 83.3% 58.4%56.0%83.3% 83.3% 100.0% 82.7%80.0%100.0% 100.0%

100.0% 100.0%100.0%100.0% 100.0% 100.0% 99.8%99.3%100.0% 100.0% 100.0% 100.0%100.0%100.0% 100.0%
< 100< 100 < 100< 100< 100

0.1

1.0

10.0

100.0

Transformation Void Core/Dead FMC FC
Algorithm

A
lg

or
ith

m
 R

un
tim

e
(lo

g1
0,

 r
el

. t
o

Z
3)

CNF Transformation Tool aa aa aaFeatureIDE KConfigReader Z3

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 18

100.0% < 100 90.2% < 100 100.0% < 100

1

10

100

FeatureIDE KConfigReader Z3
CNF Transformation Tool

M
od

el
 C

ou
nt

 (
lo

g1
0,

 r
el

. t
o

Z
3)

Analysis FC FMC

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 19

2004 2006 2008 2010 2012 2014

10 200

10 400

10 600

10 800

2004 2006 2008 2010 2012 2014

Year Year

N
um

be
r o

f C
on

fig
ur

at
io

ns
 (l

og
 10

)

Extractor=KConfigReader Extractor=KClause

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 20

