
National Prior Knowledge Test in Programming
How proficient are incoming higher education students?

Sondre S. Bolland

University of Bergen

sondre.bolland@uib.no

Keywords: Prior Knowledge · Test · Introduction to Programming · CS1

Table of Contents

1 Introduction . 3
2 Summary . 3
3 Methodology . 5

3.1 The Test . 5
3.2 Distribution . 5
3.3 Data Processing & Analysis . 6
3.4 Demographic . 6

4 Results . 8
4.1 Main Results . 8
4.2 Prior Programming Experience in Secondary School . 10

Graduation Year . 10
Do all 2023 students learn programming? . 11
Elective Programming Courses . 12
Mathematics Courses . 15
Experience outside of school . 17

4.3 Gender . 19
4.4 Programming Concepts . 21

Lists . 21
Datatypes . 22
Loops . 22
Functions . 23
Booleans . 23
Conditionals . 24
Variables . 24

5 Conclusion . 24
6 Further Work. 25

National Prior Knowledge Test in Programming 3

1 Introduction

The implementation of Kunnskapsløftet 2020 (LK20) has made programming a mandatory part
of the curriculum in elementary and secondary school [1]. Specifically, we find programming in the
curriculum objectives of Mathematics, Science, Music, and Arts and crafts. Three years later, the
first cohort of students with this programming experience entered higher education institutions.
This existing programming competence can have significant implications for the teaching of ICT
subjects at universities and university colleges. If students already possess a solid understanding
of basic programming elements, instruction can be intensified and reach a more advanced level as
early as the first semester. However, it is necessary to investigate whether this is the case. There
has been substantial variation in the quality of programming education during the implementation
of LK20 [4] [7]. Teachers’ knowledge of programming varies greatly, with some having computer
science didactics as part of their education while others have never coded before. Therefore, it is
important to assess the extent and comprehensiveness of students’ prior knowledge.

The National Prior Knowledge Test in Programming is a tool for assessing students’ pro-
gramming skill. The test covers the fundamental elements of introductory programming taught
at different universities and university colleges in Norway. The test was inspired by the National
Prior Knowledge Test in Mathematics which has been hosted by the Norwegian National Council
of Mathematics since 1984 [2]. This test was created to monitor the quality of the prior mathe-
matical knowledge of beginner students. However, while the mathematics test measures mainly
prior knowledge in the form of basic concepts and skills taken from the syllabus in elementary
school, the programming test entails curriculum objectives found in Introduction to Programming
(CS1) [5]. The goal of the test is to evaluate students’ level of knowledge regarding the curriculum
taught at higher education institutions, regardless of what they have learned in secondary school.
By testing the students in the concepts found in CS1 we aim for instructors to be better able to
develop and adapt their courses to this new found prior knowledge. The test primarily emphasizes
programming taught in mathematics curriculum, as it is the most prevalent source of programming
knowledge.

This report presents the results from the first iteration of the test administered august 2023.
We start by summarizing the key findings. Following this, we present the methodology, outlining
the test’s content, distribution, test-taker demographics, and data processing procedures. In the
results section, we initially present the primary outcome, which is the overall performance of all
students and an evaluation of the impact of LK20. Subsequently, we delve into the students’ spe-
cific backgrounds and assess how these factors have influenced their performance. The report then
undertakes a detailed analysis of each task within the test, aiming to gain a deeper understanding
of the programming concepts in which students exhibit proficiency and identify common miscon-
ceptions. Finally, we conclude with our interpretation of the results and the implications they hold
for the instruction of programming in higher education.

2 Summary

The test was taken by 2,093 students (following data pruning, 1,766 individuals) at seven different
higher education institutions in Norway. This collective yielded an average score of 46.1%. The
students’ academic backgrounds exhibited significant variations with potential correlations to their
performance. As expected, a notable factor contributing to the variation in scores became evident
when evaluating the students’ year of completion of secondary education. By dividing the students
into two cohorts, those who graduated in 2023 (n=483) and those who graduated before 2023
(n=1,280), we could discern a specific subset of students who had been exposed to the prescribed
curriculum objectives of LK20, including compulsory programming within their mathematical
coursework. This division in educational experiences revealed a significant difference with the 2023
graduates achieving an average score of 63.3%, while their counterparts from earlier graduation
years achieved an average score of 39.4%. This difference is illustrated in Figure 1.

However, it is crucial to acknowledge additional noteworthy factors influencing the performance
of the 2023 student cohort. Among these factors, the presence of elective programming courses

4 S. Bolland

Fig. 1: Test score distribution of the 2023 cohort and those who graduated in prior years.

during their secondary school education is significant. When the students who participated in
elective programming courses are excluded from the dataset the mean performance of both groups
undergoes a reduction. The 2023 cohort looses a large number of their highest scoring students
and their mean score sinks from 63.3% to 54.5%. Furthermore, another pivotal determinant of
performance relates to the level of mathematics courses completed by these students. Within the
2023 cohort, those who have undertaken the most advanced mathematics course, Science Math
2 (R2), achieve a commendable mean score of 66.4%. In contrast, those who have completed the
most fundamental concluding course, Practical Math 2 (2P), exhibit a notably lower mean score
of 38.0%. A third factor is independent exploration of programming outside of the classroom.
16.1% of the students reported having at least 30 hours of experience with block or text based
programming outside of formal education. Excluding these students from the 2023 cohort the mean
test score drops from 63.3% to 57.3%. These observation underscore the importance of considering
the extent of a student’s involvement in programming, particularly their participation in elective
programming courses, outside programming experience and enrollment in advanced mathematics
courses, the last often being a prerequisite for admission to ICT study programs.

By excluding the factors of elective courses and outside experience, we can obtain a clearer
assessment of the impact of LK20. When we restrict the analysis to students without this additional
experience, the 2023 cohort still outperforms those who graduated in preceding years with a
19.4% higher mean score. This suggests that LK20 has indeed led to a significant increase in the
proportion of students who possess a solid foundational understanding of programming. However,
it is important to note that a considerable portion of the student population still demonstrates less
proficiency in this area. The results from the National Prior Knowledge Test in Programming offer
promising prospects for the advancement of computer science education in Norway. Nonetheless,
it is clear that a significant number of students still commence their higher education in computer
science with rudimentary knowledge.

National Prior Knowledge Test in Programming 5

3 Methodology

3.1 The Test

The prior knowledge test was developed in partnership with 9 higher education institutions in
Norway1. It drew inspiration from the prior knowledge test in mathematics, incorporating several
analogous elements related to student backgrounds.

The test was divided into two sections, with the first section dedicated to gathering information
about students’ backgrounds, while the second section was designed to evaluate their programming
proficiency. In the background information section, students were surveyed on the following items:

– educational institution
– study program
– gender
– when they graduated secondary school
– which math courses they completed
– whether they completed elective programming courses
– whether they have completed a university level programming course
– programming experience outside of formal education
– their attitude towards programming

The second segment of the test encompassed 21 programming tasks, each addressing funda-
mental programming concepts crucial to the CS1 curriculum:

– datatypes
– variables
– booleans
– conditionals
– loops
– lists
– functions

For each concept, a range of tasks was provided, progressively increasing in complexity. It’s im-
portant to note that the specific tasks will not be disclosed in this report, as they are intended
for utilization in subsequent iterations of the test. However, Section 4.4 provides examples which
closely illustrate the nature of each task.

The test was administered in Norwegian, and both test items and their responses cited here
have been translated to English by the author.

3.2 Distribution

The test was administered during the early weeks of the 2023 fall semester, specifically among
students enrolled in CS1. Nettskjema2 was the platform used for distributing the test. Each insti-
tution had the responsibility for making the test available and oversee it’s completion under the
following guidelines:

– Make no aids available, such as computers, phones or print outs,
– maximum two hour completion time,
– administer the test as early in the semester as possible. We want to map their prior knowledge,

not anything they learn at university.
1 Institutions developing the test: University of Bergen, The Norwegian University of Science and Technol-

ogy, University of Oslo, Kristiania University College, Norwegian University of Life Sciences, University
of Agder, Western Norway University of Applied Sciences, Oslo Metropolitan University and University
of Stavanger.

2 https://nettskjema.no/

https://nettskjema.no/

6 S. Bolland

3.3 Data Processing & Analysis

Before initiating the analysis, the dataset underwent pruning to eliminate undesired responses.
This involved the exclusion of blank responses (n=63) and the removal of all students who indicated
having previously completed a university-level programming course (n=264). The latter exclusion
was implemented to confine the assessment of student programming proficiency solely to knowledge
acquired before commencing higher education. Consequently, this pruning process resulted in a
reduction of our dataset size from 2093 responses to 1766.

This report primarily centers its analysis on the comparison of means among various student
groups, categorized by their educational background. Given the non-normal nature of many distri-
butions, non-parametric tests were predominantly employed for this purpose. The reported results
include the significance level within the text. Moreover, each comparison is visually represented
through distribution plots, presented in the form of either histograms or violin plots for enhanced
clarity.

In the analysis pertaining to gender, only the binary classifications of female and male were
considered, given the limited representation of other gender categories within the dataset (n=49).
This decision was made due to the insufficient sample size of alternative gender identities for
meaningful statistical analysis.

3.4 Demographic

The test was distributed at seven higher education institutions in Norway.

– University of Bergen (UiB)
– The Norwegian University of Science and Technology (NTNU)
– University of Oslo (UiO)
– Kristiania University College (Kristiania)
– Norwegian University of Life Sciences (NMBU)
– Western Norway University of Applied Sciences (HVL)
– University of Stavanger (UiS)

The distribution of participants by institution can be found in Figure 2.

UiB

24.8%
NTNU

43.7%

UiO

3.4%

NMBU

13.0%
Kristiania

4.4% HVL

4.2%
UiS

6.3%

Fig. 2: Distribution of students by institution (n=1752).

The test was administered to students enrolled in their respective institutions’ CS1 course.
While a substantial number of participating students were pursuing computer science study pro-
grams, it is noteworthy that CS1 is a mandatory course in several study programs across various

National Prior Knowledge Test in Programming 7

fields of study, predominantly in STEM. Students were requested to indicate their enrolled study
program through an open-text format, resulting in a diverse range of responses. Due to the varied
and sometimes ambiguous nature of the answers, it has proven challenging to precisely determine
the distribution of study programs. Consequently, an exact breakdown of study programs is not
available.

The test was taken predominantly by male students. Figure 3 shows the distribution of gender
based on the binary values Female and Male, in addition to those that identified outside of these
two options or did not give an answer (other).

Male

59.8%

Female

37.4%

Other
2.7%

Fig. 3: Gender distribution of participating students (n=1766).

The students were queried about the year in which they completed their secondary school
education. The distribution of participants according to their year of graduation can be found in
Figure 4.

Before 2020

19.1%

2020

8.0%

2021 - 2022 45.4%

2023

27.3%

Fig. 4: Number of students of each graduating year (n=1764).

8 S. Bolland

4 Results

In this section of the report, the main results are presented before a review of the background the
students have on the various study paths and what connection there is between background and
results. We also take a close look at how well they performed in specific programming tasks to
understand their grasp of the different concepts.

4.1 Main Results
The average test score was 10.43 out of a maximum of 22.60 (46.1%), with a standard deviation
of 6.0. Figure 5 illustrates how the scores are distributed among all students. This distribution
reveals two noticeable peaks, with the majority of students scoring around 7.5. Additionally, there
is a group of high-achieving students who scored 19 points or more. On the other hand, a fair
amount of students at the lower end of the distribution demonstrate a limited grasp of fundamental
programming concepts.

Fig. 5: Test score distribution of all students (n=1766).

To evaluate the impact of the LK20 curriculum, we conducted a comparative analysis of two
groups of students: those who completed their secondary education in 2023 (exposed to the curricu-
lum objectives of LK20) and those who graduated in preceding years (without exposure to LK20).
Furthermore, to isolate the influence of programming taught within the mathematics subjects,
we controlled for other significant factors affecting test scores, specifically elective programming
courses and programming experience outside of their formal education. These two factors are
explored in dedicated subsections.

The notable disparity in the distributions shown in Figure 6 highlights the improvement ob-
served in the 2023 cohort. This improvement is evident through the significantly different mean
test score (Wilcoxon rank sum test, W = 182065, p < 2.2e− 16) and the larger proportion of high
scoring students. These findings suggest that the implementation of LK20 has had a substantial im-
pact on the programming proficiency of incoming higher education students. While there are still
students performing at the lower end of the scale, the average student appears to possess a greater
understanding of programming compared to previous cohorts. This bodes well for the future of
computer science higher education in Norway, signaling the potential for enhanced instruction in
the coming years.

National Prior Knowledge Test in Programming 9

Graduate year Pre 2023 2023
N 997 318
Mean 7.8 12.2
SD 4.9 5.1

Fig. 6: Test score distribution of the students without any electives or outside programming expe-
rience, divided by graduate year.

10 S. Bolland

4.2 Prior Programming Experience in Secondary School

In the initial segment of the test, we inquired with the students regarding their prior exposure to
programming before to commencing their higher education studies.

Graduation Year The educational reforms outlined in LK20 were introduced in the year 2020,
resulting in programming becoming a compulsory component solely for those students who grad-
uated in 2023 and onward.

Graduate year Pre 2023 2023
N 1280 483
Mean 8.9 14.3
SD 5.5 5.5

Fig. 7: Test score distribution divided by graduating year.

As illustrated in Figure 7, a notable distribution shift toward the right is evident when compar-
ing students who graduated before 2023 with those who graduated in 2023. This shift corresponds
to a significant increase in the mean test score for the 2023 students (Wilcoxon rank sum test,
W = 465302, p < 2.2e− 16).

National Prior Knowledge Test in Programming 11

Do all 2023 students learn programming? In accordance with LK20 every secondary school
student is meant to have programming as part of the mathematics curriculum. However, there are
a large number of teachers that are not very proficient in programming, much less skilled in how
to teach programming [4]. As a result, it’s possible that certain students have had limited expo-
sure to programming education, particularly if their teachers have faced challenges in effectively
delivering such instruction. The students were prompted with the question “Did you learn Python
programming in the mathematics courses?”. While there were 483 students who graduated in 2023
only 380 answered “Yes”. 100 answered that they did not learn programming in the mathematics
courses, and three answered that they learned another programming language. However, these
three seem to have simply misunderstood the question as the programming languages they cite
are the ones taught in the elective programming courses.

Although these 100 students report not having learned programming in the mathematics
courses they perform significantly better than students from preceding years (Wilcoxon rank sum
test, W = 142709, p < 2.2e − 16). Figure 8 shows the distribution and mean score of graduate
years and self reported Python experience. Considering the vast difference in performance between
Graduated before 2023 and Did not learn Python (2023) it seems strange that these students have
not been taught Python programming. One plausible explanation for the reported absence of pro-
gramming education among the 2023 students could be that they did not perceive the level of
programming instruction they received as substantial enough to confidently claim that they had
learned programming.

Programming Experience N Mean SD
Graduated before 2023 1283 9.0 5.5
Did not learn Python (2023) 100 13.0 6.3
Learned Python (2023) 380 14.6 5.2

Fig. 8: Score distribution of those who graduated before 2023, and those who graduated in 2023
that reported learning Python programming and those who reported not learning programming.

12 S. Bolland

Elective Programming Courses During the secondary school phase, students have the option
to take three elective courses in programming: Information Technology 1 (IT1), Information Tech-
nology 2 (IT2), and Programming and Modelling X (PMX). These courses include, among others,
the following curriculum objectives:

IT1

– develop web pages using markup language
– use algorithmic thinking and programming to explore a problem and present the result
– describe different types of algorithms and assess the effectiveness of your own program code

IT2

– apply object-oriented modeling to describe a program’s structure
– develop object-oriented programs with classes, objects, methods and inheritance
– generalize solutions by developing and using reusable program code

PMX

– develop holistic and structured programs
– use and create algorithms that can be used for modelling, and assess the validity of these

algorithms
– assess and use strategies for testing, troubleshooting and error handling

Although these subjects are not mandatory and are not pursued by all students, a substantial
portion of students seeking admission to ICT studies opt for them. Figure 9 gives the number of
students who have completed these electives.

IT1 IT2 PMX No electives

0

200

400

600

800

1,000

1,200

1,400

347
264

75

1,319

Electives

#
St

ud
en

ts

Fig. 9: Number of students who have taken elective programming courses in secondary school
(n=1766).

Given that these courses emphasize programming and algorithmic thinking, it is reasonable to
anticipate that students who have taken them would achieve higher test scores. Figure 10 illustrates
how students’ scores correlate with the elective subjects they have undertaken. The highest-scoring

National Prior Knowledge Test in Programming 13

Electives N Mean SD
No electives 1318 8.9 5.3
Only IT1 119 11.5 5.5
Only IT2 41 15.0 5.7
Only PMX 57 15.4 5.8
IT1+IT2 220 16.4 5.0

Fig. 10: Score distributions by elective programming course (n=1766).

14 S. Bolland

students are those who have completed both IT1 and IT2. Certain subject combinations, such as
IT1+IT2+PMX, have been omitted from the figure due to small sample sizes.

When we divide the students based on whether they have taken one or more electives and
those who have taken none, as demonstrated in Figure 11, a significant difference in test scores is
apparent (Wilcoxon rank sum test, W = 132822, p < 2.2e− 16).

Electives True False
N 448 1318
Mean 14.9 8.9
SD 5.6 5.3

Fig. 11: Test score distribution divided by whether the students has taken an elective programming
course.

National Prior Knowledge Test in Programming 15

Mathematics Courses Proficiency in mathematics is frequently acknowledged as a substantial
indicator of programming aptitude [8][3][6]. Furthermore, the higher-level mathematics courses
involve more advanced programming concepts. Therefore, we surveyed the students on which
mathematics courses they had completed during their secondary education. The most common
mathematics courses available are the following, listed in increasing difficulty.

– Practical Math 1 (1P)
– Practical Math 2 (2P)
– Theoretical Math 1 (1T)
– Social Science Math 1 (S1)
– Social Science Math 2 (S2)
– Natural Science Math 1 (R1)
– Natural Science Math 2 (R2)

The majority of students who took the test belonged to STEM fields, where the typical admission
requirement includes S1 and S2 or R1 mathematics. Certain math-intensive study programs may
also demand R2 mathematics. Notably, most students had completed the Natural Science Math
courses (see Figure 12), which is the most advanced option.

1P 2P 1T S1 S2 R1 R2

200

400

600

800

1,000

1,200

217
182

1,039

249 255

1,035

1,129

Math courses

#
st

ud
en

ts

Fig. 12: Number of students taking the different mathematics courses in secondary school (n=1766).

To assess the influence of mathematics courses on test scores, we categorized the students based
on the most advanced mathematics course they had completed (see Figure 13). These findings are
in line with our initial expectations: students who have completed more advanced mathematics
courses tend to perform better in programming.

16 S. Bolland

Most Advanced Math Course N Mean SD
Practical Math 2 152 7.3 5.2
Social Science Math 2 235 7.9 4.6
Natural Science Math 1 110 8.5 4.0
Natural Science Math 2 1128 11.5 6.1

Fig. 13: Score by most advanced mathematics course (n=1625).

National Prior Knowledge Test in Programming 17

Experience outside of school A source of programming knowledge is self-directed learning
outside of formal education, where individuals independently explore the field, using resources like
books and online materials. We surveyed the students regarding their engagement in programming
beyond the classroom, posing the following question and providing these answer options:
“What experience with programming do you have outside of school?”

– At least {30, 50, 100, 120} hours experience with text based programming,
– At least {30, 50, 100, 120} hours experience with block based programming,
– No experience outside of school.

In Figure 14, we have grouped the hours spent on different types of programming into the same
categories. Approximately 16.1% of students indicated having at least 30 hours of experience with
either block or text-based programming. When comparing the students with and without outside
experience (see Figure 15), we notice a significant difference in mean score (Wilcoxon rank sum
test, W = 132822, p < 2.2e− 16).

Block
4.2%

Text

11.9%

No outside experience

83.8%

Fig. 14: Non formal programming experience (n=1766).

18 S. Bolland

Outside experience True False
N 285 1481
Mean 16.8 9.2
SD 5.5 5.3

Fig. 15: Score distribution divided by whether the student had outside experience (n=1766).

National Prior Knowledge Test in Programming 19

4.3 Gender

We have observed a notable difference in performance when examining the variable of gender, as
shown in Figure 16. Specifically, the mean test score for men is significantly higher than that for
women, as shown using a Wilcoxon rank sum test, W = 238659, p < 2.2e− 16.

Gender Male Female
N 1056 661
Mean 11.7 8.3
SD 6.1 5.0

Fig. 16: Score distributions by gender (n=1717).

This disparity in performance appears to be influenced by variations in exposure to program-
ming and mathematics. Within our dataset, there is a higher proportion of men who participated
in elective programming courses, as indicated in Table 1. Moreover, fewer women had engaged

Gender N No Electives IT1 IT2 PMX
Men 1056 70% 24% 19% 5%
Women 661 82% 12% 8% 3%

Table 1: Number of students taking electives programming courses divided by gender.

in independent exploration of programming outside of the classroom, as presented in Table 2.
Additionally, a lower number of women were enrolled in the most advanced mathematics course,
as outlined in Table 3. These factors likely contribute to the performance discrepancy observed
between male and female students.

When we normalize the analysis by considering only men and women who have completed the
R2 mathematics course, but not taken any electives and lack outside programming experience,

20 S. Bolland

Gender N Outside experience No outside experience
Men 1056 22% 78%
Women 661 5% 95%

Table 2: Number of students with outside experience divided by gender.

Gender N P2 S2 R1 R2
Men 1056 10% 13% 5% 66%
Women 661 11% 19% 8% 59%

Table 3: Number of students taking each mathematics course divided by gender.

the performance gap between the two groups narrows (as depicted in Figure 17). However, it is
important to note that this difference remains statistically significant (Wilcoxon rank sum test,
W = 43235, p = 2.819e− 05).

Gender Male Female
N 372 287
Mean 9.4 7.8
SD 4.1 4.5

Fig. 17: Score distribution of men and women who have had R2, no programming electives and no
outside programming experience (n=659).

National Prior Knowledge Test in Programming 21

4.4 Programming Concepts

Every task featured in the test pertained to a designated concept category. Figure 18 gives the
percentage of accurate responses achieved by the students for each concept.

Variables Conditionals Boolean Functions Loops Datatypes Lists
0

20

40

60

80
82.1

53.3 52.4

33.4

20.8

33.3

20

91.6

85

63.1
59.7

56.3 54.2

45.5

Concepts

Pe
rc

en
ta

ge

Before 2023 2023

Fig. 18: Percentages of correct answers for each task concept category, by graduate year.

Performance within each category may not exclusively reflect the students’ mastery of that pro-
gramming concept. Variability in task difficulty plays a substantial role, with some tasks naturally
being easier than others, irrespective of the underlying concept. To gain a deeper understanding
of the students’ knowledge and comprehension of specific programming concepts, it is important
to analyze their performance on these concepts. In the following sections, our focus will be exclu-
sively on data derived from the 2023 students. This narrow scope is intentional, as our objective
is to gain insights into the teachings of the LK20 curriculum in secondary school and examine its
correlation with the CS1 curriculum. While non of the actual tasks are provided, examples are
shown to closely illustrate the nature of each task.

Lists The poorest-performing concept was Lists, which included three tasks. The first two pri-
marily focused on list indexing. The first task resembled the following example:

What does this program print ?

ls = [5, 9, -11 , 14 , 0, 3]
print (ls[3])

Upon examining the incorrect answers provided, it becomes evident that a significant portion
of students seemed to have a misconception that lists in Python are 1-indexed. If we consider
both 0-indexing and 1-indexing as correct answers, the percentage of correct responses increases
substantially, moving from 34.7% to 86.6%. This trend of responses related to 1-indexing is also
noticeable in the second and third tasks within the same category.

22 S. Bolland

Datatypes In the datatype task, four variables were defined, each with different data types: string
(str), integer (int), list, and float. The students were tasked with correctly identifying the data
type for these variables and a set of expressions. The answer options included int, float, bool, list,
str, and Error if the expression would lead to an error. Figure 19 shows the percentages of correct
answers to giving the datatype of the four variables.

str int list float
0

20

40

60

80

100

64.1
67.9

88.6

71.8

Datatype

Pe
rc

en
ta

ge

Fig. 19: Percentage of correct answers to giving the datatype of the four variables in datatype task.
Data from 2023 students (n=483).

The subsequent section of this task involved a series of expressions that employed these four
variables along with the following operators:

+ concatenation
== comparison
∗ repetition

The most common incorrect response for these expressions was Error. Specifically, when the ex-
pressions used the repetition or concatenation operators with strings and lists, the majority of
students erroneously selected Error as their answer. It appears that many students were not fully
familiar with the polymorphic nature of these operators, interpreting ∗ and + solely in the context
of multiplication and addition, respectively.

Loops In the loops category, both tasks started with a variable n = 0, and its value was modified
within a (while/for) loop. The students were asked to determine the final value of n at the end
of the program. A relatively common incorrect response (7.6% in task 1 and 2.9% in task 2) was
that n equaled 0. In these instances, it appeared that the students had difficulty perceiving how
the code modified the variable, and consequently, they provided its initial value as their answer.

National Prior Knowledge Test in Programming 23

In task 2, the loop increments the variable by two with each iteration, similar to the following
code snippet:

n = 0
for i in range (3):

n = n + 2
print (n)

The most prevalent incorrect responses to this task were 2 (15.7%) and 4 (10.7%). It appears that
in these cases, students have recognized that the answer must be a multiple of two due to the line
within the loop, but they were uncertain about the number of iterations it will go through.

Functions The functions category displayed a substantial diversity in task complexity, featuring
a total of seven tasks that progressively increased in difficulty.

The first task, the simplest among them, required evaluating a function that added two input
numbers. This function was named sum, and its intuitive nature made it accessible even to indi-
viduals without prior programming experience. As a result, 81.5% of the participants answered
correctly. Excluding blank responses, this percentage increases to 90.5%.

Interestingly, the three final tasks, thought of as the most challenging within the entire test
before it was administered, presented a unique outcome. Despite their complexity, the majority of
students responded correctly. These tasks involved the application of two specific functions, similar
to the following examples:

def f(x):
x = x + 10
return x

def g(x):
x = f(x) - 2
return x

In the first task, students were asked to evaluate the function f with a given input. In the second
task, they evaluated the function g, and in the third task, they encountered a nested function call:
f(g(input)). These functions were relatively uncomplicated, primarily centered around addition
and subtraction operations. While Task 1 was relatively straightforward, Tasks 2 and 3 introduced
the intricacy of functions interacting with one another. The correct response rates for these three
tasks were 58.3%, 59.4%, and 48.0%, respectively.

This pattern implies that a large part of the students excel in tracing code when the operations
involved are familiar to them.

Booleans The Boolean tasks presented a number of boolean expressions to the students and
gave the answer options of True, False and Error. In Task 1 and Task 2, the correctness of an-
swers exhibited variation dependent on the specific operators used. When the expressions involved
operators more closely aligned with mathematical conventions, a substantial portion of students
performed well, achieving correct responses at rates ranging from 88% to 95%. Examples of these
types of expressions include:

100 == 100
(10*2) > 9
99 >= 100
(14/2) > 7

However, when introducing operators found outside the realm of math, correctness rates dropped
to a range from 70% to 81%. Examples of these include:

100 != (50*2)
(5 < 7) and (4 > 5)

24 S. Bolland

The most challenging expressions, with correctness rates between 47% to 59%, included:

42 != 25
not (100 == 100)
and 500 == 100
(5 < 7) or (4 > 5)

This variance in performance underscores the influence of specific operators on students’ ability
to provide correct responses in these tasks.

In Task 3, the expressions became more abstract, involving only the truth values False and
True with a diverse range of operators. Examples of these abstract expressions include:

True and False
(False != False) == (True != True))
(not True) or False

The particularly low correct response rates in Task 3, ranging from 27% to 52%, could be attributed
to the use of abstract truth values and a wide array of operators. These abstract expressions
appeared to present more significant challenges for students when it came to accurately evaluating
them. It is likely that students were less familiar with these types of expressions, as they are not
commonly encountered outside of tasks designed to specifically assess one’s ability to evaluate
boolean expressions. These concepts might not have been extensively utilized in the context of
solving mathematical problems in their secondary school education, contributing to the lower
performance.

Conditionals The three tasks related to the concept of conditionals required students to de-
termine the correct output from code snippets that included if-statements. These code snippets
incorporated relatively straightforward boolean expressions, similar to those found in Task 1 within
the Booleans category. The students had previously demonstrated proficiency in evaluating such
expressions, and they did so once more when these expressions were incorporated into if-statements,
achieving a correct response rate of 85.0%.

Variables The variables tasks were straightforward, requiring students to determine the correct
output of code snippets involving various variables with integer values. These variables were com-
bined and manipulated using basic mathematical operators. The second task, which was slightly
more challenging, resembled this example:

a = 1
b = 9
c = a * b
d = 10
e = c + d
print (e)

The majority of students performed exceptionally well in these tasks, achieving a high correct
response rate of 91.6%.

5 Conclusion

The outcomes of the National Prior Knowledge Test in Programming reveal a notable distinction
between students exposed to the LK20 curriculum and those who graduated in previous years.
The cohort admitted in the fall of 2023 is likely the most proficient among all cohorts embarking
on higher education in Norway. While it is conceivable that a general increase in competence
within the population may contribute to this observed difference, the magnitude of the distinction
strongly suggests that it is primarily attributable to the influence of the LK20 curriculum.

National Prior Knowledge Test in Programming 25

Despite the overall improvement in performance, a considerable number of students still ex-
hibit lower scores. The peak of the score distribution among all students, illustrated in Figure 5,
indicates that the majority score is approximately 7.5 points out of the total 22.6, equivalent to
31%. Although these students demonstrate a certain understanding of CS1 concepts, they exhibit
notable gaps in knowledge and skills. Our interpretation suggests that these students may bene-
fit from a comprehensive review of all CS1 curriculum objectives. Considering these findings, we
recommend that the Introduction to Programming courses at universities and university colleges
in Norway may not necessitate significant alterations to their curriculum, and much of the course
can continue as in previous years.

However, while a considerable portion of students falls on the lower end of the performance
spectrum, a substantial number excels. A distinct peak is evident around 20 points, indicating
a strong grasp of CS1 fundamentals among this group. Given their proficiency, it prompts us to
question the necessity of subjecting these students to CS1. It is conceivable that many in this
cohort are investing time in a course they have already mastered. Their time could potentially be
better utilized in a more advanced course, fostering further development in the field of computer
science. However, for numerous higher education institutions in Norway, CS1 is mandatory with
no provision for skipping. This prompts consideration of options to accommodate such adept
students, such as offering a reduced workload in CS1 or providing the opportunity to skip the
course altogether in favor of more advanced courses.

6 Further Work

While there is currently no immediate necessity for substantial modifications to the instructional
approach of CS1 in Norway, it is prudent to anticipate potential changes in the future. The
2023 graduates were immersed in the LK20 curriculum throughout their three years of secondary
education. Subsequently, in 2024, graduates will possess experience from tenth grade onward. This
trend of accumulating prior experience is poised to continue, reaching a culmination in 2032 when
incoming students will have been introduced to programming since second grade. Not only will the
duration of exposure increase, but it is plausible that the quality of programming education will
also improve. Presently, a significant number of elementary and secondary school educators lack
proficiency in teaching programming. However, over the ensuing years, it is reasonable to expect an
enhancement in their skills, enabling them to more effectively impart programming knowledge to
their students. This anticipated improvement bodes well for a steady escalation in the proficiency
of higher education students and, consequently, societal advancement as a whole.

To consistently monitor the programming proficiency of incoming higher education students,
our plan is to continue administering the test on an annual basis. Furthermore, we have initiated
a project slated for spring 2024, focusing on the development of tasks aimed at enhancing the
evaluation of student programming proficiency. The outcomes of this project will be incorporated
into future iterations of the test, contributing to a more comprehensive and refined assessment
tool.

References

1. Kunnskapsløftet 2020. https://www.regjeringen.no/no/dokumentarkiv/regjeringen-solberg/
aktuelt-regjeringen-solberg/kd/pressemeldinger/2018/fornyer-innholdet-i-skolen/
id2606028/?expand=factbox2606064, hentet: 2023-10-12

2. Matematikkrådets forkunnskapstest. https://matematikkraadet.wixsite.com/matematikkraadet/
forkunnskapstesten, hentet: 2022-12-12

3. Alspaugh, C.A.: A study of the relationships between student characteristics and proficiency in symbolic
and algebraic computer programming. University of Missouri-Columbia (1970)

4. Frantsen, T.: Å vere lærar i programmering utan å kunne programmere. Master’s thesis, OsloMet-
storbyuniversitetet (2019)

https://www.regjeringen.no/no/dokumentarkiv/regjeringen-solberg/aktuelt-regjeringen-solberg/kd/pressemeldinger/2018/fornyer-innholdet-i-skolen/id2606028/?expand=factbox2606064
https://www.regjeringen.no/no/dokumentarkiv/regjeringen-solberg/aktuelt-regjeringen-solberg/kd/pressemeldinger/2018/fornyer-innholdet-i-skolen/id2606028/?expand=factbox2606064
https://www.regjeringen.no/no/dokumentarkiv/regjeringen-solberg/aktuelt-regjeringen-solberg/kd/pressemeldinger/2018/fornyer-innholdet-i-skolen/id2606028/?expand=factbox2606064
https://matematikkraadet.wixsite.com/matematikkraadet/forkunnskapstesten
https://matematikkraadet.wixsite.com/matematikkraadet/forkunnskapstesten

26 S. Bolland

5. Hertz, M.: What do "cs1" and "cs2" mean? investigating differences in the early courses. In: Proceedings
of the 41st ACM Technical Symposium on Computer Science Education. p. 199203. SIGCSE ’10, Associ-
ation for Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1734263.1734335,
https://doi.org/10.1145/1734263.1734335

6. Ricardo, C.M.: Identifying student entering characteristics desirable for a first course in computer
programming. (1984)

7. Stenlund, E.: Programmering og Fagfornyelsen. Master’s thesis (2021)
8. White, G., Sivitanides, M.: An empirical investigation of the relationship between success in mathe-

matics and visual programming courses. Journal of information systems education 14(4), 409 (2003)

https://doi.org/10.1145/1734263.1734335
https://doi.org/10.1145/1734263.1734335

	National Prior Knowledge Test in Programming How proficient are incoming higher education students?
	Introduction
	Summary
	Methodology
	The Test
	Distribution
	Data Processing & Analysis
	Demographic

	Results
	Main Results
	Prior Programming Experience in Secondary School
	Graduation Year
	Do all 2023 students learn programming?
	Elective Programming Courses
	Mathematics Courses
	Experience outside of school

	Gender
	Programming Concepts
	Lists
	Datatypes
	Loops
	Functions
	Booleans
	Conditionals
	Variables

	Conclusion
	Further Work

