
A scalable crawler on the TorNetwork
Antoine Masanet

Advisor: Tiziano Piccardi
Data Science Lab, École Polytechnique Fédérale de Lausanne (EPFL)

Lausanne, Switzerland
antoine.masanet@epfl.ch

ABSTRACT
The Tor network, despite being used by over 2millionmontlhy users
1, remains to this day largely unknown. In this bachelor project, I
built a web crawler on the Tor Network that recursively gathers
pages from onion services. After a 20 days crawl, more than 500
000 onion services were discoverd and over 6 million pages were
fetched for a total of 85 GB of compressed data. Using a sample of
this data, I built a graph representing the topology of this network
and extracted some key characteristics from it.

KEYWORDS
web crawler, Tor network, dataset, network topology
ACM Reference Format:
Antoine Masanet, Advisor: Tiziano Piccardi. 2021. A scalable crawler on the
TorNetwork. In Proceedings of Dlab ’21: Dlab Presentation (Dlab ’21). ACM,
New York, NY, USA, 5 pages. https://doi.org/None

1 INTRODUCTION
The Tor Network is a free and open-source software that enables its
users to perform anonymous queries on the internet. This technol-
ogy is based on a volunteer overlay networkwith nodes successively
adding a new layer of encryption to the query. The virtual circuit
created ensures that no one on the network can identify both the
source of the query as well as the query itself. In a similar fash-
ion, web services on the Tor network, called onion services, can
also hide their locations making it almost impossible for govern-
ment agencies to track them. As a consequence of this provided
anonymity, a lot of sensitive content and websites can be found
on these hidden services such as terrorism networks, drug dealing,
security breaches... This lead to many studies analysing the popu-
larity of websites [2] or assessing the security of the network [3]
but very few analyzed the topology of the network. A 2017 study,
claiming to be the first to do such a thing, modeled a sample of the
Tor network, fetching 5000 domains and a million pages [1]. This
uneven crawl suggested that it was hard to discover new domains
or that the crawler used was not Depth First Search oriented as it
fetched an average of 200 pages per domain. The goal of this project
1https://metrics.torproject.org/userstats-relay-country.html

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Dlab ’21, January 22, 2021, EPFL, Lausanne
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $0
https://doi.org/None

is therefore to build a balanced DFS web crawler in order to gather
as much data as possible on the Tor Network. The large sample
obtained could later be used for a variety of study such as to build
and study a wider graph of the network as well as using the pages
content to classify the communities obtained.

2 CHALLENGES
They are multiple characteristics a good crawler should have and I
tried to address all of these challenges in this project.

• Fast and scalable
• Crash resistant
• Prevent sites from blocking it
• Store pages in an efficient and easily accessible manner
• Allow access to sites requiring login
• Revisit websites that are only available at specific times of
the day

• Real time crawl monitoring
• Balanced crawl

3 STORM CRAWLER
The first crawler built to achieve this task was based upon the Storm-
Crawler SDK2. This collection of resources enables the creation of a
distributed web crawler using Apache Storm. The advantage of this
approach is that it offers many different self contained components
that can communicate with each others using Apache Storm tuples.
This makes it possible for different components to be running on dif-
ferent machines. Furthermore, once a topology is launched, failing
node are automatically restarted, making it crash resilient. Finally,
its continuous stream processing makes it 60% faster than a similar
batch processing Apache Nutch alternative 3. On top of the Apache
Storm topology is an Elasticsearch index that stores the content of
the fetched pages and the urls in the queues. Each crawling thread
then pulls URLs from the index, ensuring that all URLs from the
same host goes to the same fetcher. Using those tools, encapsulating
it in a docker cluster and adding a crawl visualization tool (Kibana)
enabled the creation of a fast, crash resilient and easily deployable
crawler on the Tor Network. Despite those advantages, the crawler
had significant drawbacks such as using a DFS schema and not
allowing customization such as adding login necessary to access
certain websites. As a consequence, we decided to build a new cus-
tom implementation for crawling the Tor Network. Nevertheless,
this crawler could very easily be reused for any project that would
like to crawl a single website4.

2http://stormcrawler.net
3https://dzone.com/articles/the-battle-of-the-crawlers-apache-nutch-vs-stormcr
4https://github.com/epfl-dlab/TorCrawler

https://doi.org/None
https://doi.org/None

Dlab ’21, January 22, 2021, EPFL, Lausanne
Antoine Masanet

Advisor: Tiziano Piccardi

4 CUSTOM CRAWLER
After 9 weeks of battling with the StormCrawler SDK with little
progress, we decided that it would be simpler to build our crawler
in Java from scratch in order to have it customized and optimized
for the task at hand 5.

4.1 Fast and scalable
To solve this challenge, the whole crawling process can have a
customizable number of threads with each thread sharing concur-
rent data structures and writing the fetched pages to independent
files. The version running on the cluster runs on 50 threads. This is
essential as queries on the Tor Network tend to have a very long
latency (each thread fetches on average 1 page every 10s), greatly
reducing the crawlers throughput.

4.2 Crash resistant
Wewanted the crawler to be able to recover in case of an unexpected
crash of the server it is running on. In order to do this, the queues
cannot only be stored on RAM but must be persisted on disk in
real-time. Two choices where possible, either using an external
database system such as ElasticSearch or Berkley DB or directly
storing the queue in a file. I chose the latter option using square/tape
QueueFile 6 that offered a fast, transactional, file-based FIFO queue.
This transactional queueu ensured that the file containing the queue
would remain consistent in case of a crash. Finally, this queue
does not natively support multi-threading so I had to wrap it in a
concurrent blocking queue.

4.3 Prevent sites from detecting and blocking
the crawler

An issue that was encountered in the first versions of the crawler
on the clear web was 429 Too Many Requests or 403 Forbidden HTTP
error produced by some websites that most likely detected the
crawler and blocked access to my IP. To moitigate this, I used three
different techniques to make the crawler as discrete as possible. The
first one is using a Tor proxy that rebuilds the virtual circuit every 2
min making it appear like the query comes from another exit relay7.
The second one is adding in the Jsoup query the same user agent
and headers the Tor Browser sends to fetch a webpage. Finally, the
last one consists in having a long interval between queries to the
same domain implemented by the round-robin queue that will be
seen later.

4.4 Efficient and easily accessible page storing
To minimize the space the pages take, all the data is written in gzip
compressed format achieving a 10x compression rate. Furthermore,
there is a limit of 65 536 characters for the content of pages. Finally,
the data is written in a JSON format that uses Google’s Gson library
for serialization and deserialization.

5https://github.com/epfl-dlab/CustomTorCrawler
6https://github.com/square/tape
7https://github.com/zet4/alpine-tor

4.5 Allow access to usually blocked websites
Some sites on the Tor Network, such as forums, require a login to
be accessed, preventing a simple crawler from accessing them. To
overcome this issue, the crawler provides a file dedicated to cookies
that can be used to manually enter cookies for certain websites.
Those cookies coming from manual login will then be used by the
crawler when it accesses those websites.

4.6 Revisit inaccessible websites
In the clear web, most websites have an uptime of 99,9% and it is
very rare that a crawler would visit a website when it is temporally
down. On the other hand, some onion services are only available
at certain periods of the day making them likely to be inaccessible
when the crawler tries to access them. A solution to this issue could
be to push failed URLs at the end of the queue. However, most of
the failed page queries correspond to URLs that lead to hosts whose
service is no longer running. As a result those stale URLs would
continuously be pushed back in the queue greatly reducing the
crawler’s efficiency. The approach I took was to store all the URLs
that lead to a failed website in a dedicated compressed file to be
able to start a new crawl later using these URLs as a seed.

4.7 Monitoring
A key feature to a good crawler is being able to easily monitor
the crawler’s progress without needing to have the background
process session open. For this matter, I created a singleton global
class that is concurrently updated by all the fetching threads and
contains the crawl’s current status. A separate thread is then re-
sponsible for persisting this data to a file every 10 second allowing
us to monitor the crawl’s progress in real time.This file then en-
ables us to see if they are any imbalance in the crawl’s algorithm (a
thread is fetching more/less pages than the others) or if a thread
was interrupted by a unforeseen error. Finally, in case of a crash,
this specific file can be reused by the crawler to recover some key
informations such as the number of threads it was previously using.

Here are the different statistics provided by the status file:

• thread count
• queue size
• total number of pages correctly fetched
• total number of URLs leading to errors
• number of domains discovered
• number of URLs discovered
• percentage of non empty subqueues (to be explained later)
• crawl time
• for each thread, the number of pages it fetched

4.8 CrashRecovery
Launching the executable with the argument "recover" is all that is
required to resume a stopped crawl, provided that the required file
for the recovery (queues and status file) exist. This can be achieved
by reloading the status file and all the individual queue file.

A scalable crawler on the TorNetwork Dlab ’21, January 22, 2021, EPFL, Lausanne

4.9 RoundRobinQueue
The main challenge in this crawler was finding the best suited data
structure for the queue of URLs to fetch pages from. Here are the
main criterias it needs to satisfy: can be concurrently accessed,
achieves a balanced BFS crawl, be recoverable and be fast. The first
implementation for this queuewas a concurrent blocking queue that
stopped adding a domain’s URLs to the queue as soon as the number
of pages fetched from this domain reached a certain threshold. This
implementation satisfied 3 of the previous points and prevented
the crawler from over-crawling a specific website. However, this
data structure had three major issues. The first issue is that for a
threshold of size S, the crawler could fetch all the S pages in a row
resulting in a high traffic for a short period of time towards a specific
website. The second issue is that the crawler would stop by itself
after the threshold is reached for all discovered domains. Finally, at
any point in time they would be no balance between the number of
pages fetched per domains except that they are all between 0 and S.
In order to solves those issues, I built a round robin blocking queue
that ensures a fair crawling of all discovered hosts. This queue
implements the standard interface of Java’s BlockingQueue so any
thread can easily take and put URLs into the queue without having
to worry of its underlying implementation. Here is the lifecycle of
a URL in this queue:

When a URL is put into the queue, it is assigned to a subqueue
corresponding to its domain. Therefore, they are asmany subqueues
as domain discovered.

When a URL is to be taken from the queue, the data structure
verifies if they are any URLs left in the CurrentRound queue. If
they are, it just takes a URL from this queue; otherwise, it refills
the CurrentRound queue by taking one URL from each subqueue
(domain).

This algorithm ensures that for each round, exactly one page
is fetched from each discovered domain which ensures an even
domain-wise BFS crawl. Furthermore, as the crawl’s boundary gets
bigger, queries to a specific domain are spaced out by a very large
time interval ensuring that the crawler has a minimal impact on
onion services and does not get blocked. Furthermore, the sub-
queues that are all using the persistent ObjectQueue class in order
to be easily recoverable.

It is to be noted that the RoundRobinQueue class could be reused
for other projects to store any element of type <T> as long as the
user provides a function that maps this <T> to a <String> that will
be used to determine in which subqueue the element will be stored.

Advantages:
• works concurrently
• even domain-wise distribution of URLs
• fast: inspired by Java’s own implementation of LinkedBlock-
ingQueue8

• recoverable
Drawbacks:
• lots of files are created (one file per domain discovered)

At first, I thought that after a certain amount of time, most queues
would be empty, resulting in empty files taking unnecessary space.

8http://fuseyism.com/classpath/doc/java/util/concurrent/LinkedBlockingQueue-
source.html

However, after a 20 days crawl, the round robin queue had 35%
of its subqueues non-empty. As a result, I decided not to destroy
a subqueue when it becomes empty as the cost of recreating the
queue and the corresponding file would be higher than that of
keeping empty files (empty queue files take up 4KB of space).

5 DATASET
5.1 Result
After a 20 days crawl with 50 threads, using the hidden wiki as the
starting seed, here are the current results of the crawl:

• 500 000 domains discovered
• 6 million pages fetched
• 19 millions URLs found
• 8.5 million URLs left in the queue (3GB)
• 85GB of data

By extrapolating these results to a 6 month crawl assuming that
the Tor Network is big enough for the crawler to continue crawling
at this rate, we would reach a total of 36 million pages fetched and
510GB of content. It is harder to estimate the number of domains
that will be discovered as it will most likely not grow linearly with
time.

5.2 Data Format
The entire crawl’s data is stored in the data file. The pages fetched
are stored in the pages folder which contains a list of json.gzip
files. Once the file reaches a threshold size (250MB) a new file
is created. After decompression, each line of the file is a JSON
object with keys: "pageURL", "linkURLs", "content", and "title". It
is to be noted that particularly long pages with more than 65K
characters will be truncated The crawl.status file gives the global
statistic about the crawl. The urlFetchError folder contains the gzip
files storing the URLs whose pages generated fetch errors. The
persistentRoundRobinQueue folder contains the unnderlying files of
all the subqueues.

5.3 Graph
From the previously gathered data, we decided it could be interest-
ing to create the network graph it represents. I order to do that, I
wrote a python script that extracts the "pageURL" and "linkURLs"
from the data andmerges all the gzip files into a single file. Then, this
file is used to build in RAM a Map(domain,Map(domain,linkCount))
that represents the directed graph with weighted edges. Finally,
I used the python igraph9 library to build the graph of the crawl
and saved it in a GraphML format10. I chose this format because it
allowed the nodes to have attributes (here, the name of the domain
it corresponds to) contrary to other formats that emphasize on data
compression. In this network, each node corresponds to a domain
that has directed edges towards the domains the URLs found on
its pages link to. Those edges are weighted by the number of links
that direct to this domain. The previous python script was ran on
a small sample of the crawl (1743 nodes and 2890 edges) and the
graph obtained takes 414KB to be stored. Therefore, by extrapo-
lating it to the current data of 500 000 nodes and around 830 000

9https://igraph.org/python/
10http://graphml.graphdrawing.org

Dlab ’21, January 22, 2021, EPFL, Lausanne
Antoine Masanet

Advisor: Tiziano Piccardi

weighted edges, the final graph would therefore take up a space of
approximately 120MB.

Here are interesting characteristics obtained from this sample
graph:

• Graph diameter: 8
• Average path length: 3.43
• Average shortest path length: 3.18
• Average out-degree: 1.66
• Graph density: 0.000952
• More than half of the websites do not redirect to other do-
mains

Domain Name pageRank domain content
expyuzz4wqqyqhjn.onion 0.0064 Tor project
3g2upl4pq6kufc4m.onion 0.0061 DuckDuckGo

exchangenpea6tk5.onion 0.0054 cryptocurrency ex-
change platform

Table 1: Top 3 domains by pageRanks

Domain Name out-degree domain content
wiki5kauuihowqi5.onion 632 links wiki
hdwikicorldcisiy.onion 286 links wiki
wikitjerrta4qgz4.onion 258 links wiki

Table 2: Top 3 domains by out-degree

Domain Name in-degree domain content
www.facebookcorewwwi.onion 19 Facebook

3g2upl4pq6kufc4m.onion 11 DuckDuckGo

rutorzzmfflzllk5.onion 9 russian forum and
market place

Table 3: Top 3 domains by in-degree

Furthermore, I generated two plots the Tor network graph using
the Large Graph Layout (LGL) (Fig. 1) and the Atlas2 layout (Fig. 2).

5.4 Data interpretation
Caveat: the sample of the crawl used to model the topology of the
network might not be representative of the characteristics obtained
from studying the whole graph. From the obtained graph and char-
acteristics, it seems that the overall topology of the Tor network
consists of two main types of nodes. Wiki nodes that redirect to
a large number of onion domains and are responsible for those
circular patters in the graphs. Standard nodes that do not redirect
to other domains and constitute the edge of the graph.

6 CONCLUSION AND FURTHER STUDIES
This project aim was to build a BFS crawler on the Tor Network.
In doing so it already gathered more than 6 million pages from
it and can be expected to gather around 36 million pages in a 6
month crawl or more if more resources are allocated to it. From

this data, lots of interesting studies could be realized regarding its
topology as well as looking at the page’s content. An example of
such a study would be using a combination of Natural Language

Figure 1: The LGL plot of the topology

Figure 2: The Atlas2 plot of the topology

A scalable crawler on the TorNetwork Dlab ’21, January 22, 2021, EPFL, Lausanne

Processing techniques on the content and networks links to try and
classify the domains.

ACKNOWLEDGMENTS
To my mentor, Tiziano Piccardi, who boldly suggested that I build
my own crawler 4 weeks before the end of the term ;)

REFERENCES
[1] Massimo Bernaschi, Alessandro Celestini, Stefano Guarino, and Flavio Lombardi.

2017. Exploring and Analyzing the Tor Hidden Services Graph. (July 2017).
https://doi.org/10.1145/3008662

[2] A. Biryukov, I. Pustogarov, F. Thill, and R.Weinmann. 2014. Content and Popularity
Analysis of Tor Hidden Services. In 2014 IEEE 34th International Conference on
Distributed Computing Systems Workshops (ICDCSW). 188–193. https://doi.org/10.
1109/ICDCSW.2014.20

[3] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson. 2013.
Users Get Routed: Traffic Correlation on Tor by Realistic Adversaries. In Proceed-
ings of the 2013 ACM SIGSAC Conference on Computer Communications Security
(Berlin, Germany) (CCS ’13). Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/2508859.2516651

https://doi.org/10.1145/3008662
https://doi.org/10.1109/ICDCSW.2014.20
https://doi.org/10.1109/ICDCSW.2014.20
https://doi.org/10.1145/2508859.2516651

	Abstract
	1 Introduction
	2 Challenges
	3 Storm Crawler
	4 Custom Crawler
	4.1 Fast and scalable
	4.2 Crash resistant
	4.3 Prevent sites from detecting and blocking the crawler
	4.4 Efficient and easily accessible page storing
	4.5 Allow access to usually blocked websites
	4.6 Revisit inaccessible websites
	4.7 Monitoring
	4.8 CrashRecovery
	4.9 RoundRobinQueue

	5 Dataset
	5.1 Result
	5.2 Data Format
	5.3 Graph
	5.4 Data interpretation

	6 Conclusion and further studies
	Acknowledgments
	References

