
Cascade: An Application
Pipelining Toolkit for Coarse-
Grained Reconfigurable Arrays

Jackson Melchert

Place and Route

• Place and route is where abstract tiles and connections are mapped
to physical locations on the array

M

M

=MEM

P P P

P P

P P P P P P

P

P

P

P

P

P

=PEP

SR SR

SR SR

Shift
Register

SR SR

SR =

m0p0 p1

p3r0

r1

r4r2r3

Place and Route Background - Placement

• Placement occurs in two stages:
• Global placement:

• Application is clustered into connected tiles
• Clusters are given a rectangular region on the

array
• Simulated annealing used to find a non-

overlapping placement of boxes

• Detailed placement
• Exact locations are assigned for each tile in the

netlist
• Cost function is half-perimeter wirelength (HPWL)
• HPWL is calculated for each net and summed for

the entire placement
• Simulated annealing used to find best placement

CGRA

CGRA

Place and Route Background - Routing

• Routing is done using an iterative
strategy based on A* path finding

• Costs factors are adjusted dynamically
based on:
• Historical usage
• Net slack
• Current congestion

• Routing is completed when any legal
routing result is produced

PE

MEM PEPE

MEM PE

Motivation for Cascade

• CGRAs have large performance and energy efficiency benefits
over FPGAs
• But to achieve commercial viability, CGRAs must demonstrate

performance and EDP that approaches ASICs

• Current CGRA compilers either do not pipeline resulting in low
performance or pipeline exhaustively resulting in high power
• Need a compiler with a focus on pipelining

5

Background - CGRA Interconnects

Several classes of CGRA interconnects
exist:

1. Exhaustively pipelined interconnects
• Expensive

PE

PEPE

PE

6

PE

PEPE

PE

Background - CGRA Interconnects

Several classes of CGRA interconnects
exist:

1. Exhaustively pipelined interconnects
• Expensive

2. Non-pipelined interconnects
• Cannot run at high frequencies

7

PE

PEPE

PE

Background - CGRA Interconnects

Several classes of CGRA interconnects
exist:

1. Exhaustively pipelined interconnects
• Expensive

2. Non-pipelined interconnects
• Cannot run at high frequencies

3. Interconnects with configurable
registers
• Need pipelining techniques

8

Key Challenges and Our Solutions

A variety of existing and
novel pipelining

techniques, including
post-PnR pipelining

Challenge 1
Existing CGRA compilers

don’t pipeline applications
effectively

Challenge 3
Need a way to estimate

the clock frequency of the
application on evolving

CGRAs

An automatic CGRA timing
model generator and a

static timing analysis tool
for CGRA applications

Challenge 2
Too many register

resources get used during
pipelining

A technique for absorbing
non-critical path registers

into memory tiles

9

Cascade

10

• Cascade includes:
• An automatic CGRA timing model generator
• A static timing analysis tool for CGRA applications
• Multiple stages of pipelining, including post-PnR pipelining to achieve

high performance
• Register absorption for reducing resource consumption

Bitstream
Generator

CGRA
Bitstream

Rescheduler
Low Unrolling

Duplication

Dataflow
Graph

Application

Compute
Mapper Hierarchical

Dataflow

Graph of
PEs and

MEMs
Scheduler
and MEM

Mapper
Compiler

Compute
Pipelining

PnR with
Optimized

Cost Function

Placement
and Routing

on CGRA

Broadcast
Pipelining

Post-PnR
Pipelining

Latencies of PE DFGs

Post-Place and Route Pipelining

11

• After place and route, we know
locations of all tiles and nets

• We iteratively identity the critical
path, break it, reschedule the
application, and repeat

• We can only add registers to existing
routes, so eventually we run out of
pipelining opportunities

Post-Place and Route Pipelining Example

12

PE PE

PE

CB

SB

SB

SB

CB

PE

PEPE

PE

Post-Place and Route Pipelining Example

13

Critical
Path
Break

PE PE

PE

CB

SB

SB

SB

CB

PE

PEPE

PE

PE PE

PE

CB

SB

SB

SB

CB

PE

PEPE

PE

Post-Place and Route Pipelining Example

14

Critical
Path
Break

Rescheduling CGRA Applications

15

• After analyzing the new compute kernel latencies, we only update
the configuration registers in the MEM tiles that control
scheduling to maintain application functionality
• Avoid changing the application DFG or placement or routing

“cycle_starting_addr”:[5]
“cycle_stride”:[1,5]
“dimensionality”:2
“extent”:[2,5]

Rescheduling CGRA Applications

16

1. Statically schedule the application without registers
2. Place and route the application
3. Pipeline
4. Analyze the application and compute new latencies
5. Incrementally reschedule the application by updating the memory

tile configuration registers

Avoids cyclic scheduling, PnR, and pipelining

Optimizing Register Resource Usage

17

• Registers that are not on
the critical path can be
removed to save energy
• Static schedules of

memory tiles can be
adjusted to absorb the
delays

MEM
Starting

cycle=100

Compute
Kernel

MEM
Starting

cycle=100

PE

PE

PE
Compute
Kernel

PE

PE

PE

MEM
Starting

cycle=101

MEM
Starting

cycle=102

Methodology for Generating Timing Model

• Automated method for generating timing model from an
interconnect specification

18

Interconnect

Specification

Timing Queries

(report_timing)

Application

STA Tool

IN to PE: 240ps
PE to OUT: 200ps
…

PE to OUT

IN to PE PE Tile

All Timing

Paths

Worst-Case

Timing Model

Post P&R Netlist PE
Core

Static Timing Analysis Model

• STA model allows for determining the estimated frequency of the
application running on the hardware

19

Results - STA Model Evaluation

• STA model predicts the actual
clock period accurately
• Above 500 MHz, the average

error is 13%

• Actual clock period is lower than
the STA-modeled period
• Our model is pessimistic, it

will provide a lower bound
for the clock frequency

20

> 500 MHz

Effect of Pipelining on Dense Application Runtime

21

Effect of Pipelining on Dense Application EDP

22

-86% -94%

-98%
-99%

-96%

Effect of Pipelining on Sparse Application Runtime

23

Effect of Pipelining on Sparse Application EDP

24

Demo

• We’ll use the same application as the SAM demo

• To run PnR without post-PnR pipelining use the following
command:

• ./cascade_demo.sh 0

• This will produce a visualization of the PnR result with the critical
path highlighted in /aha/garnet/SIM_DIR/pnr_result_17.png

• Next, we’ll turn on post-PnR pipelining

• ./cascade_demo.sh max

25

Cascade Summary

• Cascade is an open-source end-to-end CGRA compiler that achieves high
performance and low EDP

• We adapt prior work on pipelining to CGRAs and introduce novel post-PnR
pipelining and register absorption techniques

• We create a methodology for generating timing models for evolving CGRAs

• Cascade achieves

• 8 - 34× shorter critical paths and 7 - 190× lower EDP for dense
applications

• 3 - 5.2× shorter critical paths and 2.5 - 5.2× lower EDP for sparse
applications

26

	Slide 1: Cascade: An Application Pipelining Toolkit for Coarse-Grained Reconfigurable Arrays
	Slide 2: Place and Route
	Slide 3: Place and Route Background - Placement
	Slide 4: Place and Route Background - Routing
	Slide 5: Motivation for Cascade
	Slide 6: Background - CGRA Interconnects
	Slide 7: Background - CGRA Interconnects
	Slide 8: Background - CGRA Interconnects
	Slide 9: Key Challenges and Our Solutions
	Slide 10: Cascade
	Slide 11: Post-Place and Route Pipelining
	Slide 12: Post-Place and Route Pipelining Example
	Slide 13: Post-Place and Route Pipelining Example
	Slide 14: Post-Place and Route Pipelining Example
	Slide 15: Rescheduling CGRA Applications
	Slide 16: Rescheduling CGRA Applications
	Slide 17: Optimizing Register Resource Usage
	Slide 18: Methodology for Generating Timing Model
	Slide 19: Static Timing Analysis Model
	Slide 20: Results - STA Model Evaluation
	Slide 21: Effect of Pipelining on Dense Application Runtime
	Slide 22: Effect of Pipelining on Dense Application EDP
	Slide 23: Effect of Pipelining on Sparse Application Runtime
	Slide 24: Effect of Pipelining on Sparse Application EDP
	Slide 25: Demo
	Slide 26: Cascade Summary

