
mflowgen: A Modular Flow
Generator and Ecosystem for
Community-Driven Physical
Design

Christopher Torng

Complex systems are not easy to build

2

The required expertise in
physical design to work on
such systems is high

Apple M1 (2020)

Transistor Count: 16 billion

Apple M1 Pro (2021)

Transistor Count: 34 billion

How do we reduce the design effort of building
complex systems?

3

Monolithic Tcl Scripts

How do we reduce the design effort of building
complex systems?

4

Monolithic Tcl Scripts

with a university as a

testing ground?

TSMC 16nm

TSMC 40nm TSMC 28nm

Opportunities for reuse are lost

● Customizing for a design

● Customizing for a technology

How can we enable community-

driven physical design?

How do we reduce the design effort of building
complex systems?

5

Monolithic Tcl Scripts

with a university as a

testing ground?

TSMC 16nm

TSMC 40nm TSMC 28nm

Opportunities for reuse are lost

● Customizing for a design

● Customizing for a technology

How can we enable community-

driven physical design?

Agile Flow Tool:

mflowgen used in Stanford / USC /
Cornell in chip tapeout courses
and research chip prototyping

https://github.com/mflowgen/mflowgen

Reuse as much of previous systems as we can
... but this is very challenging

6

Long TCL files that

accomplish many things

Where is the reusable

snippet of code?

If I add commands, will it

break code elsewhere in

this file?

Code customization prevents future reuse

7

2. Scripts tied to a particular

design (custom power strategy,

physical tiling, abutment)

1. Scripts tied to a particular

technology (process node,

library vendors, pdk)

tsmc16

Physical design flows look similar yet different

8

Monolithic Tcl flows

Technology: 16nm

Design: Crypto Accel

synthesis

...

floorplan

...

place

...

route

...

Project #1 Project #2

synthesis

...

floorplan

...

place

...

route

...

Technology: 12nm

Design: Video Decoder

Is there a better approach to
reusing physical design code?

... mostly the same

... but customized differently

... with little reuse

Key Idea: Embrace Modularity

9

Hypothesis #1: There is common
code we can directly reuse
despite custom code

Technology: 16nm

Design: Crypto Accel

Project #1 Project #2

Technology: 12nm

Design: Video Decoder

reuse

Key Idea: Embrace Modularity

10

Hypothesis #1: There is common
code we can directly reuse
despite custom code

Technology: 16nm

Design: Crypto Accel

Project #1 Project #2

Technology: 12nm

Design: Video Decoder

reuse

Hypothesis #2: We can construct
an overwhelming majority of a
new project from such pieces

Agile Flow Tools

11

System Goals Modular Flow

Generators
Community

Design principles that

enable and maximize

reuse

Abstractions and DSL

to build and generate

modular flows

Features to support

community-driven

physical design

Agile Flow Tool: System Goals

12

Code Reuse - "To meaningfully
reduce design effort, we require
significant code reuse"

Observation RequirementSystem Goal

Agile Flow Tool: System Goals

13

Need to reuse an extremely high
degree of the physical design flow
(90%+)

Code Reuse - "To meaningfully
reduce design effort, we require
significant code reuse"

Observation RequirementSystem Goal

Agile Flow Tool: System Goals

14

Need to reuse an extremely high
degree of the physical design flow
(90%+)

Code Reuse - "To meaningfully
reduce design effort, we require
significant code reuse"

Observation Requirement

Capture both coarse-grain reuse
and fine-grain reuse

Support mechanisms to tweak
reusable code in small ways

System Goal

Agile Flow Tool: System Goals

15

Need to reuse an extremely high
degree of the physical design flow
(90%+)

Code Reuse - "To meaningfully
reduce design effort, we require
significant code reuse"

Observation Requirement

Capture both coarse-grain reuse
and fine-grain reuse

Support mechanisms to tweak
reusable code in small ways

System Goal

Existing flows will unavoidably be
customized for specific designs
and technologies

Code Reuse - "Composition must
support code from different
designs and technologies"

Mechanism to check for
composability of flow scripts and
code fragments

Needs a static code analysis
approach because flow scripts
are distributed across tools, not
in memory at the same time

Agile Flow Tool: System Goals

16

Need to reuse an extremely high
degree of the physical design flow
(90%+)

Code Reuse - "To meaningfully
reduce design effort, we require
significant code reuse"

Observation Requirement

Capture both coarse-grain reuse
and fine-grain reuse

Support mechanisms to tweak
reusable code in small ways

System Goal

Existing flows will unavoidably be
customized for specific designs
and technologies

Code Reuse - "Composition must
support code from different
designs and technologies"

Mechanism to check for
composability of flow scripts and
code fragments

Needs a static code analysis
approach because flow scripts
are distributed across tools, not
in memory at the same time

Inconsistent composition can easily
break any newly composed flow

Dynamic checks are slow because
physical design tools run for ~days

Rapid Feedback - "Feedback on
inconsistent composition must
be both rapid and early"

Agile Flow Tools

17

System Goals Modular Flow

Generators
Community

Design principles that

enable and maximize

reuse

Abstractions and DSL

to build and generate

modular flows

Features to support

community-driven

physical design

Modular Nodes

18

Recall Goal #1: Capture both fine-grain
and coarse-grain reuse

Function signature with file-
based inputs and outputs

Nodes are islands,
decoupled from the source

of their inputs

File System View
Configuration Schema

Graph View

Configuration Schema

Modular Flow Generator

19

Python-Embedded Graph-

Building DSL

g = Graph()

g.add_node(..)

g.connect(..)

g.update_params(..)

Recall Goals #1 and #2: DSL
allows flexibility to reuse
90%+ of graph

Edges: automatically generates
code that moves (links) files to
next island

Example Teaching Graph

20

[1] https://theopenroadproject.org

Yosys from OpenROAD [1]
yosys -s synth.ys

Skywater 130nm from [2]

[2] https://github.com/google/skywater-pdk

floorplan

Nodes for

Analyzing
a Design

Nodes for

Transforming
a Design

Other nodes are

Static Vendor Packages
Abstract the

technology files
into one node

https://theopenroadproject.org
https://github.com/google/skywater-pdk

Naturally capture hierarchical graphs

21

(...)

2. Connect to other

nodes to create a
hierarchical flow

1. Capture a subgraph

within a node

Agile Flow Tools

22

System Goals Modular Flow

Generators
Community

Design principles that

enable and maximize

reuse

Abstractions and DSL

to build and generate

modular flows

Features to support

community-driven

physical design

mflowgen Demo - Greatest common divisor

• --> cd /aha/

• --> mflowgen run –demo

• --> cd mflowgen-demo

• --> mkdir build && cd build

• --> mflowgen run --design ../GcdUnit

23

Caveat: Commercial physical design tools are not installed, so this demo will be limited!

mflowgen Demo – Flow runner

Nodes in the graph have numbers
(topographical sort)

• Status
• make status

• Running a node
• make freepdk-45nm
• make 1

24

mflowgen Demo – Flow runner

Nodes in the graph have numbers
(topographical sort)

• Status
• make status

• Running a node
• make freepdk-45nm
• make 1

• Cleaning a node
• make clean-1

• Dependencies are reflected
• make synopsys-dc-synthesis

• ^ runs freepdk-45nm, rtl, … 25

mflowgen Demo

Graph connectivity is easy to
access

• Zoom in on any node
• make info-N

• (E.g., make info-5)

• Corresponds to graph
• less mflowgen-

demo/GcdUnit/construc
t-commercial.py

26

mflowgen Demo - Sharing within a team
Nodes are natural candidates for sharing pre-built checkpoints

27

mflowgen Demo - Sharing within a team
Nodes are natural candidates for sharing pre-built checkpoints

28

• Initialize an mflowgen stash
• cd build

• mflowgen stash init -p ../

• mflowgen stash list
• ^ empty stash

29

mflowgen Demo - Sharing within a team
Nodes are natural candidates for sharing pre-built checkpoints

• Initialize an mflowgen stash
• cd build

• mflowgen stash init -p ../

• mflowgen stash list
• ^ empty stash

• Push built node to the stash
• make 3 # 3 is the rtl node

• mflowgen stash push --step 3 -m "RTL v0”

• mflowgen stash list

30

mflowgen Demo - Sharing within a team
Nodes are natural candidates for sharing pre-built checkpoints

Hash Date Author Node and

Message

Acting as someone else …

• Link other build to an existing mflowgen stash
• cd ..

• mkdir build-2 && cd build-2

• mflowgen stash link -p
../2024-1103-mflowgen-stash-179441/

31

mflowgen Demo - Sharing within a team
Nodes are natural candidates for sharing pre-built checkpoints

Acting as someone else …

• Link other build to an existing mflowgen stash
• cd ..

• mkdir build-2 && cd build-2

• mflowgen stash link -p
../2024-1103-mflowgen-stash-179441/

• Pull built node from an mflowgen stash
• cd build

• mflowgen stash pull --hash 9338b6
32

mflowgen Demo - Sharing within a team
Nodes are natural candidates for sharing pre-built checkpoints

Takeaway: Accessibility of PD is expanding through agile flow tools

33

SiliconCompiler

SKY130 SKY130

Hammer (dozens fabricated chips in class)

16nm 22nm 12nm

16nm

mflowgen (dozens fabricated chips in class)

40nm 28nm

● Students touched: Stanford,

Berkeley, Cornell, Georgia

Tech, USC, etc…

● Industry: SiliconCompiler
investment "build to scale" and

"plan for 10+ years"

mflowgen - Integration with OpenROAD

34

Now integrated with OpenROAD:

● orfs-yosys-synthesis
● orfs-openroad-floorplan
● orfs-openroad-place
● orfs-openroad-cts

● orfs-openroad-route
● orfs-openroad-finish
● orfs-docker-setup

Lays the groundwork for highly accessible open-source chip
design flows for student learners

[*] https://github.com/the-openroad-project

Documentation for mflowgen + OpenROAD: https://mflowgen.readthedocs.io/en/latest/stdlib-openroad.html

https://github.com/the-openroad-project
https://mflowgen.readthedocs.io/en/latest/stdlib-openroad.html

mflowgen Takeaways

35

mflowgen developed since 2018 at Stanford + USC

• Development cost: Exceeds $1M, 50+ person effort

• ~1200 commits, 20K+ lines Python/Tcl

• 25+ classroom tapeouts (non-research) by 100+ students (2020-2024)

• Six chip tapeout courses at Stanford (2020-2023) + USC (2023-2024)

• Three chip tapein courses at Cornell (2021-2023)

• Technologies: GF12, Intel16, TSMC16, TSMC28, TSMC40, IBM130,

SKY130, and IBM180

• Github and ReadtheDocs: 1000+ commits currently, active docs

	Slide 1: mflowgen: A Modular Flow Generator and Ecosystem for Community-Driven Physical Design
	Slide 2: Complex systems are not easy to build
	Slide 3: How do we reduce the design effort of building complex systems?
	Slide 4: How do we reduce the design effort of building complex systems?
	Slide 5: How do we reduce the design effort of building complex systems?
	Slide 6: Reuse as much of previous systems as we can ... but this is very challenging
	Slide 7: Code customization prevents future reuse
	Slide 8: Physical design flows look similar yet different
	Slide 9: Key Idea: Embrace Modularity
	Slide 10: Key Idea: Embrace Modularity
	Slide 11: Agile Flow Tools
	Slide 12: Agile Flow Tool: System Goals
	Slide 13: Agile Flow Tool: System Goals
	Slide 14: Agile Flow Tool: System Goals
	Slide 15: Agile Flow Tool: System Goals
	Slide 16: Agile Flow Tool: System Goals
	Slide 17: Agile Flow Tools
	Slide 18: Modular Nodes
	Slide 19: Modular Flow Generator
	Slide 20: Example Teaching Graph
	Slide 21: Naturally capture hierarchical graphs
	Slide 22: Agile Flow Tools
	Slide 23: mflowgen Demo - Greatest common divisor
	Slide 24: mflowgen Demo – Flow runner
	Slide 25: mflowgen Demo – Flow runner
	Slide 26: mflowgen Demo
	Slide 27: mflowgen Demo - Sharing within a team Nodes are natural candidates for sharing pre-built checkpoints
	Slide 28: mflowgen Demo - Sharing within a team Nodes are natural candidates for sharing pre-built checkpoints
	Slide 29: mflowgen Demo - Sharing within a team Nodes are natural candidates for sharing pre-built checkpoints
	Slide 30: mflowgen Demo - Sharing within a team Nodes are natural candidates for sharing pre-built checkpoints
	Slide 31: mflowgen Demo - Sharing within a team Nodes are natural candidates for sharing pre-built checkpoints
	Slide 32: mflowgen Demo - Sharing within a team Nodes are natural candidates for sharing pre-built checkpoints
	Slide 33: Takeaway: Accessibility of PD is expanding through agile flow tools
	Slide 34: mflowgen - Integration with OpenROAD
	Slide 35: mflowgen Takeaways

