
AHA: An Open-Source Framework
for Co-design of Programmable
Accelerators and Compilers
Kalhan Koul*1, Jackson Melchert*1, Leonard Truong*1, Maxwell Strange*1, Olivia Hsu*1, Jeff
Setter*1, Qiaoyi Liu*1, Ross Daly*1, Keyi Zhang*1, Taeyoung Kong*1, Caleb Donovick*1, Alex
Carsello*1,, Po-Han Chen1, Yuchen Mei1, Zhouhua Xie1, Kathleen Feng1, Gedeon Nyengele1,
Dillon Huff1, Kavya Sreedhar1, Huifeng Ke1, Ankita Nayak1, Rajsekhar Setaluri1, Stephen
Richardson1, Christopher Torng2, Pat Hanrahan1, Clark Barrett1, Mark Horowitz1, Fredrik
Kjolstad1,
Priyanka Raina1

*Equal Contribution; 1Stanford University, CA, USA; 2University of Southern California, CA, USA

With the slowdown of Moore’s law and end of Dennard scaling,
hardware specialization is necessary to improve performance and energy
efficiency of computing systems

Domain-Specific Accelerators

Modern SoCs have dozens of
domain-specific accelerators

Graphics
Machine Learning
Image Processing
Video Coding
Cryptography
Wireless …

Image source: https://www.anandtech.com/show/14892/the-apple-iphone-11-pro-and-max-review/2

A13 System-on-Chip (SoC)
8.5 billion transistors in 7 nm

https://www.anandtech.com/show/14892/the-apple-iphone-11-pro-and-max-review/2

With the slowdown of Moore’s law and end of Dennard scaling,
hardware specialization is necessary to improve performance and energy
efficiency of computing systems

Modern SoCs have dozens of
domain-specific accelerators

Domain-Specific Accelerators

A13 System-on-Chip (SoC)
8.5 billion transistors in 7 nm

Image source: https://www.anandtech.com/show/14892/the-apple-iphone-11-pro-and-max-review/2

However, designing, verifying and
deploying such systems with accelerators

has a large engineering cost

https://www.anandtech.com/show/14892/the-apple-iphone-11-pro-and-max-review/2

Software Cost > Verification Cost > Design Cost

Image source: https://www.researchgate.net/figure/Chip-Design-and-Manufacturing-Cost-under-Different-Process-Nodes-Data-Source-from-
IBS_fig1_340843129

https://www.researchgate.net/figure/Chip-Design-and-Manufacturing-Cost-under-Different-Process-Nodes-Data-Source-from-IBS_fig1_340843129
https://www.researchgate.net/figure/Chip-Design-and-Manufacturing-Cost-under-Different-Process-Nodes-Data-Source-from-IBS_fig1_340843129

● The most common approach to create accelerators is a
waterfall approach

Existing Approach to Accelerator Design

Application
Analysis

ResNet
MobileNet

…

Architectural
Specification

RTL Design
and Test

Physical
Design

Software &
Compiler Design

● The most common approach to create accelerators is a
waterfall approach

Existing Approach to Accelerator Design

Application
Analysis

ResNet
MobileNet

…

Architectural
Specification

RTL Design
and Test

Physical
Design

Software &
Compiler Design

SW takes a lot
longer than

designing the
HW!

Applications
have already

evolved

Vision
Transformer?!

● Prohibitive cost of design and verification of accelerator-based
systems

● Lack of a structured approach for evolving the software stack
as the underlying hardware becomes more specialized

● No general methodology for specializing hardware to domains,
rather than a few benchmarks

Challenges to Adopting Hardware
Specialization at Scale

● Agile approaches are very common in SW development --- we create
tools to adapt them to hardware/compiler co-design

● Incrementally update the hardware accelerator and software to map to it

Waterfall Approach -> Agile Approach

…
Hardware

Accelerator v0

Compiler v0

Application 1
Application 2

Area, Power,
Performance

Hardware
Accelerator v1

Compiler v1

Incremental
Updates

Application 2.1
Application 3

Requirements for the Agile Approach

Hardware
Accelerator v0

Compiler v0

Application 1
Application 2

Area, Power,
Performance

Hardware
Accelerator v1

Compiler v1

Incremental
Updates

Application 2.1
Application 3

2. Hardware and compiler
must evolve together
• Any change in hardware

must propagate to compiler
automatically

1. Accelerator must be configurable
• So we can map new or modified applications to

it (although with lower efficiency)

● Think about accelerators as specialized coarse-grained reconfigurable
arrays (CGRAs) --- similar to an FPGA but with larger compute and
memory units, and word-level interconnect

CGRAs as Accelerator Templates

● Is programmable enough to accommodate application evolution
● Allows specialization and exploiting parallelism and locality ---

characteristics that make an accelerator efficient

CGRAs as Accelerator Templates

CGRAs as Accelerator Templates

● By tuning the amount of configurability in CGRA PEs, MEMs and the
interconnect, we can create more specialized (closer to ASICs) or more
general-purpose accelerators (closer to FPGAs)

● More importantly, thinking of accelerators as specialized CGRAs
provides a standard accelerator template for a compiler to target

• Make PE a MAC
• Simplify

interconnect to
systolic
connections

• …

Incremental Updates

Base
CGRA

Compiler from Halide Applications to CGRAs

Halide Compiler

CoreIR Dataflow Graph

PE and MEM Mapper

Mapped CoreIR Graph

CGRA Bitstream

Place & Route Engine

Application
Halide Program

Hardware independent

Dense Linear Algebra
(Machine Learning, Image Processing, etc.)

Hardware dependent

Q. Liu et al, “Unified Buffer: Compiling image processing and machine
learning applications to push-memory accelerators,” TACO 2022

Automatically Generate HW and Compiler
Collateral from a Single Source of Truth

PEak
Compiler

PE HW

CGRA Hardware (Verilog)

PEak Program
(PE Spec)

CGRA Generator

Formal Specifications for Accelerator Components

Physical Design Flow

CGRA Chip

Halide Compiler

CoreIR Dataflow Graph

PE and MEM Mapper

Mapped CoreIR Graph

CGRA Bitstream

Place & Route Engine

Application

Automatically Generate HW and Compiler
Collateral from a Single Source of Truth

PEak
Compiler

PE HW

CGRA Hardware (Verilog)

PEak Program
(PE Spec)

CGRA Generator

Formal Specifications for Accelerator Components

Physical Design Flow

CGRA Chip

PE
Rewrite
Rules

Halide Compiler

CoreIR Dataflow Graph

PE and MEM Mapper

Mapped CoreIR Graph

CGRA Bitstream

Place & Route Engine

Application

Automatic Rewrite Rule Generation with SMT

Daly et al., Synthesizing Instruction Selection Rewrite Rules from RTL using SMT, FMCAD 2022

CoreIR.Sub
(Formally

specified IR
node)

In0 In1

Out

PE
(Formally
specified

compute unit)

res flag

c_in A B C

∃inst ∀inputs :
CoreIR.Op(inputs)
== PE(inst,inputs)

Instruction (
op = Add,
invert_B = 1,
…

)

1

Rewrite
Rule

Solve using an
SMT solver

Automatically Generate HW and Compiler
Collateral from a Single Source of Truth

Lake
Compiler

Canal
Compiler

PEak
Compiler

PE HW

CGRA Hardware (Verilog)

Canal Program
(Interconnect Spec)

Lake Program
(MEM Spec)

PEak Program
(PE Spec)

CGRA Generator

MEM HW Interconnect HW

Formal Specifications for Accelerator Components

Physical Design Flow

CGRA Chip

PE
Rewrite
Rules

MEM
Rewrite
Rules

Routing
Graph

Halide Compiler

CoreIR Dataflow Graph

PE and MEM Mapper

Mapped CoreIR Graph

CGRA Bitstream

Place & Route Engine

Application

Koul et al., TECS 2022
Bahr et al., DAC 2020

Accelerators Designed Using AHA Flow

Amber SoC
TSMC 16

Statically scheduled dense data
processing e.g. image processing

and ML
VLSI 2022, Hot Chips 2022, JSSC 2023

Onyx SoC
GF 12

+ Higher compute density
+ Energy-efficient memories

+ Sparse tensor algebra
VLSI 2024, Hot Chips 2024

Opal SoC
Intel 16

(Taped out: Dec 2023)
+ Higher performance on

sparse tensor algebra
+ Sparse machine learning

CGRA

Global Buffer

CPU

Global
BufferCPU

CGRA

28x16
CGRA

Global Buffer
CPU + SRAMs

Amber CGRA – Dense
Image Processing and
Machine Learning
Accelerator

Global
BufferCPU

CGRA

Amber: CGRA SoC Designed with Agile Approach

Carsello et al., VLSI 2022, Feng et al., JSSC 2023

ISSCC 2022 Student Research Preview Poster Award
VLSI 2022 Best Demo Paper Award

Amber: CGRA SoC Designed with Agile Approach

Amber in TSMC 16 nm

Global
BufferCPU

CGRA

● Amber achieves 160-1200x, 678-3902x, 498-988x, 12-152x, and 20-
107x better EDP vs. Cortex A57, 1-core and 12-core Xeon CPUs, GPU,
and FPGA respectively

Onyx CGRA – Improving
Dense Acceleration and
Adding Sparse Tensor
Algebra Acceleration

Improving Performance for Dense Applications

Lake
Compiler

Canal
Compiler

PEak
Compiler

PE HW

CGRA Hardware (Verilog)

Canal Program
(Interconnect Spec)

Lake Program
(MEM Spec)

New PEak Program
for Specialized PEs

(PE Spec)

CGRA Generator

MEM HW Interconnect HW

Formal Specifications for Accelerator Components

PE
Rewrite
Rules

MEM
Rewrite
Rules

Routing
Graph

Halide Compiler

CoreIR Dataflow Graph

PE and MEM Mapper

Mapped CoreIR Graph

CGRA Bitstream

Place & Route Engine

Application

APEX: Application-Driven PE Exploration

Subgraph
Merging

Application
Dataflow
Graph in
CoreIR

Subgraph
Mining

Ordered List
of Frequent
Subgraphs

Maximal
Independent
Set Analysis

Merged
PE Graph

Application Domain Driven PE Architecture Creation

ALU LUT

COND

REG REG

From 1b CBs

To 1b SB

16 16 1

16

CB

REG REG

16 16

CB CB

REG

16

CB

a b c

a b

+

a b

x

 add mul mac tadd mul-shr min crop max …

c

+

c

>>

a

a b

m

c

M

a

CONST

MUL-M

CONST UMIN

CONST

MUL-M

CONST UMIN

ADD

ADD

LSHR

ADD CONST

ADD

ADD

ADD

ADD

ADD

ASHR

CONST

AND

SLT

MUL

CONST

MUL

CONST

AND

SLT

AND

AND

AND

Camera Pipeline

Harris

Unsharp

Gaussian

ADD

MUL

CONST

MUL

CONST

High Occurrences Low Occurrences

…

…

…

…
Operations in
Amber PE

Frequent subgraphs
merged in Onyx PE

ADD

MUL

CONST

MUL

CONST

ResNet

…

56 42

Onyx PE

REG REG

16 16
CB CB

REG

16
CB

a b c

…

a a

ALU Output

Regfile
Output

LUT

COND

From
1b CBs

To 1b SB

1

To 16b SB

ALU

Frequent subgraphs
not merged due to
large area overhead

S
te

p
 3

:
M

er
g

e
su

b
g

ra
p

h
s

in
to

 P
E

ADD MUL
a b a b

MIN
a b

c

A
D

D

M
U

L

MAX
c

TA
D

D

or

M
A
C

M
U

L
-S

H
R

or

S
H

R

M
IN

C
R
O

P or

M
A
X

64 56

ADD

Total PEs in Onyx/Amber = 384

SHR
c

PE Instructions - INT16/BIT: ADC SBC ABS MUX MULT0
MULT1 MULT2 SHR SHL OR AND NOT XOR MIN MAX EQ CMP
MAC variants (MULADD MULSUB) TADD variants (ADDADD
ADDSUB SUBADD SUBSUB) CROP MULSHR, BFloat16: ADD
SUB CMP MUL GETMAN* ADDIEXP* SUBEXP* EXP2F*
F2INT* GETFR* INT2F* (*Used in complex ops)

Parallelization Factor
14

Iso-frequency
Runtime
Reduction 50% 0% 33% 13% 50%

2

4

2

1
1 1

2

2

3

14
16

128 256

128

ADD

ADD

ADD

ADD

ADD

ASHR

CONST

AND

SLT
Harris

Unsharp

ADD

MUL

CONST

MUL

CONST

…

…

28 18 14 14

41 39

Frequent subgraphs
merged in Onyx PE

Frequent subgraphs
not merged due to
large area overhead

CONST

MUL-M

CONST UMIN

CONST

MUL-M

CONST UMIN

ADD

LSHR

ADD CONST

ADD

ADD

ADD

ADD

ADD

ASHR

CONST

AND

SLT

AND

SLT

AND

AND

AND

Camera Pipeline

Harris

…

Operations in
Amber PE
Frequent
subgraphs
merged in Onyx
PE

36 24 20

28 18 14 14 8 8

Step 1: Mine frequent
subgraphs from each
application

Step 2: Order subgraphs
by # non-overlapping
occurrences using
maximal independent
set analysis

…

Melchert et al.,
ASPLOS 2023

ALU LUT

COND

REG REG

From 1b CBs

To 1b SB

16 16 1

16

CB

REG REG

16 16

CB CB

REG

16

CB

a b c

a b

+

a b

x

 add mul mac tadd mul-shr min crop max …

c

+

c

>>

a

a b

m

c

M

a

CONST

MUL-M

CONST UMIN

CONST

MUL-M

CONST UMIN

ADD

ADD

LSHR

ADD CONST

ADD

ADD

ADD

ADD

ADD

ASHR

CONST

AND

SLT

MUL

CONST

MUL

CONST

AND

SLT

AND

AND

AND

Camera Pipeline

Harris

Unsharp

Gaussian

MUL

CONST

ADD

MUL

CONST

High Occurrences Low Occurrences

…

…

…

…
Operations in
Amber PE

Frequent subgraphs
merged in Onyx PE

ADD

MUL

CONST

MUL

CONST

ResNet

…

56 42

Onyx PE

REG REG

16 16
CB CB

REG

16
CB

a b c

…

a a

ALU Output

Regfile
Output

LUT

COND

From
1b CBs

To 1b SB

1

To 16b SB

ALU

Frequent subgraphs
not merged due to
large area overhead

S
te

p
 3

:
M

er
g

e
su

b
g

ra
p

h
s

in
to

 P
E

ADD MUL
a b a b

MIN
a b

c

A
D

D

M
U

L

MAX
c

TA
D

D

or

M
A
C

M
U

L
-S

H
R

or

S
H

R

M
IN

C
R
O

P or

M
A
X

64 56

ADD

Total PEs in Onyx/Amber = 384

SHR
c

PE Instructions - INT16/BIT: ADC SBC ABS MUX MULT0
MULT1 MULT2 SHR SHL OR AND NOT XOR MIN MAX EQ CMP
MAC variants (MULADD MULSUB) TADD variants (ADDADD
ADDSUB SUBADD SUBSUB) CROP MULSHR, BFloat16: ADD
SUB CMP MUL GETMAN* ADDIEXP* SUBEXP* EXP2F*
F2INT* GETFR* INT2F* (*Used in complex ops)

Parallelization Factor
14

Iso-frequency
Runtime
Reduction 50% 0% 33% 13% 50%

2

4

2

1
1 1

2

2

3

14
16

128 256

128

ADD

ADD

ADD

ADD

ADD

ASHR

CONST

AND

SLT
Harris

Unsharp

ADD

MUL

CONST

MUL

CONST

…

…

28 18 14 14

41 39

Frequent subgraphs
merged in Onyx PE

Frequent subgraphs
not merged due to
large area overhead

CONST

MUL-M

CONST UMIN

CONST

MUL-M

CONST UMIN

ADD

LSHR

ADD CONST

ADD

ADD

ADD

ADD

ADD

ASHR

CONST

AND

SLT

AND

SLT

AND

AND

AND

Camera Pipeline

Harris

…

Operations in
Amber PE
Frequent
subgraphs
merged in Onyx
PE

36 24 20

28 18 14 14 8 8

Step 1: Mine frequent
subgraphs from each
application

Step 2: Order subgraphs
by # non-overlapping
occurrences using
maximal independent
set analysis

…

ADD

MUL

CONST

ADD

ADD

ASHR

CONST

AND

SLT

❶

❷

❸

❹

REG REG

16 16
CB CB

REG

16
CB

…

a
a

LUT

COND

ALUADD MUL
a b a b

MIN
a b

c

A
D

D

M
U

L

MAX

TA
D

D

or

M
A
C

M
U

L -
S
H

R

or

S
H

R
M

IN
M

IN
M

A
X or

M
A
X

ADD SHR
…

a b c

c c

Extending the CGRA to Sparse Applications

Lake
Compiler

Canal
Compiler

PEak
Compiler

PE HW

CGRA Hardware (Verilog)

Canal Program
for Ready-Valid
Interconnect

(Interconnect Spec)

Lake Program
with Sparse
Primitives
(MEM Spec)

PEak Program for
Specialized PEs

(PE Spec)

CGRA Generator

MEM HW Interconnect HW

Formal Specifications for Accelerator Components

PE
Rewrite
Rules

MEM
Rewrite
Rules

Routing
Graph

Custard Compiler

SAM Dataflow Graph

PE and MEM Mapper

Mapped CoreIR Graph

CGRA Bitstream

Place & Route Engine

Sparse Application

Hsu et al., “The Sparse Abstract Machine,” ASPLOS 2023

Extending the CGRA to Sparse Applications

Level Scanner b Level Scanner c

Intersect

Level Writer x
Array b Array c

Mul

Level Writer x

Example Sparse Application

ref_in_b ref_in_c

ref_out_b ref_out_c

b val c val

x val

coord_in_b coord_in_c

x coord

X(i,j) = B(i) * C(i);

Format sp = Sparse;
Tensor X({sp});
Tensor B({sp});
Tensor C({sp});

Compute (stmt):

Scheduling and Format:

Example SAM Graph

Extending the CGRA to Sparse Applications

Lake
Compiler

Canal
Compiler

PEak
Compiler

PE HW

CGRA Hardware (Verilog)

Canal Program
with Ready-Valid

Interconnect
(Interconnect Spec)

Lake Program
with Sparse
Primitives
(MEM Spec)

PEak Program with
Specialized PEs

(PE Spec)

CGRA Generator

MEM HW Interconnect HW

Formal Specifications for Accelerator Components

PE
Rewrite
Rules

MEM
Rewrite
Rules

Routing
Graph

Custard Compiler

SAM Dataflow Graph

PE and MEM Mapper

Mapped CoreIR Graph

CGRA Bitstream

Place & Route Engine

Sparse Application

O.Hsu et al, “The Sparse Abstract Machine,” ASPLOS 2023

Onyx: CGRA with Dense and Sparse Acceleration

● Onyx achieves up to 85% lower EDP versus Amber on dense applications

104

Blur Unsharp Camera Harris

101
102
103

100

Arm A57 CPU (4 cores) Intel Xeon CPU (12 cores)
Nvidia Tesla K40 GPU Virtex VU9P FPGA
Amber CGRA [2] Onyx CGRA (This work)

Energy Delay Product (μJ•s/frame)

-33% -76% +2% -74%

Onyx: CGRA with Dense and Sparse Acceleration

● Onyx achieves up to 565x EDP improvement over CPU sparse libraries

Other
Project

100
102
104
106
108
1010

Energy Delay Product (pJ•s/frame)

ElemAdd3 SpM*SpV SpM*SpM ElemMult TTV TTM InnerProd. MTTKRP

SuiteSparse 2D kernels Randomly generated 3D kernels

`

These operations are not supported by MKL

Intel Xeon (MKL*, 1 core)
Intel Xeon (MKL+AVX, 12 cores)

TACO[4] (1 core)
Onyx

4.4x 243.0x 4.7x
8.5x 144.1x123.1x 15.0x 564.6x

● Demonstrated an agile hardware-software co-design methodology,
using three key insights

○ Thinking about accelerators as specialized CGRAs provides a standard
accelerator template for a compiler to target

○ Using a combination of new specification languages and formal methods,
we can automatically generate the accelerator hardware and its compiler
from a single source of truth

○ This enables creating higher-level design-space exploration frameworks for
application domain-driven optimization of accelerator

● Used to create multiple end-to-end chip demonstrations, with
significant reuse in both the hardware and the software toolchain

AHA Summary

The AHA Team

Rajsekhar
Setaluri

Lenny
Truong

Caleb
Donovick

Alex
Carsello

Keyi
Zhang

Qiaoyi
Liu

Maxwell
Strange

Yuchen
Mei

Dillon
Huff

Olivia
Hsu

Ross
Daly

Ankita
Nayak

Kavya
Sreedhar

Jackson
Melchert

Jeff
Setter

Steve
Richardson

Kalhan
Koul

Po-Han
Chen

Gedeon
Nyengele

Taeyoung
Kong

Zhouhua
Xie

Huifeng
Ke

Kathleen
Feng

Christopher
Torng

Clark
Barrett

Priyanka
Raina

Mark
Horowitz

Pat
Hanrahan

Fredrik
Kjolstad

Acknowledgements for Funding

● DARPA DSSoC
● AHA Center
● Stanford SystemX Alliance
● SRC JUMP 2.0 PRISM Center
● NSF Award 2238006
● Intel HIP
● Apple
● Samsung

Publications

Hardware Generators:
AHA Overview – DAC 2020 https://ieeexplore.ieee.org/document/9218553
AHA Details – TECS 2023 https://ieeexplore.ieee.org/document/10258121
PEak – arXiv 2023 https://arxiv.org/abs/2308.13106
Canal – CAL 2023 https://ieeexplore.ieee.org/document/10105430
APEX – ASPLOS 2023 https://dl.acm.org/doi/10.1145/3582016.3582070

Compilers:
Dense Compiler – TACO 2023 https://dl.acm.org/doi/10.1145/3572908
Sparse Compiler & SAM – ASPLOS 2023 https://dl.acm.org/doi/10.1145/3582016.3582051
Rewrite Rule Generation – FMCAD 2022 https://ieeexplore.ieee.org/document/10026577
CGRA Pipelining – TCAD 2024 https://ieeexplore.ieee.org/document/10504565

Chips:
Onyx – VLSI 2024 https://ieeexplore.ieee.org/document/10631383
Amber – VLSI 2022, JSSC 2023 https://ieeexplore.ieee.org/document/10258121

https://ieeexplore.ieee.org/document/9218553
https://ieeexplore.ieee.org/document/10258121
https://arxiv.org/abs/2308.13106
https://ieeexplore.ieee.org/document/10105430
https://dl.acm.org/doi/10.1145/3582016.3582070
https://dl.acm.org/doi/10.1145/3572908
https://dl.acm.org/doi/10.1145/3582016.3582051
https://ieeexplore.ieee.org/document/10026577
https://ieeexplore.ieee.org/document/10504565
https://ieeexplore.ieee.org/document/10631383
https://ieeexplore.ieee.org/document/10258121

● Try it out! : https://github.com/StanfordAHA/aha
● Tutorial: https://stanfordaha.github.io/aha_tutorial/
● Tutorial at MICRO 2024!

Nov 2 – 6, 2024
Austin, Texas, USA

Code and Tutorial!

https://github.com/StanfordAHA/aha
https://stanfordaha.github.io/aha_tutorial/

	Slide 1: AHA: An Open-Source Framework for Co-design of Programmable Accelerators and Compilers
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Amber CGRA – Dense Image Processing and Machine Learning Accelerator
	Slide 20
	Slide 21
	Slide 22: Onyx CGRA – Improving Dense Acceleration and Adding Sparse Tensor Algebra Acceleration
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Backup Slides
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

