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With the slowdown of Moore’s law and end of Dennard scaling, 
hardware specialization is necessary to improve performance and energy 
efficiency of computing systems

Domain-Specific Accelerators

Modern SoCs have dozens of 
domain-specific accelerators

Graphics
Machine Learning
Image Processing
Video Coding
Cryptography 
Wireless …

Image source: https://www.anandtech.com/show/14892/the-apple-iphone-11-pro-and-max-review/2

A13 System-on-Chip (SoC)
8.5 billion transistors in 7 nm

https://www.anandtech.com/show/14892/the-apple-iphone-11-pro-and-max-review/2
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However, designing, verifying and 
deploying such systems with accelerators 

has a large engineering cost

https://www.anandtech.com/show/14892/the-apple-iphone-11-pro-and-max-review/2


Software Cost > Verification Cost > Design Cost

Image source: https://www.researchgate.net/figure/Chip-Design-and-Manufacturing-Cost-under-Different-Process-Nodes-Data-Source-from-
IBS_fig1_340843129

https://www.researchgate.net/figure/Chip-Design-and-Manufacturing-Cost-under-Different-Process-Nodes-Data-Source-from-IBS_fig1_340843129
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● The most common approach to create accelerators is a 
waterfall approach

Existing Approach to Accelerator Design
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Analysis
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Specification
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Physical 
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Compiler Design
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Application
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MobileNet 

…

Architectural 
Specification
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Physical 
Design
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Compiler Design

SW takes a lot 
longer than 

designing the 
HW!

Applications 
have already 

evolved

Vision 
Transformer?! 



● Prohibitive cost of design and verification of accelerator-based 
systems

● Lack of a structured approach for evolving the software stack
as the underlying hardware becomes more specialized

● No general methodology for specializing hardware to domains, 
rather than a few benchmarks

Challenges to Adopting Hardware 
Specialization at Scale



● Agile approaches are very common in SW development --- we create 
tools to adapt them to hardware/compiler co-design

● Incrementally update the hardware accelerator and software to map to it

Waterfall Approach -> Agile Approach

…
Hardware 

Accelerator v0

Compiler v0

Application 1
Application 2

Area, Power, 
Performance 

Hardware 
Accelerator v1

Compiler v1

Incremental 
Updates

Application 2.1
Application 3 



Requirements for the Agile Approach

Hardware 
Accelerator v0

Compiler v0

Application 1
Application 2

Area, Power, 
Performance 

Hardware 
Accelerator v1

Compiler v1

Incremental 
Updates

Application 2.1
Application 3 

2. Hardware and compiler 
must evolve together
• Any change in hardware 

must propagate to compiler 
automatically

1. Accelerator must be configurable
• So we can map new or modified applications to 

it (although with lower efficiency)



● Think about accelerators as specialized coarse-grained reconfigurable 
arrays (CGRAs) --- similar to an FPGA but with larger compute and 
memory units, and word-level interconnect 

CGRAs as Accelerator Templates



● Is programmable enough to accommodate application evolution
● Allows specialization and exploiting parallelism and locality ---

characteristics that make an accelerator efficient 

CGRAs as Accelerator Templates



CGRAs as Accelerator Templates

● By tuning the amount of configurability in CGRA PEs, MEMs and the 
interconnect, we can create more specialized (closer to ASICs) or more 
general-purpose accelerators (closer to FPGAs)

● More importantly, thinking of accelerators as specialized CGRAs 
provides a standard accelerator template for a compiler to target

• Make PE a MAC
• Simplify 

interconnect to 
systolic 
connections

• … 

Incremental Updates

Base 
CGRA



Compiler from Halide Applications to CGRAs

Halide Compiler

CoreIR Dataflow Graph

PE and MEM Mapper

Mapped CoreIR Graph

CGRA Bitstream

Place & Route Engine

Application
Halide Program

Hardware independent

Dense Linear Algebra
(Machine Learning, Image Processing, etc.)

Hardware dependent

Q. Liu et al, “Unified Buffer: Compiling image processing and machine 
learning applications to push-memory accelerators,” TACO 2022



Automatically Generate HW and Compiler 
Collateral from a Single Source of Truth

PEak 
Compiler 
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Automatic Rewrite Rule Generation with SMT

Daly et al., Synthesizing Instruction Selection Rewrite Rules from RTL using SMT, FMCAD 2022

CoreIR.Sub
(Formally 

specified IR 
node)

In0 In1

Out

PE
(Formally 
specified 

compute unit)

res flag

c_in A B C

∃inst ∀inputs : 
CoreIR.Op(inputs) 
== PE(inst,inputs) 

Instruction (
op = Add,
invert_B = 1,
…

)

1

Rewrite 
Rule

Solve using an 
SMT solver



Automatically Generate HW and Compiler 
Collateral from a Single Source of Truth

Lake 
Compiler

Canal 
Compiler

PEak 
Compiler 

PE HW 

CGRA Hardware (Verilog)

Canal Program
(Interconnect Spec)

Lake Program
(MEM Spec)

PEak Program
(PE Spec)
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MEM HW Interconnect HW 
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Physical Design Flow

CGRA Chip

PE 
Rewrite 
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Koul et al., TECS 2022
Bahr et al., DAC 2020



Accelerators Designed Using AHA Flow

Amber SoC
TSMC 16

Statically scheduled dense data 
processing e.g. image processing 

and ML
VLSI 2022, Hot Chips 2022, JSSC 2023

Onyx SoC
GF 12 

+ Higher compute density
+ Energy-efficient memories

+ Sparse tensor algebra
VLSI 2024, Hot Chips 2024

Opal SoC
Intel 16 

(Taped out: Dec 2023)
+ Higher performance on 

sparse tensor algebra
+ Sparse machine learning

CGRA

Global Buffer

CPU

Global 
BufferCPU

CGRA

28x16
CGRA

Global Buffer
CPU + SRAMs



Amber CGRA – Dense 
Image Processing and 
Machine Learning 
Accelerator

Global 
BufferCPU

CGRA



Amber: CGRA SoC Designed with Agile Approach

Carsello et al., VLSI 2022, Feng et al., JSSC 2023

*ISSCC 2022 Student Research Preview Poster Award*
*VLSI 2022 Best Demo Paper Award*



Amber: CGRA SoC Designed with Agile Approach

Amber in TSMC 16 nm

Global 
BufferCPU

CGRA

● Amber achieves 160-1200x, 678-3902x, 498-988x, 12-152x, and 20-
107x better EDP vs. Cortex A57, 1-core and 12-core Xeon CPUs, GPU, 
and FPGA respectively



Onyx CGRA – Improving 
Dense Acceleration and 
Adding Sparse Tensor 
Algebra Acceleration



Improving Performance for Dense Applications

Lake 
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APEX: Application-Driven PE Exploration

Subgraph 
Merging

Application 
Dataflow 
Graph in 
CoreIR

Subgraph 
Mining

Ordered List 
of Frequent 
Subgraphs

Maximal 
Independent 
Set Analysis

Merged 
PE Graph

Application Domain Driven PE Architecture Creation
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Extending the CGRA to Sparse Applications

Lake 
Compiler

Canal 
Compiler

PEak 
Compiler 

PE HW 

CGRA Hardware (Verilog)

Canal Program
for Ready-Valid 
Interconnect

(Interconnect Spec)

Lake Program
with Sparse 
Primitives
(MEM Spec)

PEak Program for 
Specialized PEs

(PE Spec)

CGRA Generator

MEM HW Interconnect HW 

Formal Specifications for Accelerator Components

PE 
Rewrite 
Rules

MEM 
Rewrite 
Rules

Routing 
Graph

Custard Compiler

SAM Dataflow Graph

PE and MEM Mapper

Mapped CoreIR Graph

CGRA Bitstream

Place & Route Engine

Sparse Application

Hsu et al., “The Sparse Abstract Machine,” ASPLOS 2023



Extending the CGRA to Sparse Applications

Level Scanner b Level Scanner c

Intersect 

Level Writer x
Array b Array c

Mul

Level Writer x

Example Sparse Application

ref_in_b ref_in_c

ref_out_b ref_out_c

b val c val

x val

coord_in_b coord_in_c

x coord

X(i,j) = B(i) * C(i);

Format sp = Sparse;
Tensor X({sp});
Tensor B({sp});
Tensor C({sp});

Compute (stmt):

Scheduling and Format:

Example SAM Graph



Extending the CGRA to Sparse Applications
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Sparse Application

O.Hsu et al, “The Sparse Abstract Machine,” ASPLOS 2023



Onyx: CGRA with Dense and Sparse Acceleration

● Onyx achieves up to 85% lower EDP versus Amber on dense applications

104

Blur Unsharp Camera Harris

101
102
103

100

Arm A57 CPU (4 cores) Intel Xeon CPU (12 cores)
Nvidia Tesla K40 GPU Virtex VU9P FPGA
Amber CGRA [2] Onyx CGRA (This work)

Energy Delay Product (μJ•s/frame) 

-33% -76% +2% -74%



Onyx: CGRA with Dense and Sparse Acceleration

● Onyx achieves up to  565x EDP improvement over CPU sparse libraries

Other 
Project

100
102
104
106
108
1010

Energy Delay Product (pJ•s/frame)

ElemAdd3 SpM*SpV SpM*SpM ElemMult TTV TTM InnerProd. MTTKRP

SuiteSparse 2D kernels Randomly generated 3D kernels 

`

These operations are not supported by MKL

Intel Xeon (MKL*, 1 core)
Intel Xeon (MKL+AVX, 12 cores)

TACO[4] (1 core)
Onyx

4.4x 243.0x 4.7x
8.5x 144.1x123.1x 15.0x 564.6x



● Demonstrated an agile hardware-software co-design methodology, 
using three key insights

○ Thinking about accelerators as specialized CGRAs provides a standard 
accelerator template for a compiler to target

○ Using a combination of new specification languages and formal methods, 
we can automatically generate the accelerator hardware and its compiler
from a single source of truth

○ This enables creating higher-level design-space exploration frameworks for 
application domain-driven optimization of accelerator

● Used to create multiple end-to-end chip demonstrations, with 
significant reuse in both the hardware and the software toolchain

AHA Summary
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● Try it out! : https://github.com/StanfordAHA/aha
● Tutorial: https://stanfordaha.github.io/aha_tutorial/
● Tutorial at MICRO 2024!

Nov 2 – 6, 2024
Austin, Texas, USA

Code and Tutorial!

https://github.com/StanfordAHA/aha
https://stanfordaha.github.io/aha_tutorial/
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