
Canal: A Flexible Interconnect
Generator for Coarse-Grained
Reconfigurable Arrays

Keyi Zhang & Jackson Melchert

Motivation - Interconnect Specification

• We have DSLs for specifying the PEs and
memory tiles
• How do we specify the configurable

interconnect that makes up the rest of the
CGRA?

• Canal is an interconnect specification DSL
that greatly simplifies the creation of
CGRAs
• Enables easy design space exploration of

CGRA interconnect architecture

2

MEM

MEMPE

PE

Contributions

• Canal is a Python-embedded domain-specific language and a CGRA
oriented interconnect generator:
• A graph-based intermediate representation (IR) for CGRA interconnects

• A compiler that generates hardware from the IR

• A configuration management tool that takes the IR and produces a
bitstream

• A design-space exploration tool

3

Specifying a Configurable Interconnect

• Specify the interconnect as a graph
• Nodes are ports of tiles, branching points, or

multiplexers
• Directed edges are wires

• From this graph we can automatically generate:
1. Hardware
2. Place and route collateral
3. A bitstream generator

4

Specifying a Configurable Interconnect

• Each node can have different types,
attributes, and other metadata

• Edges can also contain metadata, such as
wire delay, which is used for PnR

• Edges are ordered

5

Specifying a Configurable Interconnect

6

• Each node can have different types,
attributes, and other metadata

• Edges can also contain metadata, such as
wire delay, which is used for PnR

• Edges are ordered

Specifying a Configurable Interconnect

7

• Each node can have different types,
attributes, and other metadata

• Edges can also contain metadata, such as
wire delay, which is used for PnR

• Edges are ordered

Canal Language

• The Canal language is a Python-embedded domain-specific language that
constructs the interconnect intermediate representation:

Node and edge creation:

node = Node(x=1, y=1, track=1)

for port_node in tile.pe.inputs():

node.add_edge(port_node)

High level interconnect generation:

create_uniform_interconnect(width=32, height=32, sb_type="wilton",
num_tracks=5, track_width=16, reg_density=1)

8

9

Demo

• In this demo, we’ll use Canal to design a switchbox

• Switchboxes are an important part of the reconfigurable
interconnect of a CGRA or FPGA
• They route data from one location on the array to another location

• Switchboxes can have a variety of different topologies
• Different incoming tracks to the switchbox can route data to the other

tracks lots of different ways

PE

Switchbox

Demo

• The topology we will create today is called a disjoint topology

• Each incoming connection can route to each of the three outgoing
connections

10

Demo

• /aha/canal_demo.py

• First, we create the port nodes for incoming data:

11

from canal.cyclone import *
num_tracks = 5

input_nodes = {}
for side in SwitchBoxSide:

input_nodes[side] = []
for track in range(num_tracks):

input_nodes[side].append(
SwitchBoxNode(0, 0, track, 16, side, SwitchBoxIO.SB_IN))

Demo

• Similarly, we also create the output ports from the switchbox

12

output_nodes = {}
for side in SwitchBoxSide:

output_nodes[side] = []
for track in range(num_tracks):

output_nodes[side].append(
SwitchBoxNode(0, 0, track, 16, side, SwitchBoxIO.SB_OUT))

Demo

• Finally, we connect each of the input nodes to output nodes of the
same track in each of the three remaining directions

13

for track in range(num_tracks):
for side_from in SwitchBoxSide:

for side_to in SwitchBoxSide:
if side_from == side_to:

continue
input_node = input_nodes[side_from][track]
output_node = output_nodes[side_to][track]
print(f"Wire {input_node} -> {output_node}")
input_node.add_edge(output_node)

Canal Interconnect Generation System

• Fully automated hardware, PnR, and bitstream configuration
generation

14

Generating Interconnect Hardware

1. Nodes with hardware attributes (PEak
PEs or Lake memories) instantiate the
specified hardware

2. Directed edges are translated into wires

3. Nodes with multiple incoming edges
generate multiplexers

15

Split FIFO Optimization

• While it is easy to generate a fixed-size FIFO for buffering data
throughout the interconnect, the cost is very high

• Using Canal, we can investigate more efficient ways of
implementing these buffers

16

Split FIFO Optimization

• We split the size-two FIFO into pairs of registers in adjacent tiles

• The first register’s control signals are passed from the first tile to
the second tile

17

Split FIFO Optimization Results

• Split FIFOs reduce the area
cost of buffering data
significantly

18

Design Space Exploration with Canal

• Application run times
decrease with more
routing resources

19

Conclusion

• The Canal DSL and IR enable agile design of CGRA interconnects
o The Canal language is easy to use and intuitive

o The interconnect generation system automates generating hardware and
compiler collateral

o Design space exploration is easy because of the flexibility afforded by
Canal

20

	Slide 1: Canal: A Flexible Interconnect Generator for Coarse-Grained Reconfigurable Arrays
	Slide 2: Motivation - Interconnect Specification
	Slide 3: Contributions
	Slide 4: Specifying a Configurable Interconnect
	Slide 5: Specifying a Configurable Interconnect
	Slide 6: Specifying a Configurable Interconnect
	Slide 7: Specifying a Configurable Interconnect
	Slide 8: Canal Language
	Slide 9: Demo
	Slide 10: Demo
	Slide 11: Demo
	Slide 12: Demo
	Slide 13: Demo
	Slide 14: Canal Interconnect Generation System
	Slide 15: Generating Interconnect Hardware
	Slide 16: Split FIFO Optimization
	Slide 17: Split FIFO Optimization
	Slide 18: Split FIFO Optimization Results
	Slide 19: Design Space Exploration with Canal
	Slide 20: Conclusion

