
Halide and Clockwork
Compiler

Jeff Setter

Overview of our System

2

Applications: in Halide DSL (stencils +
DNNs)

Hardware: CGRAs

• Coarse-Grained Reconfigurable Array

Halide

Talk Overview:

3

1) Halide Scheduling

2) Clockwork to map

 Unified Buffers

app += algorithm;app.scheduling();

app += algorithm;
app.scheduling();

Halide

4

Motivation: need a concise way to describe specializations for
each hardware target

=> Separate algorithm from schedule

Algorithm: description of the computation (what output values)

• Mathematical operations

Schedule: optimization decisions (how to compute)

• Loop optimizations to run fast

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Fredo Durand, and Saman Amarasinghe.
Halide: A language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines. In PLDI 2013, page 519-530.

Example Algorithm: cascade for CPU

5

// Algorithm:

// Define 3x3 window of kernel weights

RDom r(0, 3, 0, 3); // Reduction

kernel(0,0) = 1; kernel(0,1) = 2; ... kernel(2,2) = 1;

// First convolution

conv1(x, y) += kernel(r.x, r.y) * input(x + r.x, y + r.y);

conv1_norm(x, y) = conv1(x,y) / 16;

// Second convolution

conv2(x, y) += kernel(r.x, r.y) * conv1_norm(x + r.x, y + r.y);

conv2_norm(x, y) = conv2(x,y) / 16;

output(x, y) = conv2_norm(x, y);

3x3 CONV

3x3 CONV

Input

Output

Halide Scheduling: parallelism and memory

6

Efficient and fast application execution relies on parallelism and
good memory management.

Optimizations for CPU

• Loop parallelism: unrolling loops, vectorization, threading
• Memory: tiling, memory granularity (fusion)

Halide Scheduling: parallelism and memory

7

Efficient and fast application execution relies on parallelism and
good memory management.

Optimizations for CPU

• Loop parallelism: unrolling loops, vectorization, threading
• Memory: tiling, memory granularity (fusion)

Scheduling for CGRAs

• Hardware parallelism: PEs simultaneously executing
• Memory: tiling, memory hierarchy, specialized for streaming

Jeff Setter. Compiling Image Processing and Machine Learning Applications to Reconfigurable Accelerators . In Stanford Doctoral Dissertation, 2023.

Halide Scheduling to CGRA

8

Reused the existing Halide compiler toolchain as much as possible
without introducing new primitives.

Hardware scheduling:

• Accelerator: input, output, image size
• Loops: reorder loops, tiling
• Memory: memory temporaries, hierarchy
• Compute: duplication

Define Accelerator's Scope

9

hw_accelerate(xi, xo)

• Defines the accelerator output
• Argument specifies outermost loop

stream_to_accelerator()

• Defines an accelerator input

CPU

Hardware Accelerator

Define Loops: strip mining, reordering, tiling

10

split(x, xo, xi, 64)

• create nested loops
• specified size for inner loop

reorder(xi, yi, xo, yo)

• new loop order (from inner to outer)

tile(x,y, xo,yo, xi,yi, 64,64)

• split two loops and reorder
• common for images

CPU
for y_outer:
 for x_outer:

Hardware Accelerator

for y_inner:
 for x_inner:

Define Memories: temporaries

11

store_at(consumer, xo)

• create buffers between compute
• at which loop level to create buffer

compute_at(consumer, xo)

• for CGRA, we compute at tile level
and leave loop fusion for Clockwork

• not: choosing line buffer or double
buffer

CPU
for yo:
 for xo:

Hardware Accelerator

 for yi:
 for xi:

+*

Mem

Define Memories: hierarchy

12

in()

• creates a copy (identity function)
• Needed to move data between memory

hierarchy levels with tile and
compute_at

store_in(MemoryType::GLB)

• specify what storage type to use
• Examples: Host, GLB, Memory, Pond

CPU
for yo:
 for xo:

Hardware Accelerator

for yg:
 for xg:
 for ym:
 for xm:

+*

GLB

Mem

Hardware Accelerator

for yg:
 for xg:
 for ym:
 for xm:

Define Compute: duplication and sharing

13

unroll(r.y, 3)

• increases hardware parallelism
• in Halide IR duplicates loop, because

multiple statements = utilizes more
existing hardware

CPU
for yo:
 for xo:

GLB

Mem

+*+*+*

14

CGRA schedule - cascade

Hardware Accelerator

CPU - output

CPU - input

GLB

Mem

GLB

Mem

conv2

conv1

Halide Compiler and Codegen

15

• Compiler: performs
loop transformations

• Codegen to Clockwork:
generates files of
compute kernels
and buffers defined as
sequences of memory
accesses

Talk Overview:

16

1) Halide Scheduling

2) Clockwork to map

 Unified Buffers

app += algorithm;app.scheduling();

app += algorithm;
app.scheduling();

Unified Buffer Motivation

17

Motivation:

need abstraction
for memories in
streaming
accelerators

Push memories are efficient, but also complex

Unified Buffer Abstraction

18

Create an abstraction to interface between the
Halide application and the hardware motifs

• Domain: fully describes streaming
applications (stencils, DNNs)

• Hardware Mapping:
• Sufficiently general to map to dataflow

accelerators classes (FPGA, CGRA;
statically scheduled, ready-valid)

• with efficiency of common hardware
stream memories (linebuffers, double
buffers)

Image Processing DNN Layers

Abstract
Unified Buffer

Amber
Mem

FPGA
BRAM

ValRdy
Mem

Qiaoyi Liu, Jeff Setter, Dillon Hu, Maxwell Strange, Kathleen Feng, Mark Horowitz, Priyanka Raina, and Fredrik Kjolstad.
Unified buffer: Compiling image processing and machine learning applications to push-memory accelerators. TACO 2023.

Unified Buffer Properties

19

Properties for each memory port:

• dependencies: relation to other memories
• iteration domain: valid indices
• access map: relative location in memory
• op schedule: cycle time each pixel

executes

Task for Memory Mapper: Clockwork

20

Optimize

• Improve schedule: reduce latency as much as
possible using loop fusion and loop pipelining

Map to memories

• Occurs after schedule optimization
• Account for hardware constraints

Implemented by Qiaoyi
Qiaoyi Liu. Compiling Applications to Reconfigurable Push Memory Accelerators. In Stanford Doctoral Dissertation, 2023.

Unified Buffer: Clockwork scheduling

21

Clockwork scheduling:

• Polyhedral analysis in Clockwork,
created by Dillon + Qiaoyi

• Purpose: statically determine cycle
times when all stores/loads occur

• Calculation: determined by
dependencies, then minimize
latency

• Buffer size: Number of cycles
between store and last load for
each pixel

Dillon Hu, Steve Dai, and Pat Hanrahan.
Clockwork: Resource-efficient static scheduling for multi-rate image processing applications on FPGAs. In FCCM 2021.

Original

After Optimization

conv2
[4222 + 62y + x]

[7940 + 60y + x]

conv2
[130 + 64y + x]

[260 + 64y + x]

Unified Buffer: Clockwork scheduling

22

Clockwork scheduling:

• Polyhedral analysis in Clockwork,
created by Dillon + Qiaoyi

• Purpose: statically determine cycle
times when all stores/loads occur

• Calculation: determined by
dependencies, then minimize
latency

• Buffer size: Number of cycles
between store and last load for
each pixel

Dillon Hu, Steve Dai, and Pat Hanrahan.
Clockwork: Resource-efficient static scheduling for multi-rate image processing applications on FPGAs. In FCCM 2021.

Unified Buffer: mapping to MEM tiles

23

Mapping to hardware

• Occurs after unified buffer abstraction and scheduling
• One unified buffer != one memory tile

Amber CGRA Memory Tile:

• 2048 B capacity
• 2 inputs, 2 outputs
• 6-level affine loopnest
• 4-wide SRAM reads/writes

Clockwork: mapping steps

24

Key steps:

• Wide fetch: align with 4-wide single-port SRAM
• Banking: more IOs

Buffer

Buffer

chain data

output

input

conv1

(x,y+1)

(x,y+2)

• Shift register optimization:
identify locality opportunities

• Chaining: more capacity

(x+1,y+1)

(x+2,y+1)

(x+2,y+1)

(x+1,y+2)

Summary

25

Used Halide to specify an application using an
algorithm, and applied a CGRA schedule to create
an efficient application execution on hardware.

Clockwork extracted Unified Buffers to enable us
to map to the memories on the CGRA.

app += algorithm;app.scheduling();

app += algorithm;
app.scheduling();

Thank You
26

Thank You
27

Thank You
28

Demo notes

29

Commands

• aha map --apps apps/cascade

• Generated Log
• Full application (CPU enclosed around accelerator = _hls_target.hw_output)

• HalideIR printout of cascade for CGRA

• Runs CPU and clockwork versions and compares generated output images

• Runs clockwork memory compilation (with logging in mem_cout)

• Runs MetaMapper

Demo notes

30

Important files

• Halide generator: algorithm+schedule
• /aha/Halide-to-Hardware/apps/hardware_benchmarks/apps/cascade/cascade_generator.cpp

• Generated files from compiler
• /aha/Halide-to-Hardware/apps/hardware_benchmarks/apps/cascade/bin/*

• Input to Clockworks
• /aha/Halide-to-Hardware/apps/hardware_benchmarks/apps/cascade/bin/cascade_memory.cpp
• /aha/Halide-to-Hardware/apps/hardware_benchmarks/apps/cascade/bin/cascade_compute.json

• Output of Clockwork and MetaMapper: mapped design with memories and
compute
• /aha/Halide-to-Hardware/apps/hardware_benchmarks/apps/cascade/bin/design_top.json

	Slide 1: Halide and Clockwork Compiler
	Slide 2: Overview of our System
	Slide 3: Talk Overview:
	Slide 4: Halide
	Slide 5: Example Algorithm: cascade for CPU
	Slide 6: Halide Scheduling: parallelism and memory
	Slide 7: Halide Scheduling: parallelism and memory
	Slide 8: Halide Scheduling to CGRA
	Slide 9: Define Accelerator's Scope
	Slide 10: Define Loops: strip mining, reordering, tiling
	Slide 11: Define Memories: temporaries
	Slide 12: Define Memories: hierarchy
	Slide 13: Define Compute: duplication and sharing
	Slide 14: CGRA schedule - cascade
	Slide 15: Halide Compiler and Codegen
	Slide 16: Talk Overview:
	Slide 17: Unified Buffer Motivation
	Slide 18: Unified Buffer Abstraction
	Slide 19: Unified Buffer Properties
	Slide 20: Task for Memory Mapper: Clockwork
	Slide 21: Unified Buffer: Clockwork scheduling
	Slide 22: Unified Buffer: Clockwork scheduling
	Slide 23: Unified Buffer: mapping to MEM tiles
	Slide 24: Clockwork: mapping steps
	Slide 25: Summary
	Slide 26: Thank You
	Slide 27: Thank You
	Slide 28: Thank You
	Slide 29: Demo notes
	Slide 30: Demo notes

