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Motivation

1 Every new instruction set architecture (ISA) must be accompanied by a
set of rewrite rules used for code generation

2 Crafting these rules by hand is time consuming and error prone

3 This leads to a world where there are few ISAs and design space
exploration is difficult
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Contributions

A methodology for efficiently encoding and solving the rewrite rule
synthesis problem using SMT

* A technique for supporting parametric rewrite rules

A method for abstracting operations whose semantics are either
unknown or too complex to model efficiently
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Automatic Rewrite Rule Synthesis Using SMT
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Automatic Rewrite Rule Synthesis Using SMT

 More generally, we solve this formula for every IR operation we are
interested in:

Jinst Vinputs : PE(inst, inputs) == IR(inputs)
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Synthesizing Parametric Rewrite Rules

 Sometimes we are interested in parameterized rules

-

Instead of these rewrite rules We have this single rule

const
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Synthesizing Parametric Rewrite Rules
* To solve for parametric rules, we solve the following formula:
Jinst Vinputs, const : PE(inst(const), inputs) == IR(const, inputs)

e inst(const) is a function from the constant value to instructions
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Abstracting Complex Instructions

 Complex instructions like floating point arithmetic pose a challenge

« Some complex operations cannot be represented well in SMT

 For example, PEs might include encrypted Verilog for performing floating point
arithmetic

* |t's often the case that there are identical complex operations in
the IR and the architecture

« We can replace these complex operations with uninterpreted functions, or black
boxes
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Abstracting Complex Instructions

* Create uninterpreted function for every complex operation
a b
=m out = f(a,b)
out

e Division in this example is replaced with the function f
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Abstracting Complex Instructions

* Reuse the same uninterpreted function for all occurrences of that
operation in the PE and in the IR

a b c d
9 a = out = g(f(ab),f(c,d)

out
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Rewrite Rule Synthesis Runtime

Rewrite Rule Performance for CGRAs
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MetaMapper

 MetaMapper integrates automatic rewrite rule synthesis with tools
for instruction selection

* “Meta” mapper refers to the fact we are compiling a new compiler
for each version of the hardware

e Each invocation of MetaMapper with a new PEak PE will generate a set of rewrite
rules
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Instruction Selection
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Demo

* Inthis demo, we will add an instruction to our existing processing
element, generate a new rewrite rule for it, and then map an
application that takes advantage of it

* First, we will map the camera pipeline app without any new
operations

e aha map apps/camera_pipeline 2x2
* This uses 208 PEs
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Demo

* One common complex operation that is present in this application

is (a + b) > const —
We will add this to our PE occurences:40
overlaps:0
sizeM1S:40

* Open /aha/lassen/lassen/alu.py
e Add the following code: @ @
ADDSHR = 20 toline 29
elif alu == ALU_t.ADDSHR: to line 180 @
res, res p = adder_res >> UData(c), Bit(0)
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Demo

* Now we need an IR representation of the operation:
(inl + in@) >> in2

* Run:mv /aha/addshr.py /aha/lassen/lassen/rewrite rules/
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Demo

* Go to the /aha/lassen directory and run
* python scripts/solve rewrite_rules.py

* This will generate the rewrite rule, or configuration for the PE such
that it implements the add shift operation

* Now we can rerun aha map apps/camera_pipeline_2x2 to see
our reduction in number of PE needed to map this application
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Conclusion

 MetaMapper allows for the compilation of a new compiler for any
new PE design
O It efficiently synthesizes rewrite rules for IR operations in your applications
O Significantly reduces the amount of effort needed to compile to new design
O It allows for design space exploration of interesting PE designs
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