MetaMapper: Automatic
Rewrite Rule Synthesis and
Instruction Selection

Ross Daly & Jackson Melchert

Stanford University

Motivation

1 Every new instruction set architecture (ISA) must be accompanied by a
set of rewrite rules used for code generation

2 Crafting these rules by hand is time consuming and error prone

3 This leads to a world where there are few ISAs and design space
exploration is difficult

Stanford University

Contributions

A methodology for efficiently encoding and solving the rewrite rule
synthesis problem using SMT

* A technique for supporting parametric rewrite rules

A method for abstracting operations whose semantics are either
unknown or too complex to model efficiently

Stanford University 3

Automatic Rewrite Rule Synthesis Using SMT

7 AN

In0 Inl cinA B C
Rewrite Instruction (
Subtract Rule Az op = Add,
(Formally Formalyi | nt A=1
e specified Invert_A =1,
specified IR node) .
compute unit)

f Fr)

Out res flag

N— A

Stanford University Synthesizing Instruction Selection Rewrite Rules from RTL Using SMT. Ross Daly, Caleb Donovick, Jackson Melchert, Rajsekhar Setaluri, 4
Nestan Tsiskaridze Bullock, Priyanka Raina, Clark Barrett, and Pat Hanrahan. Formal Methods in Computer-Aided Design (FMCAD), 2022

Automatic Rewrite Rule Synthesis Using SMT

7 AN

In0 Inl cinA B C
!] RN, Jdinst Vinputs : Subtract(inputs)
Rewrite Instruction (== PE(inst,inputs)
Subtract Rule Az op = Add, ’
(Formally (F°"f1.a"y ~ invert A=1
specified IR node) - et . - ’ .
compute unit) Solve using an
¥ 1) SMT solver
Out res flag

N— A

Stanford University Synthesizing Instruction Selection Rewrite Rules from RTL Using SMT. Ross Daly, Caleb Donovick, Jackson Melchert, Rajsekhar Setaluri, 5
Nestan Tsiskaridze Bullock, Priyanka Raina, Clark Barrett, and Pat Hanrahan. Formal Methods in Computer-Aided Design (FMCAD), 2022

Automatic Rewrite Rule Synthesis Using SMT

 More generally, we solve this formula for every IR operation we are
interested in:

Jinst Vinputs : PE(inst, inputs) == IR(inputs)

Stanford University 6

Synthesizing Parametric Rewrite Rules

 Sometimes we are interested in parameterized rules

-

Instead of these rewrite rules We have this single rule

const

Stanford University

Synthesizing Parametric Rewrite Rules
* To solve for parametric rules, we solve the following formula:
Jinst Vinputs, const : PE(inst(const), inputs) == IR(const, inputs)

e inst(const) is a function from the constant value to instructions

Stanford University

Abstracting Complex Instructions

 Complex instructions like floating point arithmetic pose a challenge

« Some complex operations cannot be represented well in SMT

 For example, PEs might include encrypted Verilog for performing floating point
arithmetic

* |t's often the case that there are identical complex operations in
the IR and the architecture

« We can replace these complex operations with uninterpreted functions, or black
boxes

Stanford University 9

Abstracting Complex Instructions

* Create uninterpreted function for every complex operation
a b
=m out = f(a,b)
out

e Division in this example is replaced with the function f

Stanford University

10

Abstracting Complex Instructions

* Reuse the same uninterpreted function for all occurrences of that
operation in the PE and in the IR

a b c d
9 a = out = g(f(ab),f(c,d)

out

Stanford University

11

Rewrite Rule Synthesis Runtime

Rewrite Rule Performance for CGRAs

Rewrite rule

Changes to

C
O
i)
§5B
wn
2 o &
w0
wnw c ©
UV © oo
505
T -
S¢S
»w ©C O
[]

architecture are

N PE-A

1.00 A

T T
1 o i
e

o o o

(spuodas) awi|

easy to adapt to

INW9TIR0)q
PPe‘9TIe0)q
BWy Isuoy gty
Psqe-gy;
INW 3suo>-gy
C,_ED.O,T.
XMEW.O‘H—
Ulws gy
Isuodgy
Xnw-gy;
44s o)
dyse-gy)
14s-9 Ty
INwrgt;
azm.w.—.._
Ppe-gt)
bau-gr
ba-gyy
HOJ.O,T
3bn-gT
SIN'gTI
AN9Ty
1bs-gT
3bs-9Ty
w_m.o.:
AS'9TH
LOX.OH._
10°9T1i
Ppe‘gr
Xnw i
ou'yr
dox'1)

40°TI

pue-y
ISU0d'T;

12

Stanford University

MetaMapper

 MetaMapper integrates automatic rewrite rule synthesis with tools
for instruction selection

* “Meta” mapper refers to the fact we are compiling a new compiler
for each version of the hardware

e Each invocation of MetaMapper with a new PEak PE will generate a set of rewrite
rules

Stanford University 13

Instruction Selection

State State
Inputs Inputs 7 N

T~ PE PE

2 PE PE
/ \PE/ /

¥
Outputs State

Outputs

State

IR Dataflow Graph Mapped PE Dataflow Graph

Stanford University

Demo

* Inthis demo, we will add an instruction to our existing processing
element, generate a new rewrite rule for it, and then map an
application that takes advantage of it

* First, we will map the camera pipeline app without any new
operations

e aha map apps/camera_pipeline 2x2
* This uses 208 PEs

Stanford University

15

Demo

* One common complex operation that is present in this application

is (a + b) > const —
We will add this to our PE occurences:40
overlaps:0
sizeM1S:40

* Open /aha/lassen/lassen/alu.py
e Add the following code: @ @
ADDSHR = 20 toline 29
elif alu == ALU_t.ADDSHR: to line 180 @
res, res p = adder_res >> UData(c), Bit(0)

Stanford University

16

Demo

* Now we need an IR representation of the operation:
(inl + in@) >> in2

* Run:mv /aha/addshr.py /aha/lassen/lassen/rewrite rules/

Stanford University

17

Demo

* Go to the /aha/lassen directory and run
* python scripts/solve rewrite_rules.py

* This will generate the rewrite rule, or configuration for the PE such
that it implements the add shift operation

* Now we can rerun aha map apps/camera_pipeline_2x2 to see
our reduction in number of PE needed to map this application

Stanford University 18

Conclusion

 MetaMapper allows for the compilation of a new compiler for any
new PE design
O It efficiently synthesizes rewrite rules for IR operations in your applications
O Significantly reduces the amount of effort needed to compile to new design
O It allows for design space exploration of interesting PE designs

Stanford University 19

	Slide 1: MetaMapper: Automatic Rewrite Rule Synthesis and Instruction Selection
	Slide 2: Motivation
	Slide 3: Contributions
	Slide 4: Automatic Rewrite Rule Synthesis Using SMT
	Slide 5: Automatic Rewrite Rule Synthesis Using SMT
	Slide 6: Automatic Rewrite Rule Synthesis Using SMT
	Slide 7: Synthesizing Parametric Rewrite Rules
	Slide 8: Synthesizing Parametric Rewrite Rules
	Slide 9: Abstracting Complex Instructions
	Slide 10: Abstracting Complex Instructions
	Slide 11: Abstracting Complex Instructions
	Slide 12: Rewrite Rule Synthesis Runtime
	Slide 13: MetaMapper
	Slide 14: Instruction Selection
	Slide 15: Demo
	Slide 16: Demo
	Slide 17: Demo
	Slide 18: Demo
	Slide 19: Conclusion

