
MetaMapper: Automatic 
Rewrite Rule Synthesis and 
Instruction Selection

Ross Daly & Jackson Melchert



1

2

3

Motivation

2

This leads to a world where there are few ISAs and design space 
exploration is difficult

Crafting these rules by hand is time consuming and error prone

Every new instruction set architecture (ISA) must be accompanied by a 
set of rewrite rules used for code generation



Contributions

3

• A methodology for efficiently encoding and solving the rewrite rule 
synthesis problem using SMT

• A technique for supporting parametric rewrite rules

• A method for abstracting operations whose semantics are either 
unknown or too complex to model efficiently 



Automatic Rewrite Rule Synthesis Using SMT

Subtract
(Formally 

specified IR node)

In0 In1

Out

PE
(Formally 
specified 

compute unit)

res flag

c_in A B C

Instruction (
op = Add,
invert_A = 1,
…

)

1

Rewrite 
Rule

4Synthesizing Instruction Selection Rewrite Rules from RTL Using SMT. Ross Daly, Caleb Donovick, Jackson Melchert, Rajsekhar Setaluri, 
Nestan Tsiskaridze Bullock, Priyanka Raina, Clark Barrett, and Pat Hanrahan. Formal Methods in Computer-Aided Design (FMCAD), 2022



Automatic Rewrite Rule Synthesis Using SMT

Subtract
(Formally 

specified IR node)

In0 In1

Out

PE
(Formally 
specified 

compute unit)

res flag

c_in A B C

∃inst ∀inputs : Subtract(inputs) 
== PE(inst,inputs) Instruction (

op = Add,
invert_A = 1,
…

)

1

Rewrite 
Rule

Solve using an
SMT solver

Synthesizing Instruction Selection Rewrite Rules from RTL Using SMT. Ross Daly, Caleb Donovick, Jackson Melchert, Rajsekhar Setaluri, 
Nestan Tsiskaridze Bullock, Priyanka Raina, Clark Barrett, and Pat Hanrahan. Formal Methods in Computer-Aided Design (FMCAD), 2022

5



Automatic Rewrite Rule Synthesis Using SMT

6

• More generally, we solve this formula for every IR operation we are 
interested in:

∃inst ∀inputs : PE(inst, inputs) == IR(inputs) 



Synthesizing Parametric Rewrite Rules

7

• Sometimes we are interested in parameterized rules

×

𝑎 0

×

𝑎 1

×

𝑎 2

×

𝑎 𝑐𝑜𝑛𝑠𝑡

Instead of these rewrite rules We have this single rule



Synthesizing Parametric Rewrite Rules

8

• To solve for parametric rules, we solve the following formula:

∃inst ∀inputs, const : PE(inst(const), inputs) == IR(const, inputs) 

• inst(const) is a function from the constant value to instructions



Abstracting Complex Instructions

9

• Complex instructions like floating point arithmetic pose a challenge
• Some complex operations cannot be represented well in SMT

• For example, PEs might include encrypted Verilog for performing floating point 
arithmetic

• It's often the case that there are identical complex operations in 
the IR and the architecture
• We can replace these complex operations with uninterpreted functions, or black 

boxes



Abstracting Complex Instructions

10

÷ 𝑜𝑢𝑡 = 𝑓(𝑎, 𝑏)

𝑎 𝑏

𝑜𝑢𝑡

• Create uninterpreted function for every complex operation

• Division in this example is replaced with the function 𝑓



Abstracting Complex Instructions

11

• Reuse the same uninterpreted function for all occurrences of that 
operation in the PE and in the IR 

𝑜𝑢𝑡 = 𝑔(𝑓 𝑎, 𝑏 , 𝑓 𝑐, 𝑑 )
÷÷

×

𝑜𝑢𝑡

𝑎 𝑏 𝑐 𝑑



Rewrite Rule Synthesis Runtime

12

• Rewrite rule 
synthesis is fast 
and can be run 
during compilation

• Changes to 
architecture are 
easy to adapt to



MetaMapper

13

• MetaMapper integrates automatic rewrite rule synthesis with tools 
for instruction selection 

• “Meta” mapper refers to the fact we are compiling a new compiler 
for each version of the hardware
• Each invocation of MetaMapper with a new PEak PE will generate a set of rewrite 

rules



Instruction Selection

14

IR Dataflow Graph Mapped PE Dataflow Graph



Demo

15

• In this demo, we will add an instruction to our existing processing 
element, generate a new rewrite rule for it, and then map an 
application that takes advantage of it

• First, we will map the camera pipeline app without any new 
operations

• aha map apps/camera_pipeline_2x2

• This uses 208 PEs



Demo

16

• One common complex operation that is present in this application 
is 𝑎 + 𝑏 ≫ 𝑐𝑜𝑛𝑠𝑡
• We will add this to our PE 

• Open /aha/lassen/lassen/alu.py

• Add the following code:

ADDSHR = 20 to line 29

elif alu == ALU_t.ADDSHR: to line 180

res, res_p = adder_res >> UData(c), Bit(0)



Demo

17

• Now we need an IR representation of the operation:

(in1 + in0) >> in2

• Run: mv /aha/addshr.py /aha/lassen/lassen/rewrite_rules/



Demo

18

• Go to the /aha/lassen directory and run

• python scripts/solve_rewrite_rules.py

• This will generate the rewrite rule, or configuration for the PE such 
that it implements the add shift operation

• Now we can rerun aha map apps/camera_pipeline_2x2 to see 
our reduction in number of PE needed to map this application



Conclusion

19

• MetaMapper allows for the compilation of a new compiler for any 
new PE design
o It efficiently synthesizes rewrite rules for IR operations in your applications

o Significantly reduces the amount of effort needed to compile to new design

o It allows for design space exploration of interesting PE designs


	Slide 1: MetaMapper: Automatic Rewrite Rule Synthesis and Instruction Selection
	Slide 2: Motivation
	Slide 3: Contributions
	Slide 4: Automatic Rewrite Rule Synthesis Using SMT
	Slide 5: Automatic Rewrite Rule Synthesis Using SMT
	Slide 6: Automatic Rewrite Rule Synthesis Using SMT
	Slide 7: Synthesizing Parametric Rewrite Rules
	Slide 8: Synthesizing Parametric Rewrite Rules
	Slide 9: Abstracting Complex Instructions
	Slide 10: Abstracting Complex Instructions
	Slide 11: Abstracting Complex Instructions
	Slide 12: Rewrite Rule Synthesis Runtime
	Slide 13: MetaMapper
	Slide 14: Instruction Selection
	Slide 15: Demo
	Slide 16: Demo
	Slide 17: Demo
	Slide 18: Demo
	Slide 19: Conclusion

