--- title: "Mapping Demo Key" format: html editor: visual editor_options: chunk_output_type: console --- #### Leaflet The `htmlwidgets` package allows you to embed interactive leaflet maps in html-based quarto documents. ```{r} #| message: FALSE library(htmlwidgets) library(tidyverse) library(leaflet) library(sf) ``` ### Interactive Leaflet Plots ```{r} leaflet() |> addTiles() |> setView(-111.05, 45.67, zoom = 17) ``` ```{r} leaflet() |> addTiles() |> addPopups(-111.048, 45.66845, 'Here is our classroom') ``` ### Using a dataset (Point Process Data) ```{r} #| message: FALSE set.seed(01162025) df <- tibble(Long = runif(10, max = -111, min = -111.5), Lat = runif(10, min = 45.5, max = 46), size = runif(10, 5, 20), color = sample(colors(), 10)) leaflet(df) |> addTiles() |> addCircles(lng = ~Long, lat = ~Lat, color = 'maroon') ``` ### Map Choropleths (Areal Data) ```{r} library(maps) mapStates <- map("state", fill = TRUE, plot = FALSE) class(mapStates) #mapStates ``` - **Q:** what type of object is `mapStates`? ```{r} leaflet(data = mapStates) %>% addTiles() %>% addPolygons(fillColor = topo.colors(10, alpha = NULL), stroke = FALSE) ``` ```{r} mt <- map("county",'montana', fill = TRUE, plot = FALSE) leaflet(mt) %>% addTiles() %>% addPolygons(fillColor = viridis::rocket(10), stroke = FALSE) ``` ### Choropleth from RStudio help files ```{r, warning=FALSE} # From https://leafletjs.com/examples/choropleth/us-states.js states <- sf::read_sf("https://rstudio.github.io/leaflet/json/us-states.geojson") bins <- c(0, 10, 20, 50, 100, 200, 500, 1000, Inf) pal <- colorBin("YlOrRd", domain = states$density, bins = bins) labels <- sprintf( "<strong>%s</strong><br/>%g people / mi<sup>2</sup>", states$name, states$density ) %>% lapply(htmltools::HTML) leaflet(states) %>% setView(-96, 37.8, 4) %>% # addProviderTiles("MapBox", options = providerTileOptions( # id = "mapbox.light", # accessToken = Sys.getenv('MAPBOX_ACCESS_TOKEN'))) %>% addPolygons( fillColor = ~pal(density), # aes(color = density) weight = 2, opacity = 1, color = "white", dashArray = "3", fillOpacity = 0.7, highlightOptions = highlightOptions( weight = 5, color = "#666", dashArray = "", fillOpacity = 0.7, bringToFront = TRUE), label = labels, labelOptions = labelOptions( style = list("font-weight" = "normal", padding = "3px 8px"), textsize = "15px", direction = "auto")) %>% addLegend(pal = pal, values = ~density, opacity = 0.7, title = NULL, position = "bottomright") ``` ### Demo Questions ```{r} seattle <- read_csv('http://math.montana.edu/ahoegh/teaching/stat408/datasets/Seattle_911_062016.csv') ``` 1. Create a leaflet map with the locations of auto thefts. Use the addMarker function(). ```{r} theft <- seattle |> filter(Event.Clearance.Description == "AUTO THEFT") leaflet(theft) |> addTiles() |> addMarkers(lng = ~Longitude, lat = ~Latitude, popup = ~Hundred.Block.Location) ``` 2.Create a palette that maps crime type to colors. Hint: use `addCircleMarkers` ```{r} pal <- colorFactor(c("navy", "red"), domain = c("SHOPLIFTING", "CAR PROWL")) leaflet(seattle |> filter(Event.Clearance.Group %in% c("SHOPLIFTING", "CAR PROWL"))) |> addTiles() |> addCircleMarkers( color = ~pal(Event.Clearance.Group), stroke = FALSE, fillOpacity = 0.5 ) |> addLegend(pal = pal, values = ~Event.Clearance.Group, title = NULL, position = "bottomright") ``` 3. Explore the `markerClusterOptions()` feature in leaflet ```{r} leaflet(seattle) %>% addTiles() %>% addMarkers( clusterOptions = markerClusterOptions() ) ``` #### GGMaps ```{r} library(ggmap) library(tidyverse) library(maps) library(viridis) library(shiny) library(knitr) ``` Creating static maps in R, which ggplot, requires downloading map layers. ## 1. Downloading Map Layers ### ggmap ggmap is a nice way to download map layers, including satellite images. Unfortunately, `ggmap` now requires a Google Maps API key. The `get_map()` function relies on Google to draw the appropriate map. The API is free up to a reasonable limit, but then does end up costing. To get the key, you'll have to enter credit card information. I do this for my own work, but we will avoid that for classroom examples. If you'd like high resolution base layers for your project, look into this option. ```{r} #| error: TRUE library(ggmap) bozo_map <- get_map(location = 'bozeman') ``` ### maps As we saw with leaflet, we can use the `maps` package to download maps too. There are county, state, and country level maps for the US as well as a few other countries. ```{r} mt <- map_data("county", "montana") head(mt) ``` ```{r} centroids <- mt |> group_by(subregion) |> summarize(lat = mean(lat), long = mean(long)) wilson_hall <- tibble(long = -111.048, lat = 45.66845) mt |> ggplot( aes(x = long, y = lat)) + geom_polygon(aes(group = group), fill = NA, colour = "grey60") + theme_minimal() + geom_text(aes(label = subregion), data = centroids, size = 2, angle = 45) + geom_point(data = wilson_hall, color = 'navy') + coord_quickmap() + xlab('') + ylab('') ``` ```{r} centroids <- mt |> group_by(subregion) |> summarize(lat = mean(lat), long = mean(long)) wilson_hall <- tibble(long = -111.048, lat = 45.66845) mt |> filter(subregion %in% c('gallatin', 'park', 'madison')) |> ggplot( aes(x = long, y = lat)) + geom_polygon(aes(group = group), fill = NA, colour = "grey60") + theme_minimal() + geom_text(aes(label = subregion), data = centroids, size = 2, angle = 45) + geom_point(data = wilson_hall, color = 'navy') + coord_quickmap() + xlab('') + ylab('') ``` ```{r} data(us.cities) head(us.cities) us.cities |> filter(country.etc == 'MT') |> ggplot(aes(long, lat)) + borders("county", 'montana') + geom_point(aes(size = pop)) + scale_size_area() + coord_quickmap() ``` ```{r} mt_income <- read_csv('https://raw.githubusercontent.com/stat408/Data/refs/heads/main/MT_Income.csv'); mt_income ``` ### Activity 1. Use the MT income dataset to create a choropleth with county population Montana. Do the same for Income ```{r} mt_income |> filter(Year == 2022) |> mutate(subregion = tolower(Area)) |> right_join(mt, by = join_by(subregion)) |> ggplot( aes(x = long, y = lat)) + geom_polygon(aes(group = group, fill = Population), colour = "grey60") + theme_minimal() + geom_text(aes(label = subregion), data = centroids, size = 2, angle = 45, color = 'white') + geom_point(data = wilson_hall, color = 'navy') + coord_quickmap() + xlab('') + ylab('') + scale_fill_viridis() + geom_point(data = us.cities |> filter(country.etc == 'MT')) ``` ```{r} mt_income |> filter(Year == 2022) |> mutate(subregion = tolower(Area)) |> mutate(Income_dollars = parse_number(Income)) |> right_join(mt, by = join_by(subregion)) |> ggplot( aes(x = long, y = lat)) + geom_polygon(aes(group = group, fill = Income_dollars), colour = "grey60") + theme_minimal() + geom_text(aes(label = subregion), data = centroids, size = 2, angle = 45, color = 'white') + coord_quickmap() + xlab('') + ylab('') + scale_fill_viridis() + geom_point(data = us.cities |> filter(country.etc == 'MT')) ``` ------------------------------------------------------------------------ ```{r} seattle <- read_csv('http://math.montana.edu/ahoegh/teaching/stat408/datasets/Seattle_911_062016.csv') wa <- map_data("county", "Washington") head(wa) wa |> filter(subregion %in% c('king')) |> ggplot( aes(x = long, y = lat)) + geom_polygon(aes(group = group), fill = NA, colour = "grey60") + theme_minimal() + geom_point(data = seattle |> rename(lat = Latitude, long = Longitude), color = 'navy') + coord_quickmap() + xlab('') + ylab('') ``` ### Activity 2 2. Explore the `geom_density2d` and `geom_density_2d_filled` functions with the seattle 911 calls. ```{r} #| fig-width: 8 #| fig-height: 10 common_crimes <- seattle |> count(Event.Clearance.Group) |> filter(n > 1000) |> arrange(desc(n)) common_crimes |> kable() seattle |> filter(Event.Clearance.Group %in% c('DISTURBANCES', 'TRAFFIC RELATED CALLS')) |> ggplot(aes(y = Latitude, x = Longitude)) + geom_density2d(inherit.aes = F, aes(y = Latitude, x = Longitude, colour = Event.Clearance.Group)) + geom_point(alpha = .1) + facet_wrap(vars(Event.Clearance.Group), ncol = 2) + theme(legend.position = 'none') seattle |> filter(Event.Clearance.Group %in% c('DISTURBANCES', 'TRAFFIC RELATED CALLS')) |> ggplot(aes(y = Latitude, x = Longitude)) + geom_density_2d_filled(inherit.aes = F, aes(y = Latitude, x = Longitude, colour = Event.Clearance.Group), alpha = .3) + geom_point(alpha = .1) + facet_wrap(vars(Event.Clearance.Group), ncol = 2) + theme(legend.position = 'none') + theme_minimal() ```