--- title: "PP Hypothesis Tests" output: pdf_document --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = FALSE) knitr::opts_chunk$set(warning = FALSE) knitr::opts_chunk$set(message = FALSE) knitr::opts_chunk$set(fig.align= 'center') knitr::opts_chunk$set(fig.height= 4) knitr::opts_chunk$set(fig.width = 6) library(tidyverse) library(gridExtra) ``` ### Hypothesis Tests for CSR \vfill \vfill \vfill ```{r} set.seed(03312021) n <- rpois(4, 50) x <- c(rbeta(n[1], 1, 1), rbeta(n[2], 1, 1), rbeta(n[3], 3, 1),rbeta(n[4], 3, 3)) y <- c(rbeta(n[1], 1, 1), rbeta(n[2], 1, 1), rbeta(n[3], 3, 1),rbeta(n[4], 3, 3)) data.frame(group = c(rep(1, n[1]), rep(2, n[2]), rep(3, n[3]), rep(4, n[4])), x = x, y = y) %>% ggplot(aes(x=x, y=y)) + geom_point(alpha=.6) + facet_wrap(~group) + theme_bw() ``` \vfill \vfill \vfill \newpage #### G and F Functions One way to describe a spatial point process, is to consider the probability of being a certain distance from a point or similarly, the number of points expected in a distance from a point. \vfill \vfill \vfill \vfill \vfill A similar statistic is the $F(d)$ function. Whereas $G(d)$ is centered at the observed $\boldsymbol{s}_i$, $F(d)$ is defined at any arbitrary point. *Hence this is a CDF for empty space*. \vfill \newpage Discuss how to create an empirical estimate of $\hat{G}(d)$, given a realization of a point process. \vfill With bounded area, edge correction procedures are necessary. $$\hat{G}(d) = \frac{\sum_i 1(d_i \leq d < b_i)}{\sum_i 1(d < b_i)},$$ \vfill The empirical estimates of $G$ or $H$ can be compared with $G$ or $F$ using a QQ-plot. \vfill - __Discuss:__ What would be the implications of shorter tails or longer tails than expected under CSR? *shorter tail = clustering/attraction, longer tail = inhibition/repulsion* \vfill Describe a natural process that might cluster and another than might repel \vfill