--- layout: proof mathjax: true author: "Joram Soch" affiliation: "BCCN Berlin" e_mail: "joram.soch@bccn-berlin.de" date: 2022-11-15 16:59:00 title: "Partition of sums of squares in one-way analysis of variance" chapter: "Statistical Models" section: "Univariate normal data" topic: "Analysis of variance" theorem: "Sums of squares in one-way ANOVA" sources: - authors: "Wikipedia" year: 2022 title: "Analysis of variance" in: "Wikipedia, the free encyclopedia" pages: "retrieved on 2022-11-15" url: "https://en.wikipedia.org/wiki/Analysis_of_variance#Partitioning_of_the_sum_of_squares" proof_id: "P376" shortcut: "anova1-pss" username: "JoramSoch" --- **Theorem:** Given [one-way analysis of variance](/D/anova1), $$ \label{eq:anova1} y_{ij} = \mu_i + \varepsilon_{ij}, \; \varepsilon_{ij} \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2) $$ sums of squares can be partitioned as follows $$ \label{eq:anova1-pss} \mathrm{SS}_\mathrm{tot} = \mathrm{SS}_\mathrm{treat} + \mathrm{SS}_\mathrm{res} $$ where $\mathrm{SS} _\mathrm{tot}$ is the [total sum of squares](/D/tss), $\mathrm{SS} _\mathrm{treat}$ is the [treatment sum of squares](/D/trss) (equivalent to [explained sum of squares](/D/ess)) and $\mathrm{SS} _\mathrm{res}$ is the [residual sum of squares](/D/rss). **Proof:** The [total sum of squares](/D/tss) for [one-way ANOVA](/D/anova1) is given by $$ \label{eq:anova1-tss} \mathrm{SS}_\mathrm{tot} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y})^2 $$ where $\bar{y}$ is the mean across all values $y_{ij}$. This can be rewritten as $$ \label{eq:anova1-pss-s1} \begin{split} \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y})^2 &= \sum_{i=1}^{k} \sum_{j=1}^{n_i} \left[ (y_{ij} - \bar{y}_i) + (\bar{y}_i - \bar{y}) \right]^2 \\ &= \sum_{i=1}^{k} \sum_{j=1}^{n_i} \left[ (y_{ij} - \bar{y}_i)^2 + (\bar{y}_i - \bar{y})^2 + 2 (y_{ij} - \bar{y}_i) (\bar{y}_i - \bar{y}) \right] \\ &= \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2 + \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{y}_i - \bar{y})^2 + 2 \sum_{i=1}^{k} (\bar{y}_i - \bar{y}) \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i) \; . \end{split} $$ Note that the following sum is zero $$ \label{eq:anova1-pss-s2} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i) = \sum_{j=1}^{n_i} y_{ij} - n_i \cdot \bar{y}_i = \sum_{j=1}^{n_i} y_{ij} - n_i \cdot \frac{1}{n_i} \sum_{j=1}^{n_i} y_{ij} \; , $$ so that the sum in \eqref{eq:anova1-pss-s1} reduces to $$ \label{eq:anova1-pss-s3} \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{y}_i - \bar{y})^2 + \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2 \; . $$ With the [treatment sum of squares](/D/trss) for [one-way ANOVA](/D/anova1) $$ \label{eq:anova1-trss} \mathrm{SS}_\mathrm{treat} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{y}_i - \bar{y})^2 $$ and the [residual sum of squares](/D/rss) for [one-way ANOVA](/D/anova1) $$ \label{eq:anova1-rss} \mathrm{SS}_\mathrm{res} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2 \; , $$ we finally have: $$ \label{eq:anova1-pss-qed} \mathrm{SS}_\mathrm{tot} = \mathrm{SS}_\mathrm{treat} + \mathrm{SS}_\mathrm{res} \; . $$