Introducing SAMADB: A Free Analytic Macroeconomic Database for South Africa + Nowcasting of GDP and Unemployment

Sebastian Krantz

Kiel Institute for the World Economy

20th April 2023

Table of Contents

1 Introduction

- **2** SAMADB Structure
- **3** SAMADB API's
- **4** Nowcasting Model
- **5** Model Evaluation

6 Automation

7 Conclusion

Introduction

Modern macroeconomic resarch is increasingly based on complex computational methods and open source languages like R, Python or Julia. This Calls for Databases and Systems that Provide:

- Efficient Online Access (to a wide variety of data, preferably from within multiple analytical languages)
- Tidy Data (data that is organized in rows and columns, does not need to be reshaped or cleaned, and is ready for analysis)
- Highly Customizable Queries (a typical research dataset features certain series and years, pulled together across a wide variety of datasets and data sources)
- Automation, Consistency and Reproducibility of Research (\rightarrow systems should be open source & preferably version controlled)
- \rightarrow Difficult to have a single system serving all of these objectives.

SAMADB is an Optimized Analytical Database in MySQL that serves some of these objectives particularly well. It is largely based on EconData and largely a complementary product.

A Comparison

EconData (https://www.econdata.co.za/)

- Millions of time series (granular data) with version history
- Real time (daily) updates
- Open R and SDMX/JSON APIs (need to provide credentials)
- Moderately harmonized & tidy data (R API has tidy return, metadata and date coding differ across series and datasets)
- Decent speed (+ client-side JSON decoding and tidying)
- No cross-dataset queries of time series (to my knowledge)

SAMADB (South Africa Macroeconomic Database)

- ~10,000 frequently used time series (version control only through offline vintages, no granular financial data)
- Near real time (weekly) updates through EconData
- Expressive free APIs for R, Python and Julia
- Harmonized & tidy data (uniform metadata and date coding across datasets and series, globally unique series codes, UTF8)
- Blazing fast (optimized database model, direct SQL queries, no client-side JSON parsing)
- Unlimited global queries (across datasets, series, time and frequency → generate research dataset with a single API call)
- Some data (such as the Quarterly Bulletin) not (currently) available on EconData → also updated weekly if available

SAMADB Structure: Entity Relationship (ER) Diagram

DATASOURCE has multiple DATASET has multiple SERIES has multiple DATA

'series' is the unique primary key of the SERIES tables i.e. unique across DATASET's

Sebastian Krantz

Weekly updates scheduled through GitHub Actions

3	name: Update SAMADB Database
	on:
	# Every Week Thursday at 1:15 AM
	schedule:
	- cron: '15 1 * * 4'
	jobs:
	SAMADBUpdate:
	runs-on: ubuntu-latest
	steps:
	- uses: actions/checkout@v3
	- uses: r-lib/actions/setup-r@v2
	- uses: r-lib/actions/setup-r-dependencies@v2
	with:
	working-directory: "r"
	cache-version: 2
	dependencies: "NA"
	extra-packages:
	cran::fastverse
	cran::readxl
	cran::rvest
	github::SebKrantz/econdatar@hybrid_meta
	- name: Get EconData
	run: Rscript ./datasources/econdata/download_econdata.R
	- name: Get STATSSA
	run: Rscript ./datasources/statssa_sarb_other/statssa_other.R
	- name: Assemble Database
	run: Rscript ./database/assemble_database.R
	- name: Update Database
	run: Kscrijt ./database/upload_data.K
	# Commit all changed files back to the repository -> Generates a Vintage of the Database
36	- uses: stefanzweitel/git-auto-commit-action@v4
27	

Introduction 000 SAMADB Structure 000 November 2000 November

In Particular

- The download scripts fetch, do basic tidying, and save the raw data from different sources (EconData, STATSSA)
- The assembly script pulls all data together, enforces uniformity, creates the DB tables and validates them e.g.
 - Process strings: capitalize series codes and replace "." \rightarrow "_". Remove white spaces in descriptions and enforce UTF8 characters.
 - Harmonize dates by data frequency: Monthly \rightarrow "YYYY-MM-01", Quarterly \rightarrow "YYYY-03/06/09/12-01", Annual \rightarrow "YYYY-12-01". This ensures sensible output from mixed-frequency queries.
 - Compute content and time coverage statistics for all series and datasets. This helps the user quickly find suitable time series.
 - Check the primary and foreign key constraints of the database.
- The update script replaces old data in the database and rebuilds the search indexes for optimal query performance

Database APIs

There is (currently) no way to access SAMADB from the web. But SAMADB has expressive APIs for R, Python and Julia. Download them by clicking **here**. In the near future the APIs will be available on official software repositories. All APIs have these functions:

```
Datasets providing information about the available data
datasources() - Data sources
datasets() - Datasets
series() - Series (can be queried by dataset)
Retrieve the data from the database
data() - By default retrieves all data
Functions to reshape data and add temporal identifiers
pivot wider() - Wrapper around DataFrames.unstack()
pivot longer() - Wrapper around DataFrames.stack()
expand_date() - Create year, quarter, month and day columns from a date
Helper functions to convert inputs to date strings
as date() - E.g. "2011M01" -> "2011-01-01"
```

Introduction SAMADB Structure SAMADB API's Nowcasting Model Volume Conclusion References of the second seco

A Walkthrough of the R API with Examples

```
library(fastverse)
     fastverse_extend(xts, tsbox, seasonal, gaplot2, dfms, samadb, install = TRUE)
    DATASOURCE = sm_datasources() %T>% View()
    DATASET = sm_datasets() %T>% View()
    SERIES = sm_series() %T>% View()
    BC = sm_data("BUSINESS_CYCLES")
12 namlab(BC)
    asu(BC, vlabels = TRUE)
    BC %>% avr("date| M ") %>% sbt(date >= sm as date(2010)) %>% as.xts() %>% plot(legend.loc = "topleft")
    QB_D = sm_data("QB", freq = "D", from = "2020Q2", to = "2021Q1")
    OB D %>% G(t = ~ date) %>% replace Inf() %>% asu()
    sm series("ELECTRICITY")
    sm_data(series = .c(ELE001_S_S, ELE002_I_S)) %>% as.xts() %>% STD() %>% plot(legend.loc = "topleft")
    BC_ELC = sm_data("BUSINESS_CYCLES", series = "ELE001_S_S", from = 2010)
    BC_ELC %>% gvr("_Q_", invert = TRUE) %>% as.xts() %>% STD() %>% plot(legend.loc = "topleft")
    BC_ELC %>% gvr("CPI|PPI", invert = TRUE) %>% sm_expand_date() %>% # Additional identifiers
       collap( ~ year + quarter, fmean, flast) %>%
       sm_pivot_longer() %>% fmutate(value = STD(value, series)) %>% # Reshape and standardize
       agplot(aes(x = date, y = value, colour = label)) + aeom_line() + # Plot
       auides(colour = auide_legend(ncol = 1)) + theme(legend.position = "bottom")
     BC_ELC %>% sm_transpose(date.format = "%m/%Y") %>% sm_write_excel("BC_ELC.xlsx")
Sebastian Krantz
                                             IfW Kiel
                                                                                     SAMADB + Nowcasting
```

10 / 26

Introduction 000	SAMADB Structure	SAMADB API's	Nowcasting Model	Model Evaluation	Automation O	Conclusion O	References
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 53 54	# Now 1et's get a more 1 ind <cc (KBP70901M, KBP7090N, # MAN001_S_S, MTN001_S_S MTS003_S_S, RET008_S_S_I (KBP7190A, #Grago atS (KBP126M, #Grago atS (KBP126M, KBP126H, # (KBP126M, KBP124TM, # (KBP126M, KBP147M, # (KBP147AM, KBP147M, # MIG001_A_N0_TA, MIG001 (LUXX60_M, CLFM60S_M, i NGFC020_M, NGFC040_M, (KBP533M, KBP533SM, # ELE001_S_S, ELE002_LS_S, ELE003_LS_S, ELE03_S, ELE03</cc 	nteresting dataset Coincident and lead MH0001_S.S. # Motori- MH0001_S.S. # Motori- P7202M, KBP7203M, KW Jouth African Ports nsumer and producer Jouth African Ports and Producer Value and volume of Total credit and crn New mortgages and mm A_A0_TA, T0V036_S, # Exports and impori & Cash flow revenue Nominal and real eff Electricity gener	ing business cycle ind ring and mining produc trade, wholesale and r P7204M, # Manufacturi prices credit card purchese adit to the private se ortgages paid out T00011_S, # Tourism ts and expenditure fective exchange rates ration	licators tion etail trade ng orders, sales and ctor	inventories		
55 56 57 58 60 61 62 63) # Get metdata of request series <- sm_series(seri # Get data (default is t data <- sm_data(series = # Basic exploration qsu(data, vlabels = TRUE data %>% as.xts() %>% ST # Getting series not sea	ed series: in this of es = ind)[match(ind o maintain the reque ind, from = max(ser) D() %% plot(lwd = ; sonally adjusted and	order (default is a fi , series)] seted order if only se ries\$from_date))) d adjusting them with				
64 65 66 67 68 69 70 71	<pre>sadj_ind <- series %% s get_vars(data, sadj_ind) as.xts() %% ts_ts() % # Computing growth rates data_growth <- data %% data_growth %>% as.xts() # Compute and plot great oldpar <- par(mai = c(.5)</pre>	eries[!seas_adj] <- data %>% get_vai >% seas() %>% final(G(t = ~ as.yearmon((%>% STD() %>% plot(est correlations wit 4, (5, .5))	rs(c("date", sadj_ind) () %>% mctl() date), stub = FALSE) % (lwd = 1) th electricity generat) %>% >% replace_Inf() .ion			
72 73 74 75 76 77 78 79	<pre>auta_growth_year(aute) :: ss(rownames(.) %!in% rowMeans() %>% sort() % names.arg = paste0(ni par(oldpar) # Estimate a dynamic fac dfm_mod <- DFM(num_vars(; plot(dfm_mod, method = ",</pre>	<pre>zvoj #5% num_vars c(ELE001_S_S, ELE00: %% barplot(horiz = ames(.), ": ", serio tor coincident index data_growth), 1, 3, all")</pre>	<pre>S() #>>> PMCOP() #>> 2_I_S), .c(ELE001_S_S, TRUE, las = 1, es[match(names(.), ser didio.ar1 = TRUE)</pre>	ELE002_I_S)) %>%	str(1, 30)))		

Sebastian Krantz

Dynamic Factor Nowcasting Model

I estimate a dynamic factor model following Bańbura & Modugno (2014) and (Bok et al., 2018) (New York Fed Nowcasting Model)

$$\mathbf{x}_{t} = \mathbf{C}_{0}\mathbf{f}_{t} + \mathbf{e}_{t}, \qquad \mathbf{e}_{t} \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_{0})$$
(1)
$$\mathbf{f}_{t} = \sum_{j=1}^{p} \mathbf{A}_{j}\mathbf{f}_{t-j} + \mathbf{u}_{t}, \qquad \mathbf{u}_{t} \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}_{0}).$$
(2)

The model is estimated using a Kalman Filter and Smoother and the Expectation Maximization (EM) algorithm, after transforming the model equations to State Space (stacked, VAR(1)) form

$$\mathbf{x}_t = \mathbf{CF}_t + \mathbf{e}_t, \qquad \mathbf{e}_t \sim N(\mathbf{0}, \mathbf{R}_a)$$
 (3)

$$\mathbf{F}_t = \mathbf{A}\mathbf{F}_{t-1} + \mathbf{u}_t, \quad \mathbf{u}_t \sim N(\mathbf{0}, \mathbf{Q}). \tag{4}$$

Observation errors \mathbf{e}_t evolve according to autoregressive AR(1) processes to allow for unmodelled idiosynchratic dynamics

$$\mathbf{e}_t = \mathbf{\Phi} \mathbf{e}_{t-1} + \mathbf{v}_t, \quad \mathbf{v}_t \sim N(\mathbf{0}, \mathbf{R}). \tag{5}$$

Introduction SAMADB Structure SAMADB API's Nowcasting Model Volume of Conclusion References of C

Quarterly series of Real GDP, Nominal GDP, and Unemployment are modelled by an unobserved monthly counterpart following Mariano & Murasawa (2003). Bańbura & Modugno (2014) model quarterly variable as product of monthly counterpart: $X_t^q = \tilde{X}_t^m \tilde{X}_{t-1}^m \tilde{X}_{t-2}^m$. Taking quarterly log-differences yields

$$\log(X_t^q) - \log(X_{t-3}^q) = \log(\tilde{X}_t^m) - \log(\tilde{X}_{t-3}^m) + \log(\tilde{X}_{t-1}^m) - \log(\tilde{X}_{t-4}^m) + \log(\tilde{X}_{t-2}^m) - \log(\tilde{X}_{t-5}^m).$$
(6)

Adding and subtracting lags on the RHS, and denoting the growth rates as

$$x_t^q = \log(X_t^q) - \log(X_{t-3}^q) \text{ and } \tilde{x}_t^m = \log(\tilde{X}_t^m) - \log(\tilde{X}_{t-1}^m) \text{ yields}$$

$$x_t^q = \tilde{x}_t^m + 2\tilde{x}_{t-1}^m + 3\tilde{x}_{t-2}^m + 2\tilde{x}_{t-3}^m + \tilde{x}_{t-4}^m.$$
(7)

Assuming that $\tilde{\mathbf{x}}_{t}^{m}$ admits the same DFM representation as the observed monthly variables, i.e. $\tilde{\mathbf{x}}_{t}^{m} = \mathbf{C}_{0}^{q}\mathbf{f}_{t} + \mathbf{e}_{t}^{q}$, we write a DFM representation for \mathbf{x}_{t}^{q} $\mathbf{x}_{t}^{q} = \mathbf{C}_{0}^{q}\mathbf{f}_{t} + \mathbf{e}_{t}^{q} + 2(\mathbf{C}_{0}^{q}\mathbf{f}_{t-1} + \mathbf{e}_{t-1}^{q}) + 3(\mathbf{C}_{0}^{q}\mathbf{f}_{t-2} + \mathbf{e}_{t-2}^{q}) + 2(\mathbf{C}_{0}^{q}\mathbf{f}_{t-3} + \mathbf{e}_{t-3}^{q}) + \mathbf{C}_{0}^{q}\mathbf{f}_{t-4} + \mathbf{e}_{t-4}^{q}$. This yields the following stacked DFM representation (r = Nfactors, p = Nlags)

$$\begin{split} \tilde{\mathbf{x}}_{t\ (n\times1)} &= (\mathbf{x}_{t}^{m'},\ \mathbf{x}_{t}^{q'})', \text{where } \mathbf{x}_{t}^{m} \text{ is } n_{M} \times 1 \text{ and } \mathbf{x}_{t}^{q} \text{ is } n_{Q} \times 1 \\ \tilde{\mathsf{F}}_{t\ (rp+5n_{Q}\times1)} &= (\mathbf{f}_{t}',\ldots,\mathbf{f}_{t-p}',\mathbf{e}_{t}^{q'},\ldots,\mathbf{e}_{t-4}^{q'})', \text{where } \mathbf{e}_{t}^{q} \text{ is } n_{Q} \times 1 \\ \tilde{\mathsf{C}}_{(n\times rp+5n_{Q})} &= \begin{pmatrix} \mathsf{C}_{0}^{m} & \mathbf{0} & \mathbf{0$$

Sebastian Krantz

Computing the News

Since the DFM provides forecasts of all variables, it can be used to assess the impact of data updates on the nowcast. Let $\hat{\mathbf{x}}_{t+1}$ be the forecast of \mathbf{x}_t at time t. In time t + 1 we observe \mathbf{x}_{t+1} , thus

$$\mathbf{z}_{t+1} = \mathbf{x}_{t+1} - \hat{\mathbf{x}}_{t+1} \tag{8}$$

denotes the 'news'. Its impact on the nowcast of quarterly variables $\hat{\mathbf{x}}_{\tau}^{q}$ (τ denotes the current quarter) is a function of the DFM parameters. It turns out that we can obtain a vector of weights **w** that summarizes this impact

$$\hat{\mathbf{x}}_{\tau}^{q,t+1} - \hat{\mathbf{x}}_{\tau}^{q,t} = diag(\mathbf{w}) \, \mathbf{z}_{t+1}. \tag{9}$$

In other words:

nowcast revision = model-based weight
$$\times$$
 news. (10)

For computational details see Bańbura & Modugno (2014).

Sebastian Krantz

Data

Parsimonious dataset of 57 series (54 monthly, 3 quarterly) updated through EconData, grouped into 4 sectors and topics:

Sector	Topic	N	Description
Real	Production	8	GDP, Manufacturing, Mining and Electricity
Real	Sales	6	Motor Trade, Retail and Wholesale
Real	Prices	6	Consumer and Producer Prices
Real	Tourism	7	Migration, Tourism and Accommodation
Real	Other Real	6	Land Transport and Unemployment
Financial	Money and Credit	4	Monetary Aggregates and Credit Claims
Financial	Other Fiancial	2	Net Foreign Assets and Insolvencies
External	Trade	2	Exports and Imports
External	Exchange Rates	2	USD Exchange Rate and NEER
External	Reserves	2	Official Reserve Assets and FX Reserves
Fiscal	Cash Flow	3	Cash-Flow Revenue, Expense and Balance
Fiscal	Financing	5	Bonds, T-Bill and Foreign Financing
Fiscal	Debt	4	Total, Domestic and Foreign Debt

Table: Summary of Time Series for Nowcasting Model

Notes: Production and Sales include value and volume indicators.

Se	bastian	Krantz
	baberan	

The model is estimated with all series in log-difference growth rates. Seasonal series are adjusted using X-13 ARIMA Seats (Sax & Eddelbuettel, 2018). This shows the adjusted monthly series

2005

22 -

2010

date

2015

SAMADB + Nowcasting 17 / 26

2020

Introduction SAMADB Structure SAMADB API's Nowcasting Model Volume Novel Evaluation Automation Conclusion References

To distribute factor loadings, the factor structure is blocked following (Bok et al., 2018) into 2 Global, 2 Real, 1 Financial, 2 Fiscal, and 2 External factors. Factors follow a VAR(2) process.

18 / 26

This shows in-sample predictions and forecasts, starting 2023Q1

Evaluating the Model

- Properly evaluating the model requires vintages \rightarrow not available since we just started this
- I do a crude evaluation nowcasting GDP for the past 15 quarters: 2019Q2-2022Q4, using monthly data up to the end of the quarter and quarterly data up to the previous quarter
- Other candidate models are
 - A smaller DFM with only 34 out of the 54 monthly variables, which are deemed especially important, and 1 factor/block (DFM_SM)
 - A hybrid (bridge equation) model that uses a single DFM of the monthly variables, forecasts the variables and nowcasts the quarterly variabes using linear regression on the forecasted monthly ones (BE)
 - Same, but expanding monthly vars+fc into quarterly ones (blocking) and forecasting using LASSO tuned with LOO-CV (BE_LA)
 - Both bridge models with the same block structure as the DFMs (i.e. individual DFM's to estimate factors for different blocks, a global VAR(2) to forecast all factors, and then Im/LASSO) (BL suffix)

Table: Nowcast Evaluation for Real GDP: 2019Q2-2022Q4

	Naive	DFM	DFM_SM	BE	BE_LA	BE_BL	BE_LA_BL
Bias	0.12	0.98	0.97	1.25	0.56	1.21	0.79
MAE	5.58	1.73	1.84	1.77	1.52	1.52	2.09
RMSE	10.36	4.02	4.05	3.97	3.08	3.63	4.59
R-Squared	-1.78	0.55	0.55	0.56	0.74	0.63	0.41
U2	1.00	0.80	0.80	0.79	0.57	0.73	0.86
Bias Prop.	0.00	0.06	0.06	0.10	0.03	0.11	0.03
Var. Prop.	0.00	0.64	0.70	0.24	0.88	0.33	0.85
Cov. Prop.	1.00	0.30	0.24	0.66	0.08	0.56	0.12

Se	hastian	Krantz
00	babtian	

Introduction	SAMADB Structure	SAMADB API's	Nowcasting Model	Model Evaluation	Automation	Conclusion	References
000	000	000	0000000	0000	0	0	

Table: Nowcast Evaluation for Nominal GDP: 2019Q2-2022Q4

	Naive	DFM	DFM_SM	BE	BE_LA	BE_BL	BE_LA_BL
Bias	0.22	1.26	1.18	1.18	0.58	0.43	0.75
MAE	5.91	1.78	1.78	1.99	2.12	1.17	1.99
RMSE	11.07	3.68	3.62	3.71	3.63	1.45	3.56
R-Squared	-1.72	0.68	0.69	0.67	0.69	0.95	0.70
U2	1.00	0.66	0.64	0.67	0.57	0.27	0.58
Bias Prop.	0.00	0.12	0.11	0.10	0.03	0.09	0.04
Var. Prop.	0.00	0.69	0.73	0.31	0.87	0.01	0.86
Cov. Prop.	1.00	0.19	0.17	0.59	0.10	0.90	0.10

Table: Nowcast Evaluation for Unemployment: 2019Q2-2022Q4

	Naive	DFM	DFM_SM	BE	BE_LA	BE_BL	BE_LA_BL
Bias	0.09	-0.30	-0.28	0.22	-0.19	0.49	0.25
MAE	2.10	0.74	0.82	1.04	1.24	1.36	1.52
RMSE	3.71	1.03	1.11	1.88	2.17	2.37	3.12
R-Squared	-1.81	0.77	0.73	0.23	-0.02	-0.21	-1.11
02							
Bias Prop.	0.00	0.08	0.06	0.01	0.01	0.04	0.01
Var. Prop.	0.00	0.52	0.56	0.35	0.94	0.13	0.09
Cov. Prop.	1.00	0.39	0.38	0.64	0.05	0.83	0.90

		12 .
Se	hastian	Krantz
00	babtian	

Summarizing the News

I use the crude backtesting for 15 quarters 2019Q2-2022Q4 to compute model-based news and summarize it ${\sf here}^1$

The most impactful monthly series across all nowcasts are retail sales, accommodation stay nights sold, and manufacturing production.

⁴Since I only estimate one model per quarter, the next vintage always has new obs. for GDP and unemployment. These alone explain around 40% of their nowcast revision. To summarize the news I thus remove the quarterly variables. This exercise is thus deeply flawed, as we are usually interested in the impact of revisions to monthly data on the nowcast of a quarterly indicator within the current quarter.

Nowcast Automation

The combined power of GitHub Actions and SAMADB:

- Action to generate a weekly nowcasting dataset (vintage) from SAMADB every Thursday night (following SAMADB update on Wednesday night) → save to GitHub repository
- Action to run nowcasting model on this vintage and the previous one, generating an updated nowcast and computing the news → triggered by vintage generation action completion, and appends nowcast and news to CSV files in the same repo
- Create a simple web-application (using Plotly Dash) that, on startup, fetches the CSV files from the repo and displays interactive visualizations

For transparency and easy fetching of data, this repo is public at https://github.com/Stellenbosch-Econometrics/SA-Nowcast. The Dash-app still needs to be finalized and will be hosted soon.

Conclusions

- SAMADB is a simple, powerful and broadly accessible database for macroeconomic research and automation
- It is limited in scope and always will be (the focus is on core macro data, not millions of time series)
- Mixed frequency DFMs are powerful tools for macroeconomic nowcasting and interpreting the 'news', also in South Africa
- We hope to release a public nowcasting platform very soon, and also make SAMADB APIs available on public repositories i.e. CRAN, PyPI, and the Julia Package Registry
- We are working on a paper that does more rigorous nowcast/forecast evaluation using a larger dataset generated from the QB. Preliminary evidence suggests that the DFM performs much better with more data (~ 150 series).

References

- Bańbura, M. & Modugno, M. (2014). Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data. Journal of applied econometrics, 29(1), 133–160.
- Bok, B., Caratelli, D., Giannone, D., Sbordone, A. M. & Tambalotti, A. (2018). Macroeconomic nowcasting and forecasting with big data. *Annual Review of Economics*, 10, 615–643.
- Mariano, R. S. & Murasawa, Y. (2003). A new coincident index of business cycles based on monthly and quarterly series. Journal of applied Econometrics, 18(4), 427–443.
- Sax, C. & Eddelbuettel, D. (2018). Seasonal adjustment by x-13arima-seats in r. Journal of Statistical Software, 87, 1–17.