%**************************************% %* Generated from PreTeXt source *% %* on 2019-06-09T19:16:45Z *% %* *% %* https://pretextbook.org *% %* *% %**************************************% \documentclass[oneside,10pt,]{article} %% Custom Preamble Entries, early (use latex.preamble.early) %% Default LaTeX packages %% 1. always employed (or nearly so) for some purpose, or %% 2. a stylewriter may assume their presence \usepackage{geometry} %% Some aspects of the preamble are conditional, %% the LaTeX engine is one such determinant \usepackage{ifthen} %% etoolbox has a variety of modern conveniences \usepackage{etoolbox} \usepackage{ifxetex,ifluatex} %% Raster graphics inclusion \usepackage{graphicx} %% Color support, xcolor package %% Always loaded, for: add/delete text, author tools %% Here, since tcolorbox loads tikz, and tikz loads xcolor \PassOptionsToPackage{usenames,dvipsnames,svgnames,table}{xcolor} \usepackage{xcolor} %% Colored boxes, and much more, though mostly styling %% skins library provides "enhanced" skin, employing tikzpicture %% boxes may be configured as "breakable" or "unbreakable" %% "raster" controls grids of boxes, aka side-by-side \usepackage{tcolorbox} \tcbuselibrary{skins} \tcbuselibrary{breakable} \tcbuselibrary{raster} %% We load some "stock" tcolorbox styles that we use a lot %% Placement here is provisional, there will be some color work also %% First, black on white, no border, transparent, but no assumption about titles \tcbset{ bwminimalstyle/.style={size=minimal, boxrule=-0.3pt, frame empty, colback=white, colbacktitle=white, coltitle=black, opacityfill=0.0} } %% Second, bold title, run-in to text/paragraph/heading %% Space afterwards will be controlled by environment, %% dependent of constructions of the tcb title \tcbset{ runintitlestyle/.style={fonttitle=\normalfont\bfseries, attach title to upper} } %% Spacing prior to each exercise, anywhere \tcbset{ exercisespacingstyle/.style={before skip={1.5ex plus 0.5ex}} } %% Spacing prior to each block \tcbset{ blockspacingstyle/.style={before skip={2.0ex plus 0.5ex}} } %% xparse allows the construction of more robust commands, %% this is a necessity for isolating styling and behavior %% The tcolorbox library of the same name loads the base library \tcbuselibrary{xparse} %% Hyperref should be here, but likes to be loaded late %% %% Inline math delimiters, \(, \), need to be robust %% 2016-01-31: latexrelease.sty supersedes fixltx2e.sty %% If latexrelease.sty exists, bugfix is in kernel %% If not, bugfix is in fixltx2e.sty %% See: https://tug.org/TUGboat/tb36-3/tb114ltnews22.pdf %% and read "Fewer fragile commands" in distribution's latexchanges.pdf \IfFileExists{latexrelease.sty}{}{\usepackage{fixltx2e}} %% Footnote counters and part/chapter counters are manipulated %% April 2018: chngcntr commands now integrated into the kernel, %% but circa 2018/2019 the package would still try to redefine them, %% so we need to do the work of loading conditionally for old kernels. %% From version 1.1a, chngcntr should detect defintions made by LaTeX kernel. \ifdefined\counterwithin \else \usepackage{chngcntr} \fi %% Text height identically 9 inches, text width varies on point size %% See Bringhurst 2.1.1 on measure for recommendations %% 75 characters per line (count spaces, punctuation) is target %% which is the upper limit of Bringhurst's recommendations \geometry{letterpaper,total={340pt,9.0in}} %% Custom Page Layout Adjustments (use latex.geometry) %% This LaTeX file may be compiled with pdflatex, xelatex, or lualatex executables %% LuaTeX is not explicitly supported, but we do accept additions from knowledgeable users %% The conditional below provides pdflatex specific configuration last %% The following provides engine-specific capabilities %% Generally, xelatex is necessary non-Western fonts \ifthenelse{\boolean{xetex} \or \boolean{luatex}}{% %% begin: xelatex and lualatex-specific configuration \ifxetex\usepackage{xltxtra}\fi %% realscripts is the only part of xltxtra relevant to lualatex \ifluatex\usepackage{realscripts}\fi %% fontspec package provides extensive control of system fonts, %% meaning *.otf (OpenType), and apparently *.ttf (TrueType) %% that live *outside* your TeX/MF tree, and are controlled by your *system* %% fontspec will make Latin Modern (lmodern) the default font \usepackage{fontspec} %% %% Extensive support for other languages \usepackage{polyglossia} %% Set main/default language based on pretext/@xml:lang value %% document language code is "en-US", US English %% usmax variant has extra hypenation \setmainlanguage[variant=usmax]{english} %% Enable secondary languages based on discovery of @xml:lang values %% Enable fonts/scripts based on discovery of @xml:lang values %% Western languages should be ably covered by Latin Modern Roman %% end: xelatex and lualatex-specific configuration }{% %% begin: pdflatex-specific configuration \usepackage[utf8]{inputenc} %% PreTeXt will create a UTF-8 encoded file %% begin: font setup and configuration for use with pdflatex \usepackage{lmodern} \usepackage[T1]{fontenc} %% end: font setup and configuration for use with pdflatex %% end: pdflatex-specific configuration } %% Symbols, align environment, bracket-matrix \usepackage{amsmath} \usepackage{amssymb} %% allow page breaks within display mathematics anywhere %% level 4 is maximally permissive %% this is exactly the opposite of AMSmath package philosophy %% there are per-display, and per-equation options to control this %% split, aligned, gathered, and alignedat are not affected \allowdisplaybreaks[4] %% allow more columns to a matrix %% can make this even bigger by overriding with latex.preamble.late processing option \setcounter{MaxMatrixCols}{30} %% %% %% Division Titles, and Page Headers/Footers %% titlesec package, loading "titleps" package cooperatively %% See code comments about the necessity and purpose of "explicit" option \usepackage[explicit, pagestyles]{titlesec} %% Set global/default page style for document due %% to potential re-definitions after documentclass \pagestyle{plain} %% %% Create globally-available macros to be provided for style writers %% These are redefined for each occurence of each division \newcommand{\divisionnameptx}{\relax}% \newcommand{\titleptx}{\relax}% \newcommand{\subtitleptx}{\relax}% \newcommand{\shortitleptx}{\relax}% \newcommand{\authorsptx}{\relax}% \newcommand{\epigraphptx}{\relax}% %% Create environments for possible occurences of each division %% Environment for a PTX "preface" at the level of a LaTeX "chapter" \NewDocumentEnvironment{preface}{mmmmmm} {% \renewcommand{\divisionnameptx}{Preface}% \renewcommand{\titleptx}{#1}% \renewcommand{\subtitleptx}{#2}% \renewcommand{\shortitleptx}{#3}% \renewcommand{\authorsptx}{#4}% \renewcommand{\epigraphptx}{#5}% \chapter*{#1}% \addcontentsline{toc}{chapter}{#3} \label{#6}% }{}% %% Environment for a PTX "section" at the level of a LaTeX "section" \NewDocumentEnvironment{sectionptx}{mmmmmm} {% \renewcommand{\divisionnameptx}{Section}% \renewcommand{\titleptx}{#1}% \renewcommand{\subtitleptx}{#2}% \renewcommand{\shortitleptx}{#3}% \renewcommand{\authorsptx}{#4}% \renewcommand{\epigraphptx}{#5}% \section[#3]{#1}% \label{#6}% }{}% %% Environment for a PTX "appendix" at the level of a LaTeX "section" \NewDocumentEnvironment{appendixptx}{mmmmmm} {% \renewcommand{\divisionnameptx}{Appendix}% \renewcommand{\titleptx}{#1}% \renewcommand{\subtitleptx}{#2}% \renewcommand{\shortitleptx}{#3}% \renewcommand{\authorsptx}{#4}% \renewcommand{\epigraphptx}{#5}% \section[#3]{#1}% \label{#6}% }{}% %% %% Styles for six traditional LaTeX divisions \titleformat{\chapter}[display] {\normalfont\huge\bfseries}{\divisionnameptx\space\thechapter}{20pt}{\Huge#1} [{\Large\authorsptx}] \titleformat{name=\chapter,numberless}[display] {\normalfont\huge\bfseries}{}{0pt}{#1} [{\Large\authorsptx}] \titlespacing*{\chapter}{0pt}{50pt}{40pt} \titleformat{\section}[hang] {\normalfont\Large\bfseries}{\thesection}{1ex}{#1} [{\large\authorsptx}] \titleformat{name=\section,numberless}[block] {\normalfont\Large\bfseries}{}{0pt}{#1} [{\large\authorsptx}] \titlespacing*{\section}{0pt}{3.5ex plus 1ex minus .2ex}{2.3ex plus .2ex} \titleformat{\subsection}[hang] {\normalfont\large\bfseries}{\thesubsection}{1ex}{#1} [{\normalsize\authorsptx}] \titleformat{name=\subsection,numberless}[block] {\normalfont\large\bfseries}{}{0pt}{#1} [{\normalsize\authorsptx}] \titlespacing*{\subsection}{0pt}{3.25ex plus 1ex minus .2ex}{1.5ex plus .2ex} \titleformat{\subsubsection}[hang] {\normalfont\normalsize\bfseries}{\thesubsubsection}{1em}{#1} [{\small\authorsptx}] \titleformat{name=\subsubsection,numberless}[block] {\normalfont\normalsize\bfseries}{}{0pt}{#1} [{\normalsize\authorsptx}] \titlespacing*{\subsubsection}{0pt}{3.25ex plus 1ex minus .2ex}{1.5ex plus .2ex} \titleformat{\paragraph}[hang] {\normalfont\normalsize\bfseries}{\theparagraph}{1em}{#1} [{\small\authorsptx}] \titleformat{name=\paragraph,numberless}[block] {\normalfont\normalsize\bfseries}{}{0pt}{#1} [{\normalsize\authorsptx}] \titlespacing*{\paragraph}{0pt}{3.25ex plus 1ex minus .2ex}{1.5em} %% %% Semantic Macros %% To preserve meaning in a LaTeX file %% Only defined here if required in this document %% Used for inline definitions of terms \newcommand{\terminology}[1]{\textbf{#1}} %% Division Numbering: Chapters, Sections, Subsections, etc %% Division numbers may be turned off at some level ("depth") %% A section *always* has depth 1, contrary to us counting from the document root %% The latex default is 3. If a larger number is present here, then %% removing this command may make some cross-references ambiguous %% The precursor variable $numbering-maxlevel is checked for consistency in the common XSL file \setcounter{secnumdepth}{3} %% begin: General AMS environment setup %% Environments built with amsthm package \usepackage{amsthm} %% Numbering for Theorems, Conjectures, Examples, Figures, etc %% Controlled by numbering.theorems.level processing parameter %% Numbering: all theorem-like numbered consecutively %% i.e. Corollary 4.3 follows Theorem 4.2 %% Always need some theorem environment to set base numbering scheme %% even if document has no theorems (but has other environments) %% Create a never-used style first, always %% simply to provide a global counter to use, namely "cthm" \newtheorem{cthm}{BadTheoremStringName}[section] %% AMS "proof" environment is not used, but we leave previously %% implemented \qedhere in place, should the LaTeX be recycled \renewcommand{\qedhere}{\relax} %% end: General AMS environment setup %% %% tcolorbox, with styles, for THEOREM-LIKE %% %% theorem: fairly simple numbered block/structure \tcbset{ theoremstyle/.style={bwminimalstyle, runintitlestyle, blockspacingstyle, after title={\space}, } } \newtcolorbox[use counter*=cthm]{theorem}[3]{title={{Theorem~\thecthm\notblank{#1#2}{\space}{}\notblank{#1}{\space#1}{}\notblank{#2}{\space(#2)}{}}}, phantomlabel={#3}, breakable, parbox=false, fontupper=\itshape, theoremstyle, } %% proposition: fairly simple numbered block/structure \tcbset{ propositionstyle/.style={bwminimalstyle, runintitlestyle, blockspacingstyle, after title={\space}, } } \newtcolorbox[use counter*=cthm]{proposition}[3]{title={{Proposition~\thecthm\notblank{#1#2}{\space}{}\notblank{#1}{\space#1}{}\notblank{#2}{\space(#2)}{}}}, phantomlabel={#3}, breakable, parbox=false, fontupper=\itshape, propositionstyle, } %% corollary: fairly simple numbered block/structure \tcbset{ corollarystyle/.style={bwminimalstyle, runintitlestyle, blockspacingstyle, after title={\space}, } } \newtcolorbox[use counter*=cthm]{corollary}[3]{title={{Corollary~\thecthm\notblank{#1#2}{\space}{}\notblank{#1}{\space#1}{}\notblank{#2}{\space(#2)}{}}}, phantomlabel={#3}, breakable, parbox=false, fontupper=\itshape, corollarystyle, } %% lemma: fairly simple numbered block/structure \tcbset{ lemmastyle/.style={bwminimalstyle, runintitlestyle, blockspacingstyle, after title={\space}, } } \newtcolorbox[use counter*=cthm]{lemma}[3]{title={{Lemma~\thecthm\notblank{#1#2}{\space}{}\notblank{#1}{\space#1}{}\notblank{#2}{\space(#2)}{}}}, phantomlabel={#3}, breakable, parbox=false, fontupper=\itshape, lemmastyle, } %% %% tcolorbox, with styles, for DEFINITION-LIKE %% %% definition: fairly simple numbered block/structure \tcbset{ definitionstyle/.style={bwminimalstyle, runintitlestyle, blockspacingstyle, after title={\space}, after upper={\space\space\hspace*{\stretch{1}}\(\lozenge\)}, } } \newtcolorbox[use counter*=cthm]{definition}[2]{title={{Definition~\thecthm\notblank{#1}{\space\space#1}{}}}, phantomlabel={#2}, breakable, parbox=false, definitionstyle, } %% %% tcolorbox, with styles, for EXAMPLE-LIKE %% %% example: fairly simple numbered block/structure \tcbset{ examplestyle/.style={bwminimalstyle, runintitlestyle, blockspacingstyle, after title={\space}, after upper={\space\space\hspace*{\stretch{1}}\(\square\)}, } } \newtcolorbox[use counter*=cthm]{example}[2]{title={{Example~\thecthm\notblank{#1}{\space\space#1}{}}}, phantomlabel={#2}, breakable, parbox=false, examplestyle, } %% %% xparse environments for introductions and conclusions of divisions %% %% introduction: in a structured division \NewDocumentEnvironment{introduction}{m} {\notblank{#1}{\noindent\textbf{#1}\space}{}}{\par\medskip} %% Localize LaTeX supplied names (possibly none) \renewcommand*{\appendixname}{Appendix} \renewcommand*{\abstractname}{Abstract} %% "tcolorbox" environment for a single image, occupying entire \linewidth %% arguments are left-margin, width, right-margin, as multiples of %% \linewidth, and are guaranteed to be positive and sum to 1.0 \tcbset{ imagestyle/.style={bwminimalstyle} } \NewTColorBox{image}{mmm}{imagestyle,left skip=#1\linewidth,width=#2\linewidth} %% Figures, Tables, Listings, Named Lists, Floats %% The [H]ere option of the float package fixes floats in-place, %% in deference to web usage, where floats are totally irrelevant %% You can remove some of this setup, to restore standard LaTeX behavior %% HOWEVER, numbering of figures/tables AND theorems/examples/remarks, etc %% may de-synchronize with the numbering in the HTML version %% You can remove the "placement={H}" option to allow flotation and %% preserve numbering, BUT the numbering may then appear "out-of-order" %% Floating environments: http://tex.stackexchange.com/questions/95631/ \usepackage{float} \usepackage{newfloat} \usepackage{caption}%% Adjust stock figure environment so that it no longer floats \SetupFloatingEnvironment{figure}{fileext=lof,placement={H},within=section,name=Figure} \captionsetup[figure]{labelfont=bf} %% http://tex.stackexchange.com/questions/16195 \makeatletter \let\c@figure\c@cthm \makeatother %% Footnote Numbering %% Specified by numbering.footnotes.level \counterwithin*{footnote}{section} %% More flexible list management, esp. for references %% But also for specifying labels (i.e. custom order) on nested lists \usepackage{enumitem} %% hyperref driver does not need to be specified, it will be detected %% Footnote marks in tcolorbox have broken linking under %% hyperref, so it is necessary to turn off all linking %% It *must* be given as a package option, not with \hypersetup \usepackage[hyperfootnotes=false]{hyperref} %% configure hyperref's \url to match listings' inline verbatim \renewcommand\UrlFont{\small\ttfamily} %% Hyperlinking active in electronic PDFs, all links solid and blue \hypersetup{colorlinks=true,linkcolor=blue,citecolor=blue,filecolor=blue,urlcolor=blue} \hypersetup{pdftitle={Intro to Topology}} %% If you manually remove hyperref, leave in this next command \providecommand\phantomsection{} %% If tikz has been loaded, replace ampersand with \amp macro %% extpfeil package for certain extensible arrows, %% as also provided by MathJax extension of the same name %% NB: this package loads mtools, which loads calc, which redefines %% \setlength, so it can be removed if it seems to be in the %% way and your math does not use: %% %% \xtwoheadrightarrow, \xtwoheadleftarrow, \xmapsto, \xlongequal, \xtofrom %% %% we have had to be extra careful with variable thickness %% lines in tables, and so also load this package late \usepackage{extpfeil} %% Custom Preamble Entries, late (use latex.preamble.late) %% Begin: Author-provided packages %% (From docinfo/latex-preamble/package elements) %% End: Author-provided packages %% Begin: Author-provided macros %% (From docinfo/macros element) %% Plus three from MBX for XML characters \newcommand{\tuple}[1]{\langle #1 \rangle} \newcommand{\mb}{\mathbb} \newcommand{\mc}{\mathcal} \newcommand{\cl}{\operatorname{cl}} \renewcommand{\int}{\operatorname{int}} \newcommand{\ext}{\operatorname{ext}} \newcommand{\bd}{\operatorname{bd}} \newcommand{\glb}{\operatorname{glb}} \newcommand{\lub}{\operatorname{lub}} \newcommand{\setBuilder}[2]{\left\{#1:#2\right\}} \newcommand{\setList}[1]{\left\{#1\right\}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} %% End: Author-provided macros %% Title page information for article \title{Intro to Topology} \author{Steven Clontz\\ University of South Alabama } \date{June 9, 2019} \begin{document} %% Target for xref to top-level element is document start \hypertarget{article-4}{} \maketitle \thispagestyle{empty} \begin{abstract} \hypertarget{p-14}{}% These are course notes for an introductory undergraduate or dual-listed course for general topology, to be used in an inquiry-based learning classroom.% \end{abstract} % % \typeout{************************************************} \typeout{Section 1 Curves and Surfaces} \typeout{************************************************} % \begin{sectionptx}{Curves and Surfaces}{}{Curves and Surfaces}{}{}{section-27} \begin{introduction}{}% \hypertarget{p-30}{}% In this section, we will develop an intuition for a topological space and the purpose of topology by investigating two natural examples of topological spaces: curves and surfaces.% \par \hypertarget{p-31}{}% Unlike the rest of these notes, we will not rigorously define these concepts. (For example, what do I mean by ``locally looks like'' in \hyperref[definition-34]{Definition~\ref{definition-34}}?) However, many of these ideas will return later in the course and be handled more carefully.% \end{introduction}% \begin{definition}{}{definition-34}% \hypertarget{p-35}{}% A \terminology{curve} is a set of points such that for every point in the set, the set locally looks like a (possibly bent or curved) copy of the real line \(\mathbb R\) or the half line \(\mathbb R^*=\{x\in\mathbb R:x\geq 0\}\).% \end{definition} \hypertarget{p-39}{}% For example, \hyperref[figure-43]{Figure~\ref{figure-43}}, \hyperref[figure-46]{Figure~\ref{figure-46}}, and \hyperref[figure-49]{Figure~\ref{figure-49}} are all examples of curves in two or three-dimensional Euclidean space.% \begin{figure} \centering \includegraphics[width=1\linewidth]{images/circle.jpg} \caption{A circle\label{figure-43}} \end{figure} \begin{figure} \centering \includegraphics[width=1\linewidth]{images/parabola.jpg} \caption{A parabola\label{figure-46}} \end{figure} \begin{figure} \centering \includegraphics[width=1\linewidth]{images/helix.jpg} \caption{A helix\label{figure-49}} \end{figure} \hypertarget{p-52}{}% Note the following differences between \hyperref[figure-43]{Figure~\ref{figure-43}} and \hyperref[figure-46]{Figure~\ref{figure-46}}:% \leavevmode% \begin{itemize}[label=\textbullet] \item{}Removing a point from \hyperref[figure-46]{Figure~\ref{figure-46}} would split it into two disconnected parts, but \hyperref[figure-43]{Figure~\ref{figure-43}} would remain connected after a point is removed.% \item{}\hyperref[figure-43]{Figure~\ref{figure-43}} is bounded while \hyperref[figure-46]{Figure~\ref{figure-46}} extends unboundedly. \footnote{This topological distinction makes sense as both are closed subsets of \(\mathbb R^2\); see \hyperref[section-1055]{Section~\ref{section-1055}} for more info.\label{fn-62}}% \end{itemize} \hypertarget{p-65}{}% These differences would remain no matter how the curves were stretched or bent. However, while there are certainly geometrical differences beteween \hyperref[figure-46]{Figure~\ref{figure-46}} and \hyperref[figure-49]{Figure~\ref{figure-49}}, they are in a certain sense the same object that has been bent or stretched into a different shape.% \begin{definition}{}{definition-68}% \hypertarget{p-69}{}% Two objects are said to be \terminology{topologically equivalent} or \terminology{homeomorphic} if one may be bent or stretched into the shape of the other.% \end{definition} \hypertarget{p-72}{}% So this means that all geometrically similar shapes are homeomorphic (as in \hyperref[figure-77]{Figure~\ref{figure-77}}), but we also use the idea of homeomorphism to compare other objects in our daily lives.% \par \hypertarget{p-74}{}% For example, while many of them are not curves by our definition, the letters of the alphabet may be considered as topological objects. \hyperref[figure-80]{Figure~\ref{figure-80}} illustrates several homeomorphic expressions of the letter ``A''.% \begin{figure} \centering \includegraphics[width=1\linewidth]{images/similar-triangles.jpg} \caption{Two similar triangles\label{figure-77}} \end{figure} \begin{figure} \centering \includegraphics[width=1\linewidth]{images/letter-a.jpg} \caption{The letter ``A'' in several fonts.\label{figure-80}} \end{figure} \hypertarget{p-84}{}% A homeomorphism is more carefully defined in \hyperref[section-737]{Section~\ref{section-737}}, but the central idea is that of ``neighborhoods''. For each of the letters ``A'' in \hyperref[figure-80]{Figure~\ref{figure-80}}, note that there are two endpoints and two triad intersections whose neighborhoods look different from the other neighborhoods within the letter; see \hyperref[figure-90]{Figure~\ref{figure-90}}.% \begin{figure} \centering \includegraphics[width=1\linewidth]{images/letter-a-neighborhoods.jpg} \caption{Neighborhoods within the letter ``A''.\label{figure-90}} \end{figure} \begin{definition}{}{definition-94}% \hypertarget{p-95}{}% A \terminology{surface} is a set of points such that for every point in the set, the set locally looks like a (possibly bent or curved) copy of the plane \(\mathbb R^2\) or the half-plane \(\mathbb R^{2*}=\{\tuple{x,y}\in\mb R^2:x\geq 0\}\).% \end{definition} \hypertarget{p-99}{}% A classic example of the topology of surfaces is the following joke: ``A topologist is a mathematician who cannot tell the difference between his doughnut and coffee cup.'' The joke is a lot funnier\footnote{Eh, maybe.\label{fn-101}} once you've seen \href{https://en.wikipedia.org/wiki/File:Mug_and_Torus_morph.gif}{this animated GIF on Wikipedia}.% \par \hypertarget{p-103}{}% The ``doughnut'''s surface is known mathematically as a ``torus'', shown in \hyperref[figure-110]{Figure~\ref{figure-110}}. A sphere is shown in \hyperref[figure-113]{Figure~\ref{figure-113}}, and a surface that cannot be cannot be embedded in \(\mathbb R^3\), the Klein bottle, is shown in \hyperref[figure-116]{Figure~\ref{figure-116}}.% \begin{figure} \centering \includegraphics[width=1\linewidth]{images/torus.jpg} \caption{A torus.\label{figure-110}} \end{figure} \begin{figure} \centering \includegraphics[width=1\linewidth]{images/sphere.jpg} \caption{A sphere.\label{figure-113}} \end{figure} \begin{figure} \centering \includegraphics[width=1\linewidth]{images/klein-bottle.png} \caption{A Klein bottle.\label{figure-116}} \end{figure} \hypertarget{p-119}{}% While these shapes appear very different, they can all be defined as a ``quotient space'' (\hyperref[section-1324]{Section~\ref{section-1324}}) of the unit square in \(\mathbb R^2\).% \par \hypertarget{p-123}{}% In order to study so-called ``topological spaces'' such as these, we will begin by distilling down the notion of a ``neighborhood'' for an arbitrary set.% \end{sectionptx} % % \typeout{************************************************} \typeout{Section 2 Topological Spaces} \typeout{************************************************} % \begin{sectionptx}{Topological Spaces}{}{Topological Spaces}{}{}{section-126} \begin{definition}{}{definition-128}% \hypertarget{p-129}{}% Let \(a,b\in\mb R\). The \terminology{open interval} from \(a\) to \(b\) is the set% % \begin{equation*} (a,b)=\setBuilder{x\in\mb R}{a\lt x\lt b} \end{equation*} \end{definition} \begin{definition}{}{definition-135}% \hypertarget{p-136}{}% Let \(x\in\mb R\) and \(S\subseteq\mb R\). The point \(x\) is a \terminology{limit point} of the set \(S\) if and only if for every open interval \((a,b)\) containing \(x\), there is a point \(y\in S\) such that \(x\not=y\) and \(y\in(a,b)\).% \end{definition} \begin{example}{}{example-147}% \hypertarget{p-148}{}% Determine if each set has the number \(0\) as a limit point.% \leavevmode% \begin{enumerate} \item\hypertarget{li-151}{}\(\mb Z\)% \item\hypertarget{li-153}{}\(\mb R\setminus\mb Z\)% \item\hypertarget{li-155}{}\(\setBuilder{\frac{1}{n+1}}{n\in\mb N}\)% \item\hypertarget{li-157}{}\(\mb Q\)% \item\hypertarget{li-159}{}A finite set \(F\subseteq\mb R\)% \end{enumerate} \end{example} \begin{definition}{}{definition-161}% \hypertarget{p-162}{}% A subset \(U\subseteq\mb R\) is called \terminology{open} if and only if for every point \(x\in U\), there exists an open interval \((a,b)\) such that \(x\in(a,b)\subseteq U\).% \end{definition} \begin{example}{}{example-168}% \hypertarget{p-169}{}% Determine if each set is open or not open.% \leavevmode% \begin{enumerate} \item\hypertarget{li-171}{}\([\pi,42)\)% \item\hypertarget{li-173}{}\((-3,-1)\cup(4,5.5)\)% \item\hypertarget{li-175}{}\(\setBuilder{x}{2x+1>5}\)% \item\hypertarget{li-177}{}\(\mb Z\)% \item\hypertarget{li-179}{}\(\mb R\setminus\mb Z\)% \item\hypertarget{li-181}{}\(\mb Q\)% \item\hypertarget{li-183}{}A finite set \(F\subseteq\mb R\)% \end{enumerate} \end{example} \begin{theorem}{}{}{theorem-185}% \hypertarget{p-186}{}% A subset \(U\subseteq\mb R\) is open if and only if there exists a collection of open intervals \(\mc U\) such that \(U=\bigcup\mc U\).% \end{theorem} \begin{proposition}{}{}{proposition-190}% \hypertarget{p-191}{}% Let \(x\in\mb R\) and \(S\subseteq\mb R\). The point \(x\) is a limit point of the set \(S\) if and only if for every open set \(U\) containing \(x\), there is a point \(y\in S\) such that \(x\not=y\) and \(y\in U\).% \end{proposition} \begin{theorem}{}{}{theorem-201}% \hypertarget{p-202}{}% The open subsets of \(\mb R\) satisfy the following properties.% \leavevmode% \begin{enumerate} \item\hypertarget{li-205}{}\(\emptyset\) and \(\mb R\) are open sets.% \item\hypertarget{li-208}{}If \(\mc U\) is a collection of open sets, then \(\bigcup\mc U\) is also an open set.% \item\hypertarget{li-211}{}If \(U,V\) are open sets, then \(U\cap V\) is an open set.% \end{enumerate} \end{theorem} \begin{definition}{}{definition-214}% \hypertarget{p-215}{}% Let \(X\) be a set, and let \(\mc T\subseteq \mc P(X)\) satisfy the following properties.% \leavevmode% \begin{enumerate} \item\hypertarget{li-219}{}\(\emptyset,X\in\mc T\).% \item\hypertarget{li-221}{}If \(\mc U\subseteq\mc T\), then \(\bigcup\mc U\in\mc T\).% \item\hypertarget{li-224}{}If \(U,V\in\mc T\), then \(U\cap V\in\mc T\).% \end{enumerate} \hypertarget{p-227}{}% Then \(\mc T\) is called a \terminology{topology} on \(X\), the pair \(\tuple{X,\mc T}\) is called a \terminology{topological space}, and elements \(U\in\mc T\) are called \terminology{open sets} of the space. (Usually \(\tuple{X,\mc T}\) is abbreviated to just \(X\) when the topology is known from context.)% \end{definition} \begin{definition}{}{definition-237}% \hypertarget{p-238}{}% Let \(\mc T\subseteq\mc P(\mb R)\) be the collection of open subsets of \(\mb R\) defined by \hyperref[definition-161]{Definition~\ref{definition-161}}. Then by \hyperref[theorem-201]{Theorem~\ref{theorem-201}}, \(\mc T\) is a valid topology for \(\mb R\) called the \terminology{Euclidean topology}.% \end{definition} \begin{theorem}{}{}{theorem-246}% \hypertarget{p-247}{}% Let \(X\) be any set. Then the following sets are topologies on \(X\).% \leavevmode% \begin{enumerate} \item\hypertarget{li-251}{}\(\mc T=\mc P(X)\) is called the \terminology{discrete topology}.% \item\hypertarget{li-254}{}\(\mc T=\{\emptyset,X\}\) is called the \terminology{indiscrete topology}.% \end{enumerate} \end{theorem} \begin{proposition}{}{}{proposition-257}% \hypertarget{p-258}{}% Let \(\mc T\) be a topology, and let \(\mc U\subseteq\mc T\) be finite. Then \(\bigcap\mc U\in\mc T\).% \end{proposition} \begin{proposition}{}{}{proposition-262}% \hypertarget{p-263}{}% Let \(\mc T\) be the Euclidean topology. There exists a collection \(\mc U=\{U_n:n\in\mb N\}\) such that \(\bigcap\mc U\not\in\mc T\).% \end{proposition} \begin{definition}{}{definition-267}% \hypertarget{p-268}{}% Let \(a,b\in\mb R\cup\setList{-\infty,\infty}\). The following are called \terminology{intervals} of real numbers.% % \begin{equation*} (a,b)=\setBuilder{x\in\mb R}{a\lt x\lt b} \end{equation*} % \begin{equation*} [a,b)=\setBuilder{x\in\mb R}{a\leq x\lt b} \end{equation*} % \begin{equation*} (a,b]=\setBuilder{x\in\mb R}{a\lt x\leq b} \end{equation*} % \begin{equation*} [a,b]=\setBuilder{x\in\mb R}{a\leq x\leq b} \end{equation*} \end{definition} \begin{example}{}{example-275}% \hypertarget{p-276}{}% Show that each of the following is an example of a topological space \(\tuple{X,\mc T}\).% \leavevmode% \begin{enumerate} \item\hypertarget{li-279}{}Let \(X=\mb R\) and \(\mc T=\setBuilder{(x,\infty)}{x\in\mb R} \cup\setBuilder{[x,\infty)}{x\in\mb R}\cup\setList{\emptyset,\mb R}\).% \item\hypertarget{li-282}{}Let \(X=\mb R\) and \(\mc T=\setBuilder{(x,y)}{ x,y\in\mb R\cup\setList{-\infty,\infty} \text{ and }x\lt 0\lt y }\cup\setList{\emptyset}\).% \item\hypertarget{li-285}{}Let \(X=\mb R\) and \(U\in\mc T\) if for each \(x\in U\), there exists \(a,b\in\mb R\) such that \(x\in[a,b)\subseteq U\).% \item\hypertarget{li-291}{}Let \(X=\setList{0,1}\) and \(\mc T=\setList{\emptyset,\setList{0},X}\).% \item\hypertarget{li-294}{}Let \(X=\mb Z\), \(E=\setBuilder{n\in\mb Z}{n\text{ is even}}\), \(D=\setBuilder{n\in\mb Z}{n\text{ is odd}}\), and \(\mc T=\setList{\emptyset,E,D,X}\).% \end{enumerate} \end{example} \begin{definition}{}{definition-299}% \hypertarget{p-300}{}% Let \(\tuple{X,\mc T}\) be a topological space and let \(x\in X\). The set \(N\subseteq X\) is called a \terminology{neighborhood} of \(x\) if and only if there exists an open set \(U\in\mc T\) such that \(x\in U\subseteq N\).% \end{definition} \begin{proposition}{}{}{proposition-308}% \hypertarget{p-309}{}% A subset \(U\) of a topological space \(X\) is open if and only if \(U\) is a neighborhood of every point it contains.% \end{proposition} \begin{definition}{}{definition-313}% \hypertarget{p-314}{}% The following are known as \terminology{separation axioms} for a topological space \(\tuple{X,\mc T}\).% \leavevmode% \begin{enumerate} \item\hypertarget{li-318}{}\(\mc T\) is said to be \terminology{\(T_0\)} if and only if for all points \(x,y\in X\) such that \(x\not=y\), there either exists a neighborhood \(U\) of \(x\) such that \(y\not\in U\), or there exists a neighborhood \(V\) of \(y\) such that \(x\not\in V\).% \item\hypertarget{li-330}{}\(\mc T\) is said to be \terminology{\(T_1\)} if and only if for all points \(x,y\in X\) such that \(x\not=y\), there exists a neighborhood \(U\) of \(x\) such that \(y\not\in U\).% \item\hypertarget{li-339}{}\(\mc T\) is said to be \terminology{\(T_2\)} (also known as \terminology{Hausdorff}) if and only if for all points \(x,y\in X\) such that \(x\not=y\), there exist neighborhoods \(U,V\) of \(x,y\) (respectively) such that \(U\cap V=\emptyset\).% \end{enumerate} \end{definition} \begin{proposition}{}{}{proposition-349}% \hypertarget{p-350}{}% \(T_2\Rightarrow T_1\Rightarrow T_0\).% \end{proposition} \begin{example}{}{example-352}% \hypertarget{p-353}{}% Find or create an example of a topological space \(\tuple{X,\mc T}\) that is:% \leavevmode% \begin{enumerate} \item\hypertarget{li-356}{}Not \(T_0\).% \item\hypertarget{li-358}{}\(T_0\) but not \(T_1\).% \item\hypertarget{li-361}{}\(T_1\) but not \(T_2\).% \end{enumerate} \end{example} \begin{theorem}{}{}{theorem-364}% \hypertarget{p-365}{}% Let \(X\) be a finite topological space. Then \(X\) is \(T_1\) if and only if \(X\) has the discrete topology.% \end{theorem} \begin{proposition}{}{}{proposition-370}% \hypertarget{p-371}{}% The Euclidean real line is a non-discrete Hausdorff topological space.% \end{proposition} \begin{definition}{}{definition-372}% \hypertarget{p-373}{}% Let \(S\subseteq X\) be a subset of a topological space. The point \(x\) is a \terminology{limit point} of the set \(S\) if and only if for every neighborhood of \(U\) of \(x\), there is a point \(y\in S\) such that \(x\not=y\) and \(y\in U\).% \end{definition} \begin{proposition}{}{}{proposition-383}% \hypertarget{p-384}{}% The point \(x\in\mb R\) is a limit point of \(S\subseteq \mb R\) according to \hyperref[definition-135]{Definition~\ref{definition-135}} if and only if it is a limit point according to \hyperref[definition-372]{Definition~\ref{definition-372}} (where \(\mb R\) is assumed to have the Euclidean topology).% \end{proposition} \begin{definition}{}{definition-390}% \hypertarget{p-391}{}% Let \(S\subseteq X\) be a subset of a topological space. Then \(S'\) is the set of all limit points of \(S\), called the \terminology{derived set} of \(S\).% \end{definition} \begin{definition}{}{definition-397}% \hypertarget{p-398}{}% Let \(S\subseteq X\) be a subset of a topological space. Then \(\cl S=S\cup S'\) is called the \terminology{closure} of \(S\).% \end{definition} \begin{example}{}{example-403}% \hypertarget{p-404}{}% Calculate \(\cl S\) for each of the following examples.% \leavevmode% \begin{enumerate} \item\hypertarget{li-407}{}\(S=(-1,1)\subseteq\mb R\) where \(\mb R\) has the Euclidean topology.% \item\hypertarget{li-410}{}\(S=(-1,1)\subseteq\mb R\) where \(\mb R\) has the discrete topology.% \item\hypertarget{li-413}{}\(S=(-1,1)\subseteq\mb R\) where \(\mb R\) has the indiscrete topology.% \item\hypertarget{li-416}{}\(S=\mb Z\subseteq\mb R\) where \(\mb R\) has the Euclidean topology.% \item\hypertarget{li-419}{}\(S=\mb Q\subseteq\mb R\) where \(\mb R\) has the Euclidean topology.% \end{enumerate} \end{example} \begin{definition}{}{definition-422}% \hypertarget{p-423}{}% Let \(H\subseteq X\) be a subset of a topological space. Then \(H\) is called \terminology{closed} if and only if \(H=\cl S\).% \end{definition} \begin{theorem}{}{}{theorem-428}% \hypertarget{p-429}{}% Let \(H\subseteq X\) be a subset of a topological space. Then \(H\) is closed if and only if there exists an open set \(U\) such that \(H=X\setminus U\).% \end{theorem} \begin{proposition}{}{}{proposition-434}% \hypertarget{p-435}{}% The closed subsets of a topological space \(X\) satisfy the following properties.% \leavevmode% \begin{enumerate} \item\hypertarget{li-438}{}\(\emptyset\) and \(X\) are closed sets.% \item\hypertarget{li-441}{}If \(\mc H\) is a collection of closed sets, then \(\bigcap\mc H\) is also a closed set.% \item\hypertarget{li-444}{}If \(H,L\) are closed sets, then \(H\cup L\) is a closed set.% \end{enumerate} \end{proposition} \begin{theorem}{}{}{theorem-447}% \hypertarget{p-448}{}% A topological space \(X\) is \(T_1\) if and only if every finite subset of \(X\) is closed.% \end{theorem} \begin{definition}{}{definition-452}% \hypertarget{p-453}{}% Let \(S\subseteq X\) be a subset of a topological space. The point \(x\) is a \terminology{boundary point} of the set \(S\) if and only if for every neighborhood of \(U\) of \(x\), both \(U\cap S\) and \(U\setminus S\) are non-empty.% \par \hypertarget{p-462}{}% Let \(\bd S\) collect all the boundary points of \(S\).% \end{definition} \begin{proposition}{}{}{proposition-465}% \hypertarget{p-466}{}% Let \(a,b\in\mb R\). Then \(\bd (a,b)=\bd (a,b]=\bd [a,b)=\bd [a,b]=\{a,b\}\) with respect to the Eudlidean topology.% \end{proposition} \begin{definition}{}{definition-469}% \hypertarget{p-470}{}% Let \(S\subseteq X\) be a subset of a topological space. The point \(x\) is a \terminology{interior point} of the set \(S\) if and only if there exists a neighborhood \(U\) of \(x\) such that \(x\in U\subseteq S\).% \par \hypertarget{p-478}{}% Let \(\int S\) collect all the interior points of \(S\).% \end{definition} \begin{proposition}{}{}{proposition-481}% \hypertarget{p-482}{}% Let \(U\subseteq X\) be a subset of a topological space. Then \(U\) is open if and only if \(U=\int U\).% \end{proposition} \begin{definition}{}{definition-486}% \hypertarget{p-487}{}% Let \(S\subseteq X\) be a subset of a topological space. The point \(x\) is a \terminology{exterior point} of the set \(S\) if and only if there exists a neighborhood \(U\) of \(x\) such that \(x\in U\subseteq X\setminus S\).% \par \hypertarget{p-495}{}% Let \(\ext S\) collect all the exterior points of \(S\).% \end{definition} \begin{definition}{}{definition-498}% \hypertarget{p-499}{}% A \terminology{partition} of a set \(X\) is a collection \(\mc P\) such that \(X=\bigcup\mc P\) and \(A\cap B=\emptyset\) for all \(A,B\in\mc P\) where \(A\not=B\).% \end{definition} \begin{proposition}{}{}{proposition-507}% \hypertarget{p-508}{}% Let \(S\subseteq X\) be a subset of a topological space. Then \(\setList{\int S,\bd S,\ext S}\) is a partition of \(X\).% \end{proposition} \begin{proposition}{}{}{proposition-512}% \hypertarget{p-513}{}% Let \(S\subseteq X\) be a subset of a topological space. Then \(\cl S=\int S\cup\bd S=S\cup\bd S\).% \end{proposition} \begin{example}{}{example-516}% \hypertarget{p-517}{}% Let \(A\) be a subset of a topological space \(X\). Prove or disprove the following.% \leavevmode% \begin{enumerate} \item\hypertarget{li-521}{}\(\int\int A=\int A\)% \item\hypertarget{li-523}{}\(\int\cl A=\int A\)% \item\hypertarget{li-525}{}\(\bd\bd A=\bd A\)% \item\hypertarget{li-527}{}\(\ext\ext A=\int A\)% \item\hypertarget{li-529}{}\(\int\ext A=\ext A\)% \item\hypertarget{li-531}{}\(\int\bd A=\emptyset\)% \item\hypertarget{li-533}{}\(\cl\ext A=X\setminus\int A\)% \end{enumerate} \end{example} \begin{example}{}{example-535}% \hypertarget{p-536}{}% Let \(A,B\) be subsets of a topological space \(X\). Prove or disprove the following.% \leavevmode% \begin{enumerate} \item\hypertarget{li-540}{}\(\int(A\cap B)=\int A\cap\int B\)% \item\hypertarget{li-542}{}\(\int(A\cup B)=\int A\cup\int B\)% \item\hypertarget{li-544}{}\(\bd(A\cap B)=\bd A\cap\bd B\)% \item\hypertarget{li-546}{}\(\bd(A\cup B)=\bd A\cup\bd B\)% \item\hypertarget{li-548}{}\(\cl(A\cap B)=\cl A\cap\cl B\)% \item\hypertarget{li-550}{}\(\cl(A\cup B)=\cl A\cup\cl B\)% \end{enumerate} \end{example} \begin{definition}{}{definition-552}% \hypertarget{p-553}{}% A subset \(D\subseteq X\) of a topological space is called \terminology{dense} if and only if \(\cl D=X\).% \end{definition} \begin{example}{}{example-557}% \hypertarget{p-558}{}% Determine which of these are dense subsets of \(\mb R\).% \leavevmode% \begin{enumerate} \item\hypertarget{li-561}{}\(\mb Q\)% \item\hypertarget{li-563}{}\(\mb Z\)% \item\hypertarget{li-565}{}\(\mb R\setminus\mb Q\)% \item\hypertarget{li-567}{}\(\mb R\setminus\mb Z\)% \end{enumerate} \end{example} \begin{theorem}{}{}{theorem-569}% \hypertarget{p-570}{}% A subset \(D\) of a topological space is dense if and only if every nonempty open set of the space contains a point of \(D\).% \end{theorem} \begin{proposition}{}{}{proposition-573}% \hypertarget{p-574}{}% Let \(X\) be a topological space, and let \(D\subseteq E\subseteq X\). If \(D\) is dense, then \(E\) is also dense.% \end{proposition} \begin{definition}{}{definition-579}% \hypertarget{p-580}{}% Let \(Y\subseteq X\) for a topological space \(\tuple{X,\mc T}\). Then the \terminology{subspace topology} for \(Y\) is given by \(\mc T_Y=\setBuilder{U\cap Y}{U\in\mc T}\).% \end{definition} \begin{proposition}{}{}{proposition-586}% \hypertarget{p-587}{}% The subspace topology is a valid topology.% \end{proposition} \begin{proposition}{}{}{proposition-588}% \hypertarget{p-589}{}% Let \(n\in\setList{0,1,2}\). A subspace of a \(T_n\) space is also \(T_n\).% \end{proposition} \begin{definition}{}{definition-593}% \hypertarget{p-594}{}% The \terminology{Cantor set} is the subset \(C\subseteq\mb R\) defined by \(C=\bigcap_{n\in\mb N} C_n\), where \(C_0=[0,1]\) and% \begin{equation*} C_{n+1}=C_n\setminus\bigcup_{0\leq k\lt 3^n} \left(\frac{3k+1}{3^{n+1}},\frac{3k+2}{3^{n+1}}\right). \end{equation*} This set is usually considered as a closed subset of the Euclidean line, or as a subspace of the Euclidean line.% \end{definition} \begin{definition}{}{definition-600}% \hypertarget{p-601}{}% Let \(\tuple{X,\mc T}\) be a topological space. A subset \(\mc B\subseteq\mc T\) is called a \terminology{basis} for the topology if for every \(x\in X\) and neighborhood \(U\) of \(x\), there exists \(B\in\mc B\) such that \(x\in B\subseteq U\).% \end{definition} \begin{proposition}{}{}{proposition-610}% \hypertarget{p-611}{}% \(\mc B=\setBuilder{(a,b)}{a,b\in\mb R}\) is a basis for the Euclidean topology.% \end{proposition} \begin{theorem}{}{}{theorem-613}% \hypertarget{p-614}{}% Let \(\mc B\subseteq\mc P(X)\) satisfy the following properties:% \leavevmode% \begin{enumerate} \item\hypertarget{li-617}{}For all \(x\in X\), there exists \(B\in\mc B\) such that \(x\in B\).% \item\hypertarget{li-621}{}If \(x\in A\in\mc B\) and \(x\in B\in\mc B\), there exists \(C\in\mc B\) such that \(x\in C\subseteq A\cap B\).% \end{enumerate} \hypertarget{p-626}{}% Then \(\mc T=\setBuilder{\bigcup\mc U}{\mc U\subseteq\mc B}\) is a topology, and \(\mc B\) is a basis for that topology. We call this the \terminology{topology generated by the basis}.% \end{theorem} \begin{proposition}{}{}{proposition-630}% \hypertarget{p-631}{}% \(\mc B=\setBuilder{[a,b)}{a,b\in\mb R}\) is a basis for a topology different from the Euclidean topology, called the \terminology{Sorgenfrey topology}.% \end{proposition} \begin{example}{Examples of bases.}{example-634}% \hypertarget{p-636}{}% Calculate the topology generated by each basis on \(\mb R\).% \leavevmode% \begin{enumerate} \item\hypertarget{li-639}{}\(\mc B=\setBuilder{(a,b)}{a,b\in\mb Q}\)% \item\hypertarget{li-641}{}\(\mc B=\setBuilder{(a,\infty)}{a\in\mb R}\)% \item\hypertarget{li-643}{}\(\mc B=\setBuilder{\setList{x}}{x\in\mb R}\)% \item\hypertarget{li-645}{}\(\mc B=\setBuilder{[a,b]}{a,b\in\mb R}\)% \item\hypertarget{li-647}{}\(\mc B=\setBuilder{[a,b]}{a,b\in\mb R,a\lt0\lt b}\)% \end{enumerate} \end{example} \begin{theorem}{}{}{theorem-649}% \hypertarget{p-650}{}% Let \(\mc S\subseteq\mc P(X)\) and% \begin{equation*} \mc T=\bigcap\setBuilder{\mc T^\star\subseteq\mc P(X)}{\mc S\subseteq\mc T^\star \text{ and } \mc T^\star \text{ is a topology on } X}. \end{equation*} Then \(\mc T\) is a topology.% \end{theorem} \begin{definition}{}{definition-654}% \hypertarget{p-655}{}% The set \(\mc S\subseteq\mc P(X)\) in \hyperref[theorem-649]{Theorem~\ref{theorem-649}} is called a \terminology{subbasis} generating the topology% \begin{equation*} \mc T=\bigcap\setBuilder{\mc T^\star\subseteq\mc P(X)}{\mc S\subseteq\mc T^\star \text{ and } \mc T^\star \text{ is a topology on } X}. \end{equation*} % \end{definition} \begin{example}{Topologies generated from subbases.}{example-660}% \hypertarget{p-662}{}% Calculate the topology on \(\mb R\) generated by each subbasis.% \leavevmode% \begin{enumerate} \item\hypertarget{li-665}{}\(\setBuilder{(-\infty,x)}{x\in\mb R}\cup\setBuilder{(y,\infty)}{y\in\mb R}\)% \item\hypertarget{li-667}{}\(\setBuilder{(-\infty,x]}{x\in\mb R}\cup\setBuilder{[y,\infty)}{y\in\mb R}\)% \item\hypertarget{li-669}{}\(\setList{\setList{0}}\)% \item\hypertarget{li-671}{}\(\mc T\cup\setList{\mb R\setminus\setBuilder{\frac{1}{2^n}}{n\in\mb N}}\)% \end{enumerate} \end{example} \begin{theorem}{}{}{theorem-673}% \hypertarget{p-674}{}% Let \(\mc S\subseteq\mc P(X)\) and% \begin{equation*} \mc B=\setList{X}\cup\bigcap\setBuilder{\mc B^\star\subseteq\mc P(X)} {\mc S\subseteq\mc B^\star\text{ and } B_1,B_2\in\mc B^\star\Rightarrow B_1\cap B_2\in\mc B^\star}. \end{equation*} Then \(\mc B\) is a basis for a topology on \(X\), and the topology generated by the basis \(\mc B\) is same as the topology generated by the subbasis \(\mc S\).% \end{theorem} \begin{definition}{}{definition-681}% \hypertarget{p-682}{}% The following are also known as \terminology{separation axioms} for a topological space \(\tuple{X,\mc T}\).% \leavevmode% \begin{enumerate} \item\hypertarget{li-686}{}\(\mc T\) is said to be \terminology{regular} if and only if for all points \(x\in X\) and closed subsets \(H\subseteq X\) such that \(x\not\in H\), there exist open sets \(U,V\in\mc T\) such that \(x\in U,H\subseteq V,U\cap V=\emptyset\).% \item\hypertarget{li-694}{}\(\mc T\) is said to be \terminology{\(T_3\)} if and only if it is both regular and \(T_1\)% \item\hypertarget{li-699}{}\(\mc T\) is said to be \terminology{normal} if and only if for all closed subsets \(H,L\subseteq X\) such that \(H\cap L=\emptyset\), there exist open sets \(U,V\in\mc T\) such that \(H\subseteq U,L\subseteq V,U\cap V=\emptyset\).% \item\hypertarget{li-706}{}\(\mc T\) is said to be \terminology{\(T_4\)} if and only if it is both normal and \(T_1\)% \end{enumerate} \end{definition} \begin{proposition}{}{}{proposition-711}% \hypertarget{p-712}{}% \(T_{n+1}\Rightarrow T_n\) for \(n\in\setList{0,1,2,3}\).% \end{proposition} \begin{theorem}{}{}{theorem-715}% \hypertarget{p-716}{}% The real line \(\mb R\) equipped with the Euclidean topology is \(T_4\).% \end{theorem} \begin{example}{}{example-719}% \hypertarget{p-720}{}% Find or create an example of a topological space that is:% \leavevmode% \begin{enumerate} \item\hypertarget{li-722}{}\(T_2\) but not regular.% \item\hypertarget{li-724}{}\(T_3\) but not \(T_4\)% \item\hypertarget{li-727}{}Regular but not \(T_3\).% \item\hypertarget{li-729}{}Normal but not \(T_4\).% \item\hypertarget{li-731}{}Regular but not normal.% \item\hypertarget{li-732}{}Normal but not regular.% \end{enumerate} \end{example} \begin{theorem}{}{}{theorem-733}% \hypertarget{p-734}{}% A topological space is \(T_3\) if and only if it is regular and \(T_0\).% \end{theorem} \end{sectionptx} % % \typeout{************************************************} \typeout{Section 3 Continuity \& Homeomorphisms} \typeout{************************************************} % \begin{sectionptx}{Continuity \& Homeomorphisms}{}{Continuity \& Homeomorphisms}{}{}{section-737} \begin{definition}{}{definition-739}% \hypertarget{p-740}{}% Let \(f:X\to Y\) be a function. For \(A\subseteq X\), let \(f[A]=\setBuilder{f(x)}{x\in A}\). For \(y\in Y\), let \(f^\leftarrow(y)=\setBuilder{x\in X}{f(x)=y}\). For \(B\subseteq Y\), let \(f^\leftarrow[B]=\setBuilder{x\in X}{f(x)\in B}\).% \end{definition} \begin{definition}{}{definition-748}% \hypertarget{p-749}{}% Let \(X,Y\) be topological spaces with \(x\in X\), and let \(f:X\to Y\) be a function such that for every neighborhood \(V\) of \(f(x)\), there exists a neighborhood \(U\) of \(x\) such that \(f[U]\subseteq V\). Then \(f\) is said to be \terminology{continuous at the point} \(x\).% \par \hypertarget{p-761}{}% A function that is continuous at every point of its domain is called \terminology{continuous}.% \end{definition} \begin{proposition}{}{}{proposition-763}% \hypertarget{p-764}{}% A function \(f:X\to Y\) is continuous if and only if \(f^\leftarrow[V]\) is an open subset of \(X\) for every open \(V\subseteq Y\).% \end{proposition} \begin{proposition}{}{}{proposition-769}% \hypertarget{p-770}{}% Let \(X,Y\) be topological spaces.% \leavevmode% \begin{enumerate} \item\hypertarget{li-773}{}The identity function \(\iota:X\to X\) defined by \(\iota(x)=x\) is continuous.% \item\hypertarget{li-776}{}Let \(y\in Y\). The constant function \(c_y:X\to Y\) defined by \(c_y(x)=y\) is continuous.% \item\hypertarget{li-780}{}Every function whose domain is a discrete space is continuous.% \item\hypertarget{li-781}{}Every function whose range is an indiscrete space is continuous.% \end{enumerate} \end{proposition} \begin{example}{Continuous functions \(\mb R\to\mb R\).}{example-782}% \hypertarget{p-785}{}% Verify that each of the following functions \(f:\mb R\to\mb R\) are continuous.% \leavevmode% \begin{enumerate} \item\hypertarget{li-788}{}\(f(x)=|x|\)% \item\hypertarget{li-790}{}\(f(x)=x^2\)% \item\hypertarget{li-792}{}\(f(x)=g(x)+h(x)\) for \(g,h:\mb R\to\mb R\) continuous.% \item\hypertarget{li-795}{}\(f(x)=g(x)h(x)\) for \(g,h:\mb R\to\mb R\) continuous.% \end{enumerate} \end{example} \begin{theorem}{}{}{theorem-798}% \hypertarget{p-799}{}% If \(f:X\to Y\) and \(g:Y\to Z\) are both continuous, then \(g\circ f:X\to Z\) is continuous.% \end{theorem} \begin{definition}{}{definition-803}% \hypertarget{p-804}{}% Let \(f:X\to Y\) be a bijection such that both \(f\) and its inverse \(f^{-1}\) are continuous. Then \(f\) is called a \terminology{homeomorphism} and \(X,Y\) are said to be \terminology{homeomorphic}.% \end{definition} \begin{example}{Properties preserved by continuous functions.}{example-812}% \hypertarget{p-814}{}% Determine if the following hold if \(f:X\to Y\) is a continous surjection. If not, determine if they hold if \(f\) is a continuous bijection. If not, show that they hold if \(f\) is a homeomorphism.% \leavevmode% \begin{enumerate} \item\hypertarget{li-819}{}If \(X\) is Hausdorff, then \(Y\) is Hausdorff.% \item\hypertarget{li-822}{}If \(Y\) is Hausdorff, then \(X\) is Hausdorff.% \item\hypertarget{li-825}{}If \(U\subseteq X\) is open, then \(f[U]\subseteq Y\) is open.% \item\hypertarget{li-828}{}If \(H\subseteq X\) is closed, then \(f[H]\subseteq Y\) is closed.% \item\hypertarget{li-831}{}If \(x\) is a limit point of \(A\subseteq X\), then \(f(x)\) is a limit point of \(f[A]\subseteq Y\).% \end{enumerate} \end{example} \begin{proposition}{}{}{proposition-836}% \hypertarget{p-837}{}% Every topological space is homeomorphic to itself.% \end{proposition} \begin{proposition}{}{}{proposition-838}% \hypertarget{p-839}{}% If \(f:X\to Y\) and \(g:Y\to Z\) are both homeomorphisms, then \(g\circ f:X\to Z\) is a homeomorphism.% \end{proposition} \begin{theorem}{}{}{theorem-843}% \hypertarget{p-844}{}% Let \(a\lt b\) and \(c\lt d\) be real numbers. Then \((a,b)\) and \((c,d)\) are homeomorphic subspaces of the Euclidean line.% \end{theorem} \begin{theorem}{}{}{theorem-849}% \hypertarget{p-850}{}% \(\mb R\) with the Euclidean topology is homeomorphic to its subspace \((0,1)\).% \end{theorem} \begin{theorem}{}{}{theorem-853}% \hypertarget{p-854}{}% Let \(\mc B\) be a basis for the Euclidean topology on \(\mb R\). Give \(K=\mb R\cup\setList{-\infty,\infty}\) the topology generated by the basis \(\setBuilder{[-\infty,x)}{x\in\mb Q}\cup \setBuilder{(x,\infty]}{x\in\mb Q}\cup\mc B\). Then \(K\) is homeomorphic to the subspace \([0,1]\) of the Euclidean line.% \end{theorem} \begin{proposition}{}{}{proposition-861}% \hypertarget{p-862}{}% The real line with the Sorgenfrey topology generated by the basis \(\setBuilder{[a,b)}{a,b\in\mb R}\) is homeomorphic to the real line with the reverse Sorgenfrey topology generated by the basis \(\setBuilder{(a,b]}{a,b\in\mb R}\).% \end{proposition} \end{sectionptx} % % \typeout{************************************************} \typeout{Section 4 Metric Spaces} \typeout{************************************************} % \begin{sectionptx}{Metric Spaces}{}{Metric Spaces}{}{}{section-865} \begin{definition}{}{definition-867}% \hypertarget{p-868}{}% Let \(d:X^2\to[0,\infty)\) be a function satisfying the following for all \(x,y,z\in X\).% \leavevmode% \begin{enumerate} \item\hypertarget{li-872}{}\(d(x,y)=0\) if and only if \(x=y\).% \item\hypertarget{li-875}{}\(d(x,y)=d(y,x)\)% \item\hypertarget{li-877}{}\(d(x,z)\leq d(x,y)+d(y,z)\)% \end{enumerate} \hypertarget{p-879}{}% Then \(d\) is said to be a \terminology{metric} on the set \(X\), and% \begin{equation*} B_r(x)=\setBuilder{y\in X}{d(x,y)\lt r} \end{equation*} is said to be a \terminology{metric ball around \(x\)}.% \end{definition} \begin{example}{Examples of metrics.}{example-886}% \hypertarget{p-888}{}% Verify that each of the following is a metric.% \leavevmode% \begin{enumerate} \item\hypertarget{li-890}{}\(d(x,y)=1\) for all distinct \(x,y\in X\), and \(d(x,x)=0\)% \item\hypertarget{li-894}{}\(d(x,y)=|y-x|\) for all \(x,y\in\mb R\)% \item\hypertarget{li-897}{}\(d(\tuple{x_0,x_1},\tuple{y_0,y_1})=\sqrt{(y_1-y_0)^2+(x_1-x_0)^2}\) for all \(\tuple{x_0,x_1},\tuple{y_0,y_1}\in\mb R^2\).% \item\hypertarget{li-900}{}\(d(\tuple{x_0,x_1},\tuple{y_0,y_1})=|y_1-y_0|+|x_1-x_0|\) for all \(\tuple{x_0,x_1},\tuple{y_0,y_1}\in\mb R^2\).% \item\hypertarget{li-903}{}\(d(\tuple{x_0,x_1},\tuple{y_0,y_1})=\max\setList{|y_1-y_0|,|x_1-x_0|}\) for all \(\tuple{x_0,x_1},\tuple{y_0,y_1}\in\mb R^2\).% \end{enumerate} \end{example} \begin{theorem}{}{}{theorem-906}% \hypertarget{p-907}{}% Let \(d\) be a metric on a set \(X\). Then% \begin{equation*} \mc B=\setBuilder{B_r(x)}{x\in X,r>0} \end{equation*} is a basis for a topology on \(X\).% \end{theorem} \begin{definition}{}{definition-912}% \hypertarget{p-913}{}% The topology generated by the basis given in \hyperref[theorem-906]{Theorem~\ref{theorem-906}} is called the \terminology{topology generated by the metric}.% \par \hypertarget{p-916}{}% A given topology is said to be \terminology{metrizable} if there exists some metric that generates it. Two metrics are said to be \terminology{topologically equivalent} if they generate the same topology.% \end{definition} \begin{proposition}{}{}{proposition-919}% \hypertarget{p-920}{}% Every discrete space is metrizable.% \end{proposition} \begin{theorem}{}{}{theorem-921}% \hypertarget{p-922}{}% Every metrizable space is \(T_4\).% \end{theorem} \begin{theorem}{}{}{theorem-924}% \hypertarget{p-925}{}% Two bases \(\mc B_0,\mc B_1\) generate the same topology if and only if for all \(x\in B_0\in\mc B_0\) there exists \(B_1\in\mc B_1\) such that \(x\in B_1\subseteq B_0\), and for all \(x\in B_1\in\mc B_1\) there exists \(B_0\in\mc B_0\) such that \(x\in B_0\subseteq B_1\). % \end{theorem} \begin{theorem}{}{}{theorem-933}% \hypertarget{p-934}{}% Let \(B_{0,r}(x),B_{1,r}(x)\) be the metric balls around \(x\) given by two metrics \(d_0,d_1\) respectively. Then \(d_0,d_1\) are topologically equivalent if and only if for all \(x\in X\) and \(\epsilon\gt 0\), there exists \(\delta\gt 0\) such that \(B_{0,\delta}(x)\subseteq B_{1,\epsilon}\) and \(B_{1,\delta}(x)\subseteq B_{0,\epsilon}(x)\).% \end{theorem} \begin{definition}{}{definition-944}% \hypertarget{p-945}{}% For \(\vec x=\tuple{x_0,\dots,x_{n-1}}\in\mb R^n\), let \(\vec x(i)=x_i\).% \end{definition} \begin{theorem}{}{}{theorem-948}% \hypertarget{p-949}{}% The following metrics on \(\mb R^n\) are topologically equivalent.% \leavevmode% \begin{enumerate} \item\hypertarget{li-952}{}\(d(\vec x,\vec y)=\sqrt{\sum_{0\leq i\lt n}(\vec y(i)-\vec x(i))^2}\)% \item\hypertarget{li-954}{}\(d(\vec x,\vec y)=\sum_{0\leq i\lt n}|\vec y(i)-\vec x(i)|\)% \item\hypertarget{li-956}{}\(d(\vec x,\vec y)=\max\setBuilder{|\vec y(i)-\vec x(i)|}{0\leq i\lt n}\)% \end{enumerate} \end{theorem} \begin{definition}{}{definition-958}% \hypertarget{p-959}{}% The topology generated by the metrics given in \hyperref[theorem-948]{Theorem~\ref{theorem-948}} is called the \terminology{Euclidean topology} on \(\mb R^n\).% \end{definition} \begin{definition}{}{definition-963}% \hypertarget{p-964}{}% A \terminology{local basis at a point \(x\)} is a collection of open sets \(\mc B_x\) such that for every neighborhood \(U\) of \(x\), there exists \(B\in\mc B_x\) such that \(x\in B_x\subseteq U\).% \end{definition} \begin{definition}{}{definition-972}% \hypertarget{p-973}{}% A space is said to be \terminology{first-countable} if there exists a countable local basis at every point of the space.% \par \hypertarget{p-975}{}% A space is said to be \terminology{second-countable} if there exists a countable basis for the space.% \end{definition} \begin{proposition}{}{}{proposition-977}% \hypertarget{p-978}{}% Every second-countable space is first-countable.% \end{proposition} \begin{proposition}{}{}{proposition-979}% \hypertarget{p-980}{}% Every metrizable space is first-countable% \end{proposition} \begin{definition}{}{definition-981}% \hypertarget{p-982}{}% A space is said to be \terminology{separable} if there exists a countable dense subset of the space.% \end{definition} \begin{theorem}{}{}{theorem-984}% \hypertarget{p-985}{}% Let \(X\) be metrizable. Then \(X\) is second-countable if and only if it is separable.% \end{theorem} \begin{proposition}{}{}{proposition-988}% \hypertarget{p-989}{}% Every Euclidean space is separable and second-countable.% \end{proposition} \begin{theorem}{}{}{theorem-990}% \hypertarget{p-991}{}% For \(\vec x,\vec y\in\mb R^2\), let \(d(\vec x,\vec y)=1\) if \(\vec x(1)\not=\vec y(1)\), and \(d(\vec x,\vec y)=|\vec y(0)-\vec x(0)|\) otherwise. Then \(d\) is a metric generating a non-separable, non-discrete topology on \(\mb R^2\).% \end{theorem} \begin{theorem}{}{}{theorem-998}% \hypertarget{p-999}{}% The subspace \(\setBuilder{\vec x}{\vec{x}(1)\in\setList{0,1}}\) of the space defined in \hyperref[theorem-990]{Theorem~\ref{theorem-990}} is homeomorphic to the subspace \((0,1)\cup(2,3)\) of the Euclidean line.% \end{theorem} \begin{definition}{}{definition-1003}% \hypertarget{p-1004}{}% A point \(x\) is called a \terminology{sequential limit point} of a set \(A\) iff there exists a countable subset \(B\subseteq A\setminus\setList{x}\) such that every neighborhood of \(x\) contains all but finitely many points of \(B\).% \end{definition} \begin{proposition}{}{}{proposition-1011}% \hypertarget{p-1012}{}% Every sequential limit point of a set is a limit point of that set.% \end{proposition} \begin{theorem}{}{}{theorem-1013}% \hypertarget{p-1014}{}% Let \(X\) be first-countable. Then \(x\) is a limit point of a set if and only if \(x\) is a sequental limit point of that set.% \end{theorem} \begin{definition}{}{definition-1018}% \hypertarget{p-1019}{}% A \terminology{Cauchy sequence} is a countably infinte set \(A\) such that for all \(\epsilon\gt0\), the set \(\setBuilder{x\in A}{\exists y\in A(d(x,y)\geq\epsilon)}\) is finite.% \end{definition} \begin{definition}{}{definition-1024}% \hypertarget{p-1025}{}% A \terminology{complete metric} is a metric such that every Cauchy sequence has a sequential limit point.% \par \hypertarget{p-1027}{}% A topology that can be generated by a complete metric is said to be \terminology{completely metrizable}.% \end{definition} \begin{proposition}{}{}{proposition-1029}% \hypertarget{p-1030}{}% Every Euclidean space is completely metrizable.% \end{proposition} \begin{proposition}{}{}{proposition-1031}% \hypertarget{p-1032}{}% Let \(d:X\to[0,\infty)\) be a metric and \(Y\subseteq X\). Then \(d\) restricted to \(Y\) generates the subspace topology on \(Y\). (Therefore, every subspace of a metrizable space is metrizable.)% \end{proposition} \begin{theorem}{}{}{theorem-1038}% \hypertarget{p-1039}{}% The subspace \((0,1)\) of the Euclidean line is completely metrizable, but not by the topology inherited from \(\mb R\).% \end{theorem} \begin{theorem}{}{}{theorem-1042}% \hypertarget{p-1043}{}% The subspace \(\mb Q\) of the Euclidean line is metrizable, but not completely metrizable.% \end{theorem} \begin{theorem}{}{}{theorem-1045}% \hypertarget{p-1046}{}% The subspace \(\mb R\setminus\mb Q\) of the Euclidean line is completely metrizable, but not by the topology inherited from \(\mb R\).% \end{theorem} \begin{theorem}{}{}{theorem-1049}% \hypertarget{p-1050}{}% Metrizable and completely metrizable are topological properties. That is, if \(X\) and \(Y\) are homeomorphic, then \(X\) is (completely) metrizable if and only if \(Y\) is too.% \end{theorem} \end{sectionptx} % % \typeout{************************************************} \typeout{Section 5 Compactness} \typeout{************************************************} % \begin{sectionptx}{Compactness}{}{Compactness}{}{}{section-1055} \begin{definition}{}{definition-1057}% \hypertarget{p-1058}{}% A collection \(\mc A\subseteq \mc P(X)\) is said to \terminology{cover} a subset \(Y\subseteq X\) iff \(Y\subseteq\bigcup\mc A\).% \end{definition} \begin{definition}{}{definition-1063}% \hypertarget{p-1064}{}% A subset \(K\subseteq X\) of a topological space is said to be \terminology{compact} iff for every collection of open sets \(\mc U\) covering \(K\), there exists a finite subcollection \(\mc F\subseteq\mc U\) that also covers \(K\).% \end{definition} \begin{example}{}{example-1071}% \hypertarget{p-1072}{}% Determine if each of the following subsets of the Euclidean line is compact.% \leavevmode% \begin{enumerate} \item\hypertarget{li-1074}{}\(\mb R\)% \item\hypertarget{li-1076}{}\(\mb Z\)% \item\hypertarget{li-1078}{}\(\setBuilder{2^{-n}}{n\in\mb N}\)% \item\hypertarget{li-1080}{}\(\setList{0}\cup\setBuilder{2^{-n}}{n\in\mb N}\)% \item\hypertarget{li-1082}{}\((0,1)\)% \item\hypertarget{li-1084}{}\([0,1]\)% \end{enumerate} \end{example} \begin{definition}{}{definition-1086}% \hypertarget{p-1087}{}% A subset \(R\subseteq X\) of a topological space is said to be \terminology{relatively compact} iff for every collection of open sets \(\mc U\) covering \(X\), there exists a finite subcollection \(\mc F\subseteq\mc U\) that covers \(K\).% \end{definition} \begin{theorem}{}{}{theorem-1094}% \hypertarget{p-1095}{}% A space is regular if and only if for every point \(x\) and neighborhood \(U\), there exists a neighborhood \(V\) of \(x\) such that \(x\in V\subseteq\cl V\subseteq U\).% \end{theorem} \begin{theorem}{}{}{theorem-1101}% \hypertarget{p-1102}{}% Let \(X\) be regular. A subset \(R\subseteq X\) is relatively compact if and only if \(\cl R\) is compact.% \end{theorem} \begin{theorem}{}{}{theorem-1106}% \hypertarget{p-1107}{}% Let \(X\) be compact and \(K\) be a closed subset of \(X\). Then \(K\) is compact.% \end{theorem} \begin{proposition}{}{}{proposition-1112}% \hypertarget{p-1113}{}% Every finite subset of a space is compact.% \end{proposition} \begin{proposition}{}{}{proposition-1114}% \hypertarget{p-1115}{}% Every finite union of compact subsets is compact.% \end{proposition} \begin{theorem}{}{}{theorem-1116}% \hypertarget{p-1117}{}% Every compact subset of a Hausdorff space is closed.% \end{theorem} \begin{proposition}{}{}{proposition-1118}% \hypertarget{p-1119}{}% Let \(\mc T=\setList{\emptyset}\cup \setBuilder{\mb N\setminus F}{F\text{ is finite}}\) be the cofinite topology on \(\mb N\). Every subset of \(\mb N\) is compact under this topology.% \end{proposition} \begin{theorem}{}{}{theorem-1123}% \hypertarget{p-1124}{}% Let \(f:X\to Y\) be continuous and \(K\subseteq X\) be compact. Then \(f[K]\) is compact.% \end{theorem} \begin{corollary}{}{}{corollary-1128}% \hypertarget{p-1129}{}% Compactness is a topological property.% \end{corollary} \begin{theorem}{}{}{theorem-1130}% \hypertarget{p-1131}{}% Every infinite subset of a compact set has a limit point.% \end{theorem} \begin{theorem}{}{}{theorem-1132}% \hypertarget{p-1133}{}% Let \(\mc K=\setBuilder{K_n}{n\in\mb N}\) be a collection of non-empty compact subsets of a topological space such that \(K_{n+1}\subseteq K_n\) for all \(n\in\mb N\). Then \(\bigcap\mc K\) is a non-empty compact set.% \end{theorem} \begin{theorem}{}{}{theorem-1138}% \hypertarget{p-1139}{}% Let \(X\) be metrizable. Then the following are equivalent for \(K\subseteq X\).% \leavevmode% \begin{enumerate} \item\hypertarget{li-1143}{}\(K\) is compact% \item\hypertarget{li-1145}{}Every infinite subset of \(K\) has a limit point.% \item\hypertarget{li-1147}{}Every infinite subset of \(K\) has a sequential limit point.% \end{enumerate} \end{theorem} \begin{lemma}{}{}{lemma-1149}% \hypertarget{p-1150}{}% A topological space \(X\) is Hausdorff if and only if for every pair of disjoint compact subsets \(H,K\) there exist disjoint open sets \(U,V\) such that \(H\subseteq U\) and \(K\subseteq V\).% \end{lemma} \begin{theorem}{}{}{theorem-1156}% \hypertarget{p-1157}{}% Every compact Hausdorff space is \(T_4\).% \end{theorem} \end{sectionptx} % % \typeout{************************************************} \typeout{Section 6 Connectedness} \typeout{************************************************} % \begin{sectionptx}{Connectedness}{}{Connectedness}{}{}{section-1159} \begin{definition}{}{definition-1161}% \hypertarget{p-1162}{}% A pair of open sets \(\setList{A,B}\) satisfying \(A\cap Y\not=\emptyset\), \(B\cap Y\not=\emptyset\), \(Y\subseteq A\cup B\), and \(A\cap B\cap Y=\emptyset\) for a subset \(Y\) of a topological space \(X\) is called a \terminology{disconnection} of \(Y\).% \par \hypertarget{p-1172}{}% A space for which a diconnection exists is called \terminology{disconnected}; otherwise, the space is called \terminology{connected}.% \end{definition} \begin{proposition}{}{}{proposition-1175}% \hypertarget{p-1176}{}% A pair \(\setList{A,B}\) of open sets is a disconnection of \(Y\subseteq X\) if and only if \(\setList{A\cap Y,B\cap Y}\) is a partition of \(Y\) by non-empty clopen (both closed and open) sets in the subspace topology.% \end{proposition} \hypertarget{p-1181}{}% (Corollary: A space itself is disconnected iff it is the union of two disjoint non-empty clopen subsets.)% \begin{proposition}{}{}{proposition-1182}% \hypertarget{p-1183}{}% The Euclidean line with a point removed \(\mb R\setminus\setList{0}\) is disconnected.% \end{proposition} \begin{lemma}{}{}{lemma-1185}% \hypertarget{p-1186}{}% Let \(\mb R=U\cup V\) for open sets \(U,V\) and let \(x\in U,y\in V\) with \(x\leq y\). Then \(\inf\setBuilder{z\in[x,y]}{z\in V}\in U\cap V\).% \end{lemma} \begin{corollary}{}{}{corollary-1192}% \hypertarget{p-1193}{}% The Euclidean line is connected.% \end{corollary} \begin{theorem}{}{}{theorem-1194}% \hypertarget{p-1195}{}% The Sorgenfrey topology on \(\mb R\) is disconnected.% \end{theorem} \begin{theorem}{}{}{theorem-1197}% \hypertarget{p-1198}{}% If a subset \(A\) of a topological space is connected, then \(\cl A\) is connected.% \end{theorem} \begin{proposition}{}{}{proposition-1201}% \hypertarget{p-1202}{}% If a subset \(A\) of a topological space is connected and \(f:X\to Y\) is continuous, then \(f[A]\) is connected.% \end{proposition} \begin{corollary}{}{}{corollary-1206}% \hypertarget{p-1207}{}% Connectedness is a topological property.% \end{corollary} \begin{proposition}{}{}{proposition-1208}% \hypertarget{p-1209}{}% Let \(\setList{0,1}\) have the discrete topology. Then a topological space \(X\) is connected if and only if every continuous function \(f:X\to\setList{0,1}\) is constant.% \end{proposition} \begin{theorem}{}{}{theorem-1213}% \hypertarget{p-1214}{}% If \(\mc A\) is a collection of connected subsets of a topological space with \(\bigcap\mc A\not=\emptyset\), then \(\bigcup\mc A\) is connected.% \end{theorem} \begin{definition}{}{definition-1218}% \hypertarget{p-1219}{}% Suppose for every two points \(x,y\in A\subseteq X\), there exists a continuous function \(f:[0,1]\to A\) such that \(f(0)=x\) and \(f(1)=y\). Such a space is said to be \terminology{path connected}.% \end{definition} \begin{proposition}{}{}{proposition-1225}% \hypertarget{p-1226}{}% Every path connected space is connected.% \end{proposition} \begin{theorem}{}{}{theorem-1227}% \hypertarget{p-1228}{}% For \(\vec x,\vec y\in\mb R^2\), let% \begin{equation*} B(\vec x,\vec y)=\setBuilder{\vec z}{\vec z(0)\in(\vec x(0),\vec y(0)) \text{ or } (\vec x(0)=\vec y(0)=\vec z(0) \text{ and } \vec z(1)\in(\vec x(1),\vec y(1))}\text{.} \end{equation*} Then \(\mc B=\setBuilder{B(\vec x,\vec y)}{\vec x,\vec y\in\mb R^2}\) is a basis for a topology on \(\mb R^2\) that is connected but not path connected.% \end{theorem} \begin{theorem}{}{}{theorem-1233}% \hypertarget{p-1234}{}% Let% \begin{equation*} S= \setBuilder{\tuple{x,y}}{x\in(0,1]\text{ and } y=\sin\left(\frac{1}{x}\right)} \end{equation*} (the \terminology{topologist's sine curve}). Then \(\cl S\) is a subset of the Euclidean space \(\mb R^2\) that is connected but not path connected.% \end{theorem} \end{sectionptx} % % \typeout{************************************************} \typeout{Section 7 Product Spaces} \typeout{************************************************} % \begin{sectionptx}{Product Spaces}{}{Product Spaces}{}{}{section-1239} \begin{definition}{}{definition-1241}% \hypertarget{p-1242}{}% Let \(X,Y\) be topological spaces, generated respectively by the bases \(\mc B_X,\mc B_Y\). Then the \terminology{product space} is given by the set \(X\times Y=\setBuilder{\tuple{x,y}}{x\in X,y\in Y}\) with the topology generated by the basis \(\mc B=\setBuilder{U\times V}{U\in\mc B_X,V\in\mc B_Y}\).% \end{definition} \begin{theorem}{}{}{theorem-1248}% \hypertarget{p-1249}{}% The Euclidean space \(\mb R^{n+1}\) is homeomorphic to the product space \(\mb R^n\times\mb R\).% \end{theorem} \begin{proposition}{}{}{proposition-1252}% \hypertarget{p-1253}{}% The product \(X\times Y\) is Hausdorff if and only if \(X,Y\) are each Hausdorff.% \end{proposition} \begin{theorem}{}{}{theorem-1256}% \hypertarget{p-1257}{}% The product \(X\times Y\) is regular if and only if \(X,Y\) are each regular.% \end{theorem} \begin{lemma}{}{}{lemma-1260}% \hypertarget{p-1261}{}% Let \(S=\mb R\) equipped with the Sorgenfrey topology. Then the product space \(S\times S\) contains two disjoint closed subsets \(H=\setBuilder{\tuple{x,-x}}{x\in\mb Q}\) and \(L=\setBuilder{\tuple{x,-x}}{x\in\mb R\setminus\mb Q}\) that cannot be separated by a pair of open sets.% \end{lemma} \begin{theorem}{}{}{theorem-1266}% \hypertarget{p-1267}{}% Let \(S=\mb R\) equipped with the Sorgenfrey topology. Then \(S\) is normal, but \(S\times S\) is not normal.% \end{theorem} \begin{proposition}{}{}{proposition-1271}% \hypertarget{p-1272}{}% Let \(p\in Y\). The subspace \(\setBuilder{\tuple{x,p}}{x\in X}\) of \(X\times Y\) is homeomorphic to \(X\).% \end{proposition} \begin{proposition}{}{}{proposition-1277}% \hypertarget{p-1278}{}% The \terminology{diagonal} \(\Delta=\setBuilder{\tuple{x,x}}{x\in X}\) of \(X\times X\) is homeomorphic to \(X\).% \end{proposition} \begin{proposition}{}{}{proposition-1283}% \hypertarget{p-1284}{}% The product spaces \(X\times Y\) and \(Y\times X\) are homeomorphic.% \end{proposition} \begin{definition}{}{definition-1287}% \hypertarget{p-1288}{}% For a product space \(X\times Y\), its \terminology{projection maps} \(\pi_X:X\times Y\to X\) and \(\pi_Y:X\times Y\to Y\) are defined by \(\pi_X(\tuple{x,y})=x\) and \(\pi_Y(\tuple{x,y})=y\).% \end{definition} \begin{example}{Properties of projection maps.}{example-1295}% \hypertarget{p-1297}{}% Verify the following properties of projection maps.% \leavevmode% \begin{enumerate} \item\hypertarget{li-1299}{}Every projection map is continuous.% \item\hypertarget{li-1300}{}The projection of an open set is always open.% \item\hypertarget{li-1301}{}The projection of a closed set is not always closed.% \end{enumerate} \end{example} \begin{theorem}{}{}{theorem-1302}% \hypertarget{p-1303}{}% The product \(X\times Y\) is metrizable if and only if \(X,Y\) are each metrizable.% \end{theorem} \begin{lemma}{}{}{lemma-1306}% \hypertarget{p-1307}{}% Let \(Y\) be compact. If \(\mc U\) is an open cover of \(X\times Y\), then for each \(x\in X\) there exists a finite subcollection \(\mc F_x\subseteq\mc U\) and an open neighborhood \(U_x\) of \(x\) such that \(U_x\times Y\subseteq\bigcup\mc F_x\).% \end{lemma} \begin{theorem}{}{}{theorem-1316}% \hypertarget{p-1317}{}% The product \(X\times Y\) is compact if and only if \(X,Y\) are each compact.% \end{theorem} \begin{theorem}{}{}{theorem-1320}% \hypertarget{p-1321}{}% The product \(X\times Y\) is connected if and only if \(X,Y\) are each connected.% \end{theorem} \end{sectionptx} % % \typeout{************************************************} \typeout{Section 8 Quotient Spaces} \typeout{************************************************} % \begin{sectionptx}{Quotient Spaces}{}{Quotient Spaces}{}{}{section-1324} \begin{definition}{}{definition-1326}% \hypertarget{p-1327}{}% A \terminology{quotient map} is a surjection \(f:X\to Y\) such that \(V\subseteq Y\) is open if and only if \(f^\leftarrow[V]\subseteq X\) is open.% \end{definition} \begin{proposition}{}{}{proposition-1332}% \hypertarget{p-1333}{}% Let \(\tuple{X,\mc T_X}\) be a topological space, and let \(f:X\to Y\) be a surjection. Then \(\mc T_Y=\setBuilder{V\subseteq Y}{f^\leftarrow[V]\in\mc T_X}\) is a topology on \(Y\) such that \(f\) is a quotient map.% \end{proposition} \begin{definition}{}{definition-1339}% \hypertarget{p-1340}{}% The topology defined in \hyperref[proposition-1332]{Proposition~\ref{proposition-1332}} is known as the \terminology{quotient topology} induced by \(f\).% \end{definition} \begin{definition}{}{definition-1344}% \hypertarget{p-1345}{}% Let \(X^*\) be a partition of a topological space \(X\), and let \(f:X\to X^*\) be the surjection given by letting \(f(x)=A\) iff \(x\in A\). Then \(X^*\) paired with the quotient topology induced by \(f\) is called a \terminology{quotient space} or \terminology{identification space}.% \end{definition} \begin{theorem}{}{}{theorem-1355}% \hypertarget{p-1356}{}% Let \(X^*\) be a quotient space of \(X\) and \(V\subseteq X^*\). Then \(V\) is open in \(X^*\) if and only if \(\bigcup V\subseteq X\) is open in \(X\).% \end{theorem} \begin{theorem}{}{}{theorem-1364}% \hypertarget{p-1365}{}% Let \((X\times Y)^*=\setBuilder{\setList{x}\times Y}{x\in X}\) partition the product \(X\times Y\). Then the quotient space \((X\times Y)^*\) is homeomorphic to \(X\).% \end{theorem} \begin{definition}{}{definition-1370}% \hypertarget{p-1371}{}% A subset \(R\subseteq X^2\) is called a \terminology{relation} on \(X\), where the notation \(xRy\) is equivalent to writing \(\tuple{x,y}\in R\).% \par \hypertarget{p-1377}{}% A relation \(\sim\) on \(X\) is called an \terminology{equivalence relation} if it satisfies the following for all \(x,y,z\in X\).% \leavevmode% \begin{enumerate} \item\hypertarget{li-1383}{}\(x\sim x\). (Reflexivity)% \item\hypertarget{li-1385}{}\(x\sim y\) implies \(y\sim x\). (Symmetry)% \item\hypertarget{li-1388}{}\(x\sim y\) and \(y\sim z\) implies \(y\sim z\). (Transitivity)% \end{enumerate} \end{definition} \begin{theorem}{}{}{theorem-1392}% \hypertarget{p-1393}{}% Let \(X^*\) be a partition of \(X\) and define the relation \(\sim\) on \(X\) such that \(x\sim y\) if and only if \(\setList{x,y}\subseteq A\) for some \(A\in X^*\). Then \(\sim\) is an equivalence relation.% \end{theorem} \begin{theorem}{}{}{theorem-1402}% \hypertarget{p-1403}{}% Let \(\sim\) be an equivalence relation on \(X\), and let \([x]=\setBuilder{y\in X}{x\sim y}\). Then \(X^*=\setBuilder{[x]}{x\in X}\) is a partition of \(X\).% \end{theorem} \begin{definition}{}{definition-1409}% \hypertarget{p-1410}{}% Let \(\sim\) be an equivalence relation on a topological space \(X\). Then \(X/\sim\) denotes the quotient space defined by the partition \(X^*\) given in \hyperref[theorem-1402]{Theorem~\ref{theorem-1402}}.% \end{definition} \begin{proposition}{}{}{proposition-1416}% \hypertarget{p-1417}{}% Let \(R\) be a relation on \(X\). Then% \begin{equation*} \sim=\bigcap\setBuilder{\sim^\star\subseteq X^2}{R\subseteq\sim^\star\text{ and }\sim^\star \text{ is an equivalence relation on }X} \end{equation*} is an equivalence relation on \(X\).% \par \hypertarget{p-1422}{}% (Therefore, an equivalence relation may be defined as the minimal equivalence relation satisfying a list of relationships.)% \end{proposition} \begin{example}{Curves and surfaces defined as quotients.}{example-1423}% \hypertarget{p-1425}{}% Show that each of the following Euclidean subspaces and quotients of Euclidean subspaces are homeomorphic.% \leavevmode% \begin{enumerate} \item\hypertarget{li-1427}{}\([0,1]/\sim\) where \(0\sim 1\), and \(\setBuilder{\tuple{x,y}\in\mb R^2}{x^2+y^2=1}\).% \item\hypertarget{li-1431}{}\([0,2]/\sim\) where \(0\sim 1\sim 2\), and \(\setBuilder{\tuple{x,y}\in\mb R^2}{(x-1)^2+y^2=1}\cup\setBuilder{\tuple{x,y}\in\mb R^2}{(x+1)^2+y^2=1}\).% \item\hypertarget{li-1435}{}\([0,1]^2/\sim\) where \(\tuple{0,y}\sim\tuple{1,y}\), and \(\setBuilder{\tuple{x,y}\in\mb R^2}{1\leq x^2+y^2\leq 2}\).% \item\hypertarget{li-1439}{}\([0,1]^2/\sim\) where \(\tuple{x,y}\sim\tuple{z,w}\) whenever at least one of \(x,y\) and at least one of \(z,w\) is in \(\setList{0,1}\), and \(\setBuilder{\tuple{x,y,z}\in\mb R^2}{1\leq x^2+y^2+z^2=1}\).% \end{enumerate} \end{example} \begin{definition}{}{definition-1446}% \hypertarget{p-1447}{}% The \terminology{hypersphere} of dimension \(n\) is the quotient space \(S^n=[0,1]^n/\sim\) given by \(\vec x\sim\vec y\) whenever there exist \(i,j\in\setList{0,\dots,n}\) such that \(\vec x(i),\vec y(j)\in\setList{0,1}\).% \end{definition} \begin{definition}{}{definition-1454}% \hypertarget{p-1455}{}% The \terminology{Möbius strip} is the quotient space \(M=[0,1]^2/\sim\) given by \(\tuple{0,y}\sim\tuple{1,1-y}\).% \end{definition} \begin{definition}{}{definition-1459}% \hypertarget{p-1460}{}% The \terminology{torus} is the quotient space \(T=[0,1]^2/\sim\) given by \(\tuple{0,y}\sim\tuple{1,y}\) and \(\tuple{x,0}\sim\tuple{x,1}\).% \end{definition} \begin{definition}{}{definition-1465}% \hypertarget{p-1466}{}% The \terminology{Klein bottle} is the quotient space \(K=[0,1]^2/\sim\) given by \(\tuple{0,y}\sim\tuple{1,1-y}\) and \(\tuple{x,0}\sim\tuple{x,1}\).% \end{definition} \end{sectionptx} % % \typeout{************************************************} \typeout{Appendix A Assumed Results} \typeout{************************************************} % % \appendix % \begin{appendixptx}{Assumed Results}{}{Assumed Results}{}{}{appendix-1472} \begin{introduction}{}% \hypertarget{p-1475}{}% A review of basic results\slash{}definitions concerning sets and the reals.% \end{introduction}% \begin{definition}{}{definition-1476}% \leavevmode% \begin{itemize}[label=\textbullet] \item{}\(\mb R\) is the set of real numbers.% \item{}\(\mb Z\) is the set of integers.% \item{}\(\mb N=\setBuilder{z\in\mb Z}{z\geq 0}=\setList{0,1,2,\dots}\) is the set of natural numbers, which includes zero.% \item{}\(\mb Q=\setBuilder{\frac{z}{n+1}}{z\in\mb Z,n\in\mb N}\) is the set of rational numbers.% \end{itemize} \end{definition} \begin{theorem}{}{}{theorem-1486}% \hypertarget{p-1487}{}% The \terminology{Archemedian Property} of the real numbers guarantees that for each positive real number \(x>0\), there exists a natural number \(n\in\mb N\) such that \(\frac{1}{n}\lt x\).% \end{theorem} \begin{theorem}{}{}{theorem-1492}% \hypertarget{p-1493}{}% \terminology{De Morgan's Laws}: Let \(\mc A\) be a collection of subsets of \(X\).% % \begin{equation*} X\setminus\bigcup_{A\in\mc A}A=\bigcap_{A\in\mc A}(X\setminus A) \end{equation*} % \begin{equation*} X\setminus\bigcap_{A\in\mc A}A=\bigcup_{A\in\mc A}(X\setminus A) \end{equation*} \end{theorem} \begin{theorem}{}{}{theorem-1499}% \hypertarget{p-1500}{}% Let \(S\subseteq \mb R\) be a set of real numbers with a lower bound. Then there exists a \terminology{greatest lower bound} (a.k.a. \terminology{infimum}) \(\glb S=\inf S\).% \par \hypertarget{p-1505}{}% Let \(S\subseteq \mb R\) be a set of real numbers with a lower bound. Then there exists a \terminology{least upper bound} (a.k.a. \terminology{supremum}) \(\lub S=\sup S\).% \end{theorem} \end{appendixptx} \end{document}