{ "cells": [ { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "import xlrd\n", "from plotly.graph_objs import Scatter, layout\n", "import plotly\n", "import plotly.offline as py\n", "import plotly.graph_objs as go\n", "import cufflinks as cf\n", "from urllib.request import urlopen\n", "import json\n", "import re\n", "import pandas as pd\n", "cf.go_offline()###这两句是离线生成图片的设置\n", "cf.set_config_file(offline=True, world_readable=True)\n", "plotly.offline.init_notebook_mode(connected=True)" ] }, { "cell_type": "code", "execution_count": 186, "metadata": {}, "outputs": [], "source": [ "# 比特币预测数据\n", "df_features = pd.read_csv('df_features.csv')" ] }, { "cell_type": "code", "execution_count": 187, "metadata": {}, "outputs": [], "source": [ "df_features.index = df_features['Unnamed: 0']\n", "df_features.drop('Unnamed: 0', axis=1, inplace=True)\n", "bitcoin_value = df_features['value'].values\n", "df_features.drop('value', axis=1, inplace=True)" ] }, { "cell_type": "code", "execution_count": 188, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
| \n", " | lag1 | \n", "lag2 | \n", "lag3 | \n", "lag4 | \n", "lag5 | \n", "lag6 | \n", "lag7 | \n", "lag8 | \n", "lag9 | \n", "lag10 | \n", "day_of_week_0 | \n", "day_of_week_1 | \n", "day_of_week_2 | \n", "day_of_week_3 | \n", "day_of_week_4 | \n", "day_of_week_5 | \n", "day_of_week_6 | \n", "is_holiday | \n", "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Unnamed: 0 | \n", "\n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " |
| 2016-09-21 | \n", "608.66 | \n", "610.19 | \n", "611.58 | \n", "607.04 | \n", "609.11 | \n", "610.38 | \n", "608.82 | \n", "610.92 | \n", "609.67 | \n", "621.65 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
| 2016-09-22 | \n", "598.88 | \n", "608.66 | \n", "610.19 | \n", "611.58 | \n", "607.04 | \n", "609.11 | \n", "610.38 | \n", "608.82 | \n", "610.92 | \n", "609.67 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
| 2016-09-23 | \n", "597.42 | \n", "598.88 | \n", "608.66 | \n", "610.19 | \n", "611.58 | \n", "607.04 | \n", "609.11 | \n", "610.38 | \n", "608.82 | \n", "610.92 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "
| 2016-09-24 | \n", "594.08 | \n", "597.42 | \n", "598.88 | \n", "608.66 | \n", "610.19 | \n", "611.58 | \n", "607.04 | \n", "609.11 | \n", "610.38 | \n", "608.82 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "
| 2016-09-25 | \n", "603.88 | \n", "594.08 | \n", "597.42 | \n", "598.88 | \n", "608.66 | \n", "610.19 | \n", "611.58 | \n", "607.04 | \n", "609.11 | \n", "610.38 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "