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1 Problem statement
The Coulomb energy of N charges q1, . . . qN at positions r1, . . . rN is

E =
1

4πϵ0

1

2

∑′

i,j

qiqj
|rij |

, (1)

where rij = rj − ri and ϵ0 is the vacuum permittivity. The factor of 1/2 undoes
double counting over ion pairs, i and j. The prime notation in

∑′ indicates
that infinite self interactions, where i = j, are to be excluded from the sum.

Now consider a finite size system with periodic boundary conditions. The
system volume can be any parallelpiped, but for simplicity let us here assume a
cubic system with linear size L. Equation (1) generalizes to a sum over all pairs
of atoms, including all periodic images of the system (n ∈ Z3). The energy of
one system image is formally written,

E =
1

4πϵ0

∑
n

1

2

∑′

i,j

qiqj
|rij + nL|

(p.b.c.). (2)

It is necessary to enforce charge neutrality,

Q =
∑
i

qi = 0, (3)

to avoid a strong divergence in the sum over images n. If the net dipole moment,

P =
∑
i

riqi, (4)

is nonzero, then the sum in Eq. (2) is still only conditionally convergent. To
understand this intuitively, consider that two system images, separated by a
large distance r = |nL|, effectively interact via their net dipoles. Dipole-dipole
interactions decay like r−3. At large distances r, the sum over n ∈ Z3 can effec-
tively be approximated as an integral,

∑
n(·)→

∫
R3(·)r2dr. If we naïvely insert

cubic decay for dipole-dipole interactions, (·) → r−3, it appears that there is
logarithmic divergence. A more careful analysis should include also the angu-
lar dependence of dipole-dipole interactions; in this case, Eq. (2) can converge,
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but the result depends on the order of summation over n. Any real material
sample will have finite volume, and the conditional convergence highlights the
importance of surface effects, such as the geometry of the finite sample.

Ewald summation is a way to regularize the infinite sum of Eq. (2) and give
it a particular meaning. Its derivation involves a series of formal manipulations.

2 Preliminaries
To set the stage, first consider the case of a single point charge q at the origin.
In continuum language, this is a Dirac-δ charge distribution,

ρ(r) = qδ(r). (5)

The Ewald method will effectively decompose this distribution as,

ρ(r) = ρL(r) + ρS(r)

= qG(r) + [ρ(r)− qG(r)].

The first term ρL(r) is a Gaussian smoothing of the original point-charge, where

G(r) =
1

σ3(2π)3/2
exp

[
−r2/2σ2

]
, (6)

and r = |r|. The length scale σ is a tuneable parameter that can be adjusted to
optimize numerical efficiency.

The smoothed charge distribution ρL(r) is useful because it produces an
accurate electrostatic potential at long ranges. In general, the potential φ(r)
associated with an arbitrary charge density ρ(r) is defined to satisfy,

ϵ0∇2φ(r) = −ρ(r), (7)

or equivalently,

φ(r) =
1

4πϵ0

∫
ρ(r′)

|r′ − r|
dr′. (8)

For a point charge, ρ(r)→ qδ(r), the solution is

φ(r) =
q

4πϵ0r
. (9)

For the Gaussian cloud, ρ(r)→ qG(r), the solution is instead,

φL(r) =
q

4πϵ0r
erf

(
r√
2σ

)
. (10)

The error function erf(x) converges to 1 very rapidly when x≫ 1; this confirms
that φL(r) rapidly converges to φ(r) at long range. The deviations are only
significant at short range,

φS(r) =
q

4πϵ0r
erfc

(
r√
2σ

)
, (11)
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where erfc(x) = 1− erf(x). By construction,

φ(r) = φL(r) + φS(r), (12)

exactly.
Note that the potential for a Gaussian charge cloud is smooth everywhere,

including the origin. Using

lim
x→0

erf(x) = 2x/
√
π, (13)

one finds,

lim
|r|→0

φL(r) =
q

4πϵ0

√
2

π

1

σ
. (14)

3 Energy decomposition
Now we return to the full periodic Coulomb energy of Eq. (2). Upon rearranging
terms, it can be written

E =
1

2

∑
i

qiϕ
′
i, (15)

where
ϕ′
i =

1

4πϵ0

∑′

j,n

qj
|rij + nL|

, (16)

is a formal sum (only conditionally convergent) giving the electrostatic potential
at ri, as generated by all ions j and their nth periodic images. As before, the
prime in

∑′ indicates that we are excluding the infinite self-potential when j = i
and n = (0, 0, 0).

In analogy with Eq. (12), one may decompose ϕ′
i into long and short range

parts. For convenience, we will also add and subtract the electrostatic potential
for the center of the ith Gaussian charge cloud, Eq. (14). The final decomposi-
tion to be used by Ewald is,

ϕ′
i = ϕL

i + ϕ′S
i −

qi
4πϵ0

√
2

π

1

σ
, (17)

where

ϕL
i =

1

4πϵ0

∑
j,n

qj
rijn

erf

(
rijn√
2σ

)
(18)

ϕ′S
i =

1

4πϵ0

∑′

j,n

qj
rijn

erfc

(
rijn√
2σ

)
, (19)

and for convenience,
rijn = |rj + nL− ri|. (20)
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The prime in ϕ′S
i is a reminder that the divergent term involving rijn = 0 is

excluded from the sum. Note, however, that the definition of ϕL
i involves an

unrestricted sum, including the case where rijn = 0. This self-contribution to
ϕL
i is canceled by the final term in Eq. (17).

Substituting Eq. (17) into Eq. (2) yields the desired decomposition of energy,

E = EL + ES − Eself , (21)

with

EL =
1

2

∑
i,n

qiϕ
L
i (22)

ES =
1

4πϵ0

1

2

∑′

i,j,n

qiqj
rijn

erfc

(
rijn√
2σ

)
(23)

Eself =
1

4πϵ0

1√
2π σ

∑
i

q2i . (24)

The term ES involves real-space sum over pair-interactions that decay rapidly
with distance rijn. The term EL captures the long-range part of Coulomb
interactions, to be discussed in the next section.

3.1 Fourier space treatment of long-range interactions
The steps so far have involved only rearrangements of the energy contributions.
It remains now to give precise meaning to the long-range Coulomb interactions
EL.

The electrostatic potential ϕL
i = ϕL(ri) involves a sum over periodic images,

Eq. (18), which is only conditionally convergent. The solution Eq. (10) to (7)
suggests an alternative starting point: we can define the long-range potential
ϕL(r) as a solution to the Poisson equation,

ϵ0∇2ϕL(r) = −
∑
j,n

qjG(rj + nL− r), (25)

subject to periodic boundary conditions. The right-hand side is a convolution,

ϵ0∇2ϕL(r) = −ρ(r) ∗G(r), (26)

involving the charge density field for all ion images,

ρ(r) =
∑
j,n

qjδ(r− rj + nL), (27)

and the Gaussian kernel defined in Eq. (6). Taking the Fourier transform of
both sides of Eq. (25) and using the convolution theorem, one finds

ϕ̂L(k) =
1

ϵ0k2
ρ̂(k)Ĝ(k). (28)
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The Fourier transform of charge density is

ρ̂(k) =

∫
e−ik·rρ(r)dr =

∑
j

e−ik·rjqj . (29)

The Fourier transform of the Gaussian kernel is another Gaussian,

Ĝ(k) = e−σ2k2/2. (30)

Parseval’s theorem states that the long-range energy can be expressed as a
integral over either real space or Fourier space,

EL =
1

2

∫
ρ(r)ϕL(r)dr =

1

2V

∑
k ̸=0

ρ̂(−k)ϕ̂L(k), (31)

where V = L3 is the system volume. The sum on the right is over all wave
vectors with appropriate periodicity, i.e. kα = 2πmα/L for integer mα. Charge
neutrality implies ρ̂(0) =

∑
j qi = 0, which allows to exclude k = 0 from the

Fourier space sums, provided the reasonable assumption that ϕ̂L(0) =
∑

i ϕ(ri)
is finite.

Collecting results,

EL =
1

2V ϵ0

∑
k̸=0

e−σ2k2/2

k2
|ρ̂(k)|2 . (32)

Note that ρ̂(−k) = ρ̂(k)∗ because the charge density ρ(r) is real.
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4 A numerical method
The total Ewald energy of Eq. (21) may be calculated as a sum of real space
contributions,

ES =
1

4πϵ0

1

2

∑′

i,j,n

qiqj
rijn

erfc

(
rijn√
2σ

)
, (33)

and Fourier space contributions,

EL =
1

2V ϵ0

∑
k̸=0

e−σ2k2/2

k2
|ρ̂(k)|2 , (34)

involving the Fourier transform of charge density,

ρ̂(k) =
∑
i

qie
−ik·ri . (35)

Finally, one must subtract the self-energy,

Eself =
1

4πϵ0

1√
2π σ

∑
i

q2i . (36)

Below, we will discuss how to impose cutoffs on these sums, and how to
select an optimal length scale σ.

Although these formulas have been derived in the context of a cubic volume,
they continue to hold for a parallelpiped volume spanned by arbitrary lattice
vectors a1,a2,a3. In this generalized context, pairwise displacements are

rijn = rj − ri +
∑
α

nαaα. (37)

The system volume is V = |a1 · (a2 × a3)|. The associated reciprocal lattice
vectors b1,b2,b3 are defined to satisfy

aα · bβ = 2πδαβ . (38)

In real space, the charge density is periodic ρ(rijn) = ρ(rij0) for arbitrary
cell indices n1, n2, n3. Consequently, the k vectors contributing to ρ̂(k) must be
integer multiples of bα,

km =
∑
β

mβbβ . (39)

In a numerical implementation, we will truncate the sums of ES and EL by
imposing upper bounds to the summation

rijn/
√
2σ ≤ c0 (40)

σkm/
√
2 ≤ c0. (41)
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Convergence of the sums will be exponentially fast in the cutoff squared, c20.
It remains to select the parameter σ that optimizes numerical efficiency. Let

N denote the number of ions in a system with fixed ion density ρion = N/V .
Calculating ES requires iterating over all N ions; each ion interacts with order
ρionr

3
cut neighbors, where rcut ∼ c0σ. At large N , the total cost of this real

space summation is
CS ∼= χSNσ3, (42)

with some prefactor χS ∝ ρionc
3
0.

Calculating EL requires summing over a discrete set of Fourier modes, Eq. (39),
up to a maximum of kcut ∼ mcut/L ∼ c0/σ. The maximum cutoff index scales
as mcut ∼ cL/σ, and the total number of modes scales as m3

cut ∼ c30V/σ. For
each mode k, one must calculate ρ̂(k) in Eq. (35) by summing over all N ions.
The asymptotic cost of this Fourier space summation is

CL ∼= χLN
2/σ3, (43)

with some prefactor χL ∝ ρ−1
ionc

3
0.

The length σ that minimizes the total cost CS + CL satisfies

σ3 =

√
N

χL

χS
, (44)

With this choice, the cost is equally weighted between real and Fourier space,
CS = CL = N3/2√χLχS , and we observe the scaling,

CS + CL ∝ N3/2. (45)

Reinserting the dependence ion density, (χS ∝ ρion and χL ∝ ρ−1
ion), one finds

σ =
L

c1N1/6
, (46)

where L ∝ V 1/3. The constant c1 should be selected according to implementa-
tion details, specifically the relative costs of real and Fourier space summation.

To summarize, the Ewald method is controlled by two dimensionless param-
eters:

1. c0 ≈ 4 (maybe), which controls accuracy. The error decays exponentially
in c20.

2. c1 ≈ 2 (maybe); larger values make σ smaller, and shift more work to the
Fourier space sum. To select c1 optimally, one must equally balance real
and Fourier space costs.
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5 Inclusion of dipoles

5.1 Review: from charges to dipoles
To understand dipole interactions, one can start with the electrostatic potential
of two charges qi and qj ,

Ecc =
qiqj
4πϵ0

1

rij
, (47)

where rij = |rj − ri|. A point dipole pj can be modeled as two competing
charges qj = ±1/ε, displaced by ±εpj , for ε→ 0. The charge-dipole interaction
energy is therefore

Ecd =
qi

4πϵ0
lim
ε→0

1

ε

(
1

|(rj + ϵpj)− ri|
− 1

|rj − ri)|

)
. (48)

This is a directional derivative,

Ecd =
qi(−pj · ∇j)

4πϵ0

1

rij
=

qi
4πϵ0

pj · r̂ij
r2ij

, (49)

where ∇j denotes the gradient with respect to rj . Now consider a system of two
dipoles, pi and pj . Iterating the same perturbation procedure on the charge
qi = ±1/ϵ, the resulting energy is,

Edd =
(−pi · ∇i)(−pj · ∇j)

4πϵ0

1

rij

=
1

4πϵ0

[
pi · pj − 3(pj · r̂ij)(pi · r̂ij)

r3ij

]
+
������δ(rij)

pi · pj

3ϵ0
. (50)

The first term is recognized as the usual dipole-dipole energy. The second term
can be ignored because we will always take ri ̸= rj .

The general procedure to introduce a point dipole pi along with every charge
qi is to substitute

qi → qi − pi · ∇i, (51)

into the energy formula, e.g. Eq. (2). This procedure continues to work for the
Ewald energy of Eqs. (33)–(36).
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5.2 Short range part

Following this substitution procedure, the local interactions of Eq. (33) become

ES =
1

4πϵ0

1

2

∑′

i,j,n

(qi + pi · ∇j)(qj − pj · ∇j)
erfc

(
rijn√
2σ

)
rijn

=
1

4πϵ0

1

2

∑′

i,j,n

[
qiqjEcc(rijn) (52)

+ (qipj − piqj) ·
−→
E cd(rijn)

+ (pi ⊗ pj) :
←→
E dd(rijn)

]
.

We have used ∇i = −∇j , which follows from the definition in Eq. (35).
Charge-charge interaction scalar is as before,

Ecc(r) =
erfc

(
r√
2σ

)
r

. (53)

Charge-dipole interaction vector is

−→
E cd(r) = −∇

erfc
(

r√
2σ

)
r

=
r̂

r2

[
erfc

(
r√
2σ

)
+

√
2

π

r

σ
e−r2/2σ2

]
(54)

Finally, dipole-dipole interaction tensor is

←→
E dd(r) = −∇⊗∇

erfc
(

r√
2σ

)
r

.

=
I

r3

(
erfc

(
r√
2σ

)
+

√
2

π

r

σ
e−r2/2σ2

)
(55)

− 3r̂⊗ r̂

r3

[
erfc

(
r√
2σ

)
+

(
1 +

r2

3σ2

)√
2

π

r

σ
e−r2/2σ2

]
,

where I is the identity tensor.

5.3 Long range part
The long range interactions of Eqs. (34) involve the Fourier transform of the
charge density, Eq. (35). Upon applying the substitution of Eq. (51), one gets

ρ̂(k)→ ρ̂eff(k) =
∑
j

(qj − pj · ∇j)e
−ik·rj . (56)
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The long-range energy remains a sum in Fourier space,

EL =
1

2V ϵ0

∑
k̸=0

e−σ2k2/2

k2
|ρ̂′(k)|2, (57)

but now involving both charges and dipoles,

ρ̂eff(k) =
∑
j

(qj + ipj · k)e−ik·rj . (58)

5.4 Self-energy
Recall that the Gaussian charge cloud self interactions Eself were added to the
long-range energy EL and then subtracted. The original form

Eself =
1

4πϵ0

1

2

∑
i,j

δijqiqj
1

rij
erf

(
rij√
2σ

)
,

simplifies to Eq. (24). When introducing dipoles, the substitution procedure of
Eq. (51) must be applied to Eself just as it was to EL. The result is

Eself =
1

4πϵ0

1

2

∑
i,j

δij

[
qiqj

1

r
erf

(
r√
2σ

)

+ (qipj − qjpi) · ∇
1

r
erf

(
r√
2σ

)
− (pi · ∇)(pj · ∇)

1

r
erf

(
r√
2σ

)]
, (59)

to be evaluated in the limit r → 0 where r = rij and ∇r = ∇jrij = −∇irij .
The first term reproduces Eq. (24). The second term is zero by symmetry. The
third term can be evaluated using the identities,

1

r
erf

(
r√
2σ

)
=

√
2

π
σ − r2

3
√
2π σ3

+O(r4), (60)

1

2
(pi · ∇)(pi · ∇)r2 = p2i . (61)

The final result is

Eself =
1

4πϵ0

(
1√
2π σ

∑
i

q2i +
1

3

1√
2π σ3

∑
i

p2i

)
. (62)
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