
The VLDB Journal (2021) 30:287–310
https://doi.org/10.1007/s00778-021-00652-x

REGULAR PAPER

Dragoon: a hybrid and efficient big trajectory management system for
offline and online analytics

Ziquan Fang1 · Lu Chen1 · Yunjun Gao1,2 · Lu Pan1 · Christian S. Jensen3

Received: 4 June 2020 / Revised: 7 January 2021 / Accepted: 14 January 2021 / Published online: 3 February 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
With the explosive use of GPS-enabled devices, increasingly massive volumes of trajectory data capturing the movements
of people and vehicles are becoming available, which is useful in many application areas, such as transportation, traffic
management, and location-based services. As a result, many trajectory data management and analytic systems have emerged
that target either offline or online settings. However, some applications call for both offline and online analyses. For example,
in traffic management scenarios, offline analyses of historical trajectory data can be used for traffic planning purposes,
while online analyses of streaming trajectories can be adopted for congestion monitoring purposes. Existing trajectory-based
systems tend to perform offline and online trajectory analysis separately, which is inefficient. In this paper, we propose a hybrid
and efficient framework, called Dragoon, based on Spark, to support both offline and online big trajectory management and
analytics. The framework features amutable resilient distributed dataset model, including RDDShare, RDDUpdate, and RDD
Mirror, which enables hybrid storage of historical and streaming trajectories. It also contains a real-time partitioner capable of
efficiently distributing trajectory data and supporting both offline and online analyses. Therefore, Dragoon provides a hybrid
analysis pipeline. Support for several typical trajectory queries and mining tasks demonstrates the flexibility of Dragoon.
An extensive experimental study using both real and synthetic trajectory datasets shows that Dragoon (1) has similar offline
trajectory query performance with the state-of-the-art system UlTraMan; (2) decreases up to doubled storage overhead
compared with UlTraMan during trajectory editing; (3) achieves at least 40% improvement of scalability compared with
popular streaming processing frameworks (i.e., Flink and Spark Streaming); and (4) offers an average doubled performance
improvement for online trajectory data analytics.

Keywords Trajectory system · Data management · Data analytics · Distributed processing

B Yunjun Gao
gaoyj@zju.edu.cn

Ziquan Fang
zqfang@zju.edu.cn

Lu Chen
luchen@zju.edu.cn

Lu Pan
panlu96@zju.edu.cn

Christian S. Jensen
csj@cs.aau.dk

1 College of Computer Science, Zhejiang University,
Hangzhou, China

2 Alibaba–Zhejiang University Joint Institute of Frontier
Technologies, Hangzhou, China

3 Department of Computer Science, Aalborg University,
Aalborg, Denmark

1 Introduction

With the wide availability of GPS-enabled devices and
increasing use of mobile computing services, massive trajec-
tory data from various moving objects (e.g., people, vehicles,
and animals) are continuously growing at a high speed [48].
Trajectory data with its analytics may benefit many real-life
applications, including urban computing [58], transporta-
tion [45], animal behavior studies [31], and security [23], to
name but a few. As an example, DiDi, the largest ride-sharing
company in China, is collecting more than 106 TB trajectory
data daily in order to provide services such as route planning,
travel time estimation, and urban capacity analyses [6]. As
a result, researchers have devoted their efforts to trajectory
analyses, which led to a variety of trajectory data man-
agement and analytic systems have emerged [14,17,20,47],
which can be categorized as offline and online settings.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-021-00652-x&domain=pdf


288 Z. Fang et al.

Fig. 1 Hybrid trajectory data analysis pipeline

The offline systems [20,47] focus on the management and
analysis of historical trajectory data, while the online sys-
tems [14,17] aim at the real-time processing of streaming
trajectories [37].

However, some real-life applications need both offline
and online trajectory analyses. Consider a real-world traf-
fic management application, where the online processing
of streaming trajectories generated by urban taxis can be
adopted for real-time congestion monitoring [55], while
the offline analyses of big historical trajectory data can be
used for traffic planning purposes, such as traffic signal
optimization [51] and region function characterization [53].
Unfortunately, existing trajectory management systems offer
sub-optimal support as relying on more than one system
to achieve both offline and online analyses, which forces
users to constantly switch between offline and online systems
to accomplish hybrid analysis scenarios mentioned above.
Moreover, it is also inefficient because (i) it needs to repeat
a similar trajectory preprocessing process when extracting,
transforming, and loading (ETL) historical versus streaming
trajectory data and (ii) it incurs disk storage duplication for
different offline or online scenarios. Consequently, we aim to
develop an efficient hybrid trajectory management and ana-
lytic system.

In this paper, we present Dragoon, a new hybrid and effi-
cient big trajectorymanagement system for offline and online
analytics. Dragoon is designed to be a holistic solution, as
illustrated in Fig. 1, which supports the full pipeline of both
historical and streaming trajectory data preprocessing, man-
agement, and analytics in a single system. There are two
approaches that we have considered to develop such a sys-
tem. The first is to extend an existing offline or batch-oriented
system (e.g., Spark [54]) to enhance its online real-time pro-
cessing capabilities for streaming trajectories. The second
is to extend an existing online or streaming-oriented system
(e.g., Flink [3]), equipping it with the ability to manage and
process large-scale historical trajectory data. Nonetheless,
we observe that the online systems or frameworks have lim-
itations related to their handling of data updates [50], which
cannot be ignored when designing such a trajectory manage-
ment system. More specifically, the data update mechanisms
of online systems are stream-driven and passive, meaning

that data updates are triggered only when new data arrives,
while no updates occur without any incoming data. In con-
trast, many real-world applications that require trajectory
editing [49] or trajectory cleaning [22] call for data updates
even when there is no incoming trajectory data. To this end,
we adopt the first approach and leave the second one as a
future research direction. Specifically, we choose to extend
the Spark platform to achieve the Dragoon system, as Spark
is a popularly used and efficient offline distributed process-
ing system in both academic and industry fields. Note that
Spark Streaming also extends Spark to process streaming
data.However, it canbeonlyused toprocess streaming trajec-
tory in a batchway, i.e., it takesmicro-batch strategy that cuts
trajectory streams into several data RDDs andmanages those
RDDs separately. In contrast, we aim to develop a single sys-
tem to manage both historical and streaming trajectories in
a hybrid fashion by enhancing the storage layer of the Spark
core, based on which it enables better hybrid trajectory ana-
lytics. Two key challenges exist as follows when adopting
the first approach.

Challenge I: How to extend Spark to support dynamic and
unified storage of streaming trajectory data? Existing Spark
Streaming stores streaming data by cutting data streams
into data batches, where each data batch can be viewed as
a resilient distributed dataset (RDD) [54]. However, such
RDDs are immutable and read-only, and any update (e.g.,
map or union operations) on an RDD will create a new data
RDD. In the settings of streaming trajectories or trajectory
data editing scenarios, data updates occur frequently. Hence,
we aim to provide a dynamic storage that can support efficient
data updates, which can avoid unnecessary data copies and
time costs. To address this challenge, we propose a mutable
RDD model, termed as mRDD, which includes RDD Share,
RDD Update, and RDDMirror. Specifically, the RDD Share
detects those unchanged parts that can be shared in an RDD;
the RDD Update offers three update strategies for differ-
ent update related scenarios; and the RDD Mirror supports
effective read and write access controls, thus avoiding data
conflicts and inconsistencies caused by concurrent reads and
writes in the distributed environment. The mRDD model is
designed to be compatible with the original RDD model of
Spark, so that Dragoon enables to store both historical and
streaming trajectory data in the mRDDs via a hybrid manner.
Dragoon also providesflexible real-timepartitioners. Specifi-
cally, the partitioners enable cutting historical and streaming
trajectories to multiple data partitions for parallel process-
ing based on different trajectory characteristics (e.g., the id,
spatial, or temporal information of trajectories) while consid-
ering data balance of the system. Meanwhile, historical and
streaming trajectories in the same data partition are merged
together to achieve unified and efficient storage.

Challenge II: How to build hybrid processing pipeline
for both offline and online trajectory data analytics? The

123



Dragoon: a hybrid and efficient big trajectory management... 289

techniques used for offline and online trajectory analyses are
different. The offline techniques focus on the management
and batch processing of historical trajectory data, while the
online techniques aimat the real-timeprocessingof trajectory
streams. In view of this, Dragoon provides a hybrid data ana-
lytic pipeline based on its hybrid storage. Besides, the offline
analysis cases that contain trajectory editing and ID/Range/k
nearest neighbor (kNN) queries as well as the online analy-
sis cases that include online ID/Range/kNN queries and the
real-time co-movement pattern detection are implemented
and supported by Dragoon.

Based on the proposed mRDD model, Dragoon is able
to serve as a scalable, efficient, and flexible hybrid platform
for both offline and online big trajectory data management
and analytics. To sum up, the contributions of this paper are
summarized as follows.

– We propose a hybrid and efficient system for integrated
offline and online scalable trajectory data management
and analytics.

– We offer a mutable RDD model with real-time partition-
ers to manage historical and streaming trajectories in a
hybrid fashion on underlying storage.

– We design a hybrid analysis pipeline for both historical
and streaming trajectory data, and demonstrate its util-
ity by showing and supporting typical offline and online
trajectory queries and mining tasks.

– Extensive experiments on both real and synthetic tra-
jectory datasets offer insights into the efficiency and
scalability of Dragoon, and also include comparisons
with existing state-of-the-art trajectory processing sys-
tems or frameworks.

The rest of the paper is organized as follows. Section 2
reviews the related work, and Sect. 3 covers the preliminar-
ies. Section 4 presents an overview of the Dragoon system.
Sections 5 and 6 detail storage and analytic techniques,
respectively. Section 7 presents trajectory case studies that
demonstrate the system’s support for hybrid analyses. The
experimental results based on real and synthetic data sets are
reported in Sect. 8. Finally, Sect. 9 concludes the paper and
offers research directions.

2 Related work

In this section, We proceed to survey briefly related system
architectures, and clarify the differences between them and
Dragoon by the following.

2.1 Offline/online trajectory analytic systems

To begin with, offline trajectory systems enable batch pro-
cessing of historical trajectory data and come in centralized
and distributed variants. Prominent centralized systems for
trajectory storage or analysis include BerlinMOD [21], Tra-
jStore [17], and SharkDB [42], to name just a few. However,
due to the limitation of a single machine’s capability, they
cannot scale to massive volumes of trajectory data manage-
ment and analytics.

Thanks to the distributedMapReduce [18] framework and
its open-source implementations Hadoop [1] and Spark [4],
several distributed trajectory management or analytic sys-
tems exist. CloST [39], which is Hadoop-based, provides
distributed query processing for big trajectory data. Loca-
tionSpark [40], Simba [47], and Elite [48], which are
Spark-based, utilize specific partitioning and index strate-
gies to manage big trajectory data using innovation storage
scheme. Several distributed big trajectory data analytic sys-
tems also exist. Shang et al. [38] propose the DITA, which is
also Spark-based to support top-k trajectory similarity join.
Xie et al. [46] present a Spark-based query framework for dis-
tributed trajectory similarity search. Yuan et al. [52] proceed
to study the trajectory similarity search and join on the Spark
platform while considering the road networks. In addition,
cloud and other schema-based (e.g., distributed NoSQL) tra-
jectory systems [10,28,29,36] that offer distributed storage
and processing also exist.

More recently, an efficient platform called UlTraMan [20]
has proposed that offers a unified pipeline for big trajec-
tory data ETL, storage, management, and analytics. In that
way, users can finish various offline trajectory data analy-
sis in a single system with provided operation interfaces.
The aforementioned systems are all designed to support
offline management and analytics for static and historical
trajectories, and thus fail to support real-time processing of
streaming trajectories. The reason is that the streaming tra-
jectory data is unbounded and arrives in real time, while the
storage and processing engines of all the above trajectory
systems are designed for static historical data. In light of
this, our proposed Dragoon adopts a flexible framework for
both offline and online trajectory data management and ana-
lytics. Note that Dragoon’s offline component shares all the
features of state-of-the-art system UlTraMan including scal-
able, efficient, and unified, since the offline techniques used
in Dragoon are similar to that of UlTraMan. The main differ-
ence is that we propose the mRDDmodel in Dragoon, which
is compatible with the original RDD of Spark but enabling
efficient data updates in the underlying storage.

As real-time trajectory data analytics [14] is increasingly
important in real-life applications (e.g., real-time event detec-
tion [35]), online trajectory systems are being developed for
streaming trajectory processing. Existing online trajectory

123



290 Z. Fang et al.

data systems aim to efficiently store [10], query [9,30,34,
43], and mine [14,32] trajectory streams. Nonetheless, they
address the storage, querying, and mining tasks separately,
and there is still no unified system like Dragoon that supports
the full pipeline of big streaming trajectory data manage-
ment and analytics. With the recent advent of distributed
stream processing, several general distributed stream pro-
cessing platforms [2–5,16,25] are proposed. However, they
do not fully exploit the characterizes of trajectory data. In
contrast, Dragoon fully considers the characteristics of the
trajectories, such as Id, spatial, and temporal information,
to support efficient and dynamic management for trajectory
streams. Although trajectory architectures based on those
platforms for streaming trajectory analytics have been stud-
ied [56,57], those online trajectory systems focus on the
real-time processing of the latest trajectory streams, which
are not efficient for the large-scale, offline trajectory data
management and analytics due to the passive update lim-
itations as we have discussed in Sect. 1. In contrast, we
proposed the Dragoon system that is based on the mRDD
model extended from Spark, which can support both online
streaming trajectory data management and offline trajectory
data management (e.g., trajectory data editing).

2.2 General-purpose hybrid approaches

Ahybrid system is able to process both historical and stream-
ing data in a single system, and several general-purpose
hybrid systems exist. Kumar et al. [26] extend MapRe-
duce online to support batch data processing, but still faces
the limitation of passive updates as mentioned in Sect. 1.
With the emergence of the Lambda architecture [24], several
hybrid systems [7,8,11,15,19,50] are developed that com-
bine two platforms to process both historical and streaming
data. For instance, the Summingbird [11] combines Hadoop
and Storm, where Hadoop is used for offline processing, and
Storm is used for online processing. The idea of Lambda-
based systems is simple, but they must maintain two separate
systems or different operator APIs to support hybrid analyt-
ics, while we aim to develop a single system to support both
offline and online data management and analytics. In other
words, we target a unified system to support both historical
and streaming trajectory data analysis. Further, none of the
above systems target trajectory data processing. To the best
of our knowledge, Dragoon is the first proposal that targets
hybrid trajectory data management and analytics, and that
includes a detailed description of its implementation.

Although Spark may process data in a hybrid fashion
with its extensions Spark Streaming or Structured Stream-
ing, those systemsdonot support efficient and scalable hybrid
trajectory management and analytics. There are two reasons
accounting for this. To begin with, Spark Streaming is an
extension of the core Spark API that enables stream pro-

cessing by dividing data streams into data batches and then
processing each data batch using the Spark engine, which we
call that as micro-batch processing [4]. Nonetheless, batches
of streaming trajectory data are still based on immutable
RDDs and are managed separately in Spark. Thus, Spark
Streaming cannot support efficient offline analyses due to
themassively redundant data storage caused by updates using
immutable RDDs. On the other hand, Structured Streaming
is an extension of the Spark SQL engine that enables stream
processing by appending structured data in an Unbounded
Table. However, trajectory data are usually not stored in a
table as the structured data due to its important spatial and
temporal characteristics. For example, it is inconvenient to
build a spatial STR tree [27] index based on such table-based
management. Notably, non-trivial internal modifications are
needed to support indexing in Spark SQL [47], and the flex-
ibility for doing so is limited due to its structured storage
scheme [20]. In contrast, we enhance the Spark Core in terms
of its underlying storage mechanism for both historical and
streaming trajectory data. Based on these, we develop the
Dragoon system, a hybrid and efficient big trajectory man-
agement system for offline and online analytics.

3 Background

In this section, we proceed to offer background related to
the implementation of Dragoon system, including resilient
distributed datasets in Spark, and hybrid management and
analytics of trajectories.

3.1 Resilient distributed datasets

Resilient Distributed Datasets (RDD) is the core concept in
Spark. Specifically, a data RDD is a set of data that can
be divided into multiple data partitions logically in the dis-
tributed environment, where each partition is a subset of the
entire dataset and corresponds to a physical data block in
the underlying storage layer. The data partitions of an RDD
can be sent to different nodes in a distributed environment,
and each node can manage several partitions of an RDD. In
addition, there is a block manager in each node that controls
the data partitions that are sent to it, so that computations
can be performed in parallel on different nodes. Note that
although the recentDataset concept in Spark is proposedwith
richer optimizations, it is more suitable for semi-structured
and structured data. In contrast, RDD can provide low-level
and more general data management and access.

However, the immutable model of RDDs (i.e., RDD with
its partitions are read-only and cannot be modified directly)
results in the limitations when related to trajectory data man-
agement scenarios (e.g., trajectory editing). This is because
any data update on an RDD will create a new RDD. For

123



Dragoon: a hybrid and efficient big trajectory management... 291

example, in Fig. 2a, the original RDDo contains three data
objects (i.e., o1, o2, and o3), where o1 is the one that needs
to be edited during the trajectory editing. A simple solu-
tion for a data update in an immutable RDD of Spark is as
below: (i) using the filter operation on the original RDDo to
obtain an RDDe and another RDDu , where RDDe contains
o1 of RDDo that needs to be edited and RDDu represents
the remaining data objects in RDDo that keep unchanged;
(ii) using the map operation to update the RDDe and get the
RDDr (i.e., the edited RDD); (iii) using the union operation
between RDDu and RDDr to provide a new and ”updated”
RDDn to users; and (iv) returning RDDn for further possible
trajectory editings in the future. As shown in Fig. 2a, what we
want is just the final result RDDn in the trajectory editing,
but several intermediate but unnecessary data RDDs (e.g.,
RDDe, RDDr , and RDDu) are created during above editing
processing due to the immutability of RDDs, incurring huge
data copies. The storage cost will be further exacerbated as
data updates are very common in trajectorymanagement sce-
narios. Therefore, the mutable data RDDs that enable direct
update operations are necessary for trajectory editing scenar-
ios. Based on that, we can execute a data update operation
simply as shown in Fig. 2b.

In addition, the mutable RDDs can not only provide an
efficient way to deal with above trajectory editing scenar-
ios but also enable efficient online trajectory analysis tasks.
Although Spark Streaming can be used for streaming tra-
jectory processing, it simply transforms the newly arrived
trajectory points into a data batch and stores it in a newly
created data RDD. Then, Spark Streaming appends this new
RDD to the end of historical dataset. In this case, data batches
of trajectory streams are managed separately and sorted by
the temporal information, which is inefficient for some tra-
jectory analytics. Taking online range query as an example
that aims to find trajectories in a specific spatial region, Spark
Streaming needs to visit each data batch to get the final result.
In contrast, the mRDD equipped Dragoon system can store
locations close to each other in the same RDD, i.e., the newly
arrived locations are inserted into the previous corresponding
RDDs according to their spatial information. Based on that,
Dragoon only visits a small number of (instead of all) RDDs
to get the final online range query result. Motivated by these,
we extend the underlying storage under RDD of Spark for
both historical and streaming trajectory data, based on which
we develop a hybrid big trajectory management system for
both offline and online analytics.

3.2 Hybrid management and analytics

Trajectory data generated bymoving objects (e.g., people and
vehicles) can be classified into historical trajectory data and
streaming trajectory data. The management and analytics on
these two types of data are different. We first describe the

(a) (b)

Fig. 2 Trajectory editing

trajectory management phase and then present the trajectory
analytic phase.

In terms of trajectory data management, historical and
streaming trajectory data involve different storage formats.
Historical trajectory data, also called static or batch trajec-
tory data, are typically representedby a sequenceof trajectory
points and are stored in the file blocks. In contrast, streaming
trajectory data, also known as dynamic or unbounded tra-
jectory data, are often loaded as the most recent trajectory
points into the main memory for the subsequent real-time
processing.

In terms of trajectory data analytics, historical trajectory
data call for the offline batch processing, while stream-
ing trajectory data call for the online real-time processing.
For historical data, the existing work aims to achieve high
scalability and efficiency by using a variety of optimiza-
tion techniques (e.g., data partitioning [20,47] and trajectory
index structures [33]). For streaming data, existing work [14]
aims at real-time processing that achieves high throughput
as well as low response latency. However, some real-world
applications need both offline and online analysis, which we
call it as hybrid analysis. For example, in traffic manage-
ment applications, offline analyses of historical trajectories
can be used for better traffic planning purposes, while online
analyses of streaming trajectories can be adopted in traffic
monitoring to detect congestion in real time. Existing stud-
ies on trajectory datamanagement and analytics tend to solve
these problems separately [37], thus causing an inefficient
way to provide hybrid analysis for users. In contrast, Dra-
goon proposes a hybrid approach based on Spark to support
simultaneously offline analysis of historical trajectories and
online analysis of streaming trajectories in one single system.

3.3 Chronicle map

Chronicle Map1 is a popular storage technique for low-
latency and multiple-process access in the area of high-
frequency trading (HFT), such as trade and financial market
applications. ChronicleMap possesses two essential features

1 https://github.com/OpenHFT/Chronicle-Map.

123

https://github.com/OpenHFT/Chronicle-Map


292 Z. Fang et al.

Fig. 3 Overview of dragoon

to the implementation of Dragoon, including off-heap mem-
ory persist and embedded key-value store, as explained in the
following. (i) Off-heap memory persist. To support high per-
formance of distributed data computing and processing, the
original RDD based Spark chooses to cache data on the on-
heap memory, which could incur significant overhead on the
garbage collector (GC), especially for the big data process-
ing. In contrast, Chronicle Map adopts the off-heap memory
mechanism, which can not only provide a similar process
performance compared with that of Spark’s built-in mem-
ory cache but also significantly relieve the GC pressure for
providing better data scalability. In other words, this feature
provides a basic guarantee for big trajectory data manage-
ment of Dragoon. (ii) Embedded key-value store. Recall that
we target a hybrid and efficient big trajectory management
system for offline and online analytics, and thus, efficient
data access is required, especially for online trajectory man-
agement and analytics. Fortunately, Chronicle Map provides
an embedded key-value store, which enables efficient and
random data access for different data formats. For instance,
the key can refer to a moving object’s ID while the value
can represent its various trajectory formats. Specifically, the
formats can denote an observed GPS point, a sub-trajectory
that consists of several GPS points, or the whole trajectory of
this moving object. Moreover, we have confirmed its effec-
tiveness in our previous work [20]. By seamlessly integrating
Chronicle Map into Spark as the underlying storage engine,
Dragoon can provide an efficient, scalable, and flexible tra-
jectory management for both offline and online trajectory
data analytics.

4 System overview

In this section, we present an overview of Dragoon, includ-
ing loading, preprocessing, hybrid management, and hybrid
analysis, as depicted in Fig. 3.

Loading In the first stage, Dragoon ingests historical
trajectory data from a static trajectory data source or con-
tinuously loads the latest trajectory data from a streaming
trajectory source.

Preprocessing The preprocessing includes format trans-
formation, data partitioning, and index construction. First,
the raw trajectory data are represented as a sequence of GPS
records (id, l, t), where id denotes the ID of amoving object,
l represents a location that contains latitude and longitude,
and t is the time when the location was observed. Next, both
historical and streaming trajectories can be divided into sev-
eral data partitions according to specific partitioning rules.
As shown in Fig. 3, the trajectory data are partitioned into n
data partitions Pi (1 ≤ i ≤ n). Finally, the index construc-
tion includes local-index construction on each data partition
and a global-index construction over all data partitions, with
the details to be provided in Sect. 6.

Hybrid Management To manage both historical and
streaming trajectory data, we design the hybrid storage,
which is the core part of Dragoon. The hybrid storage is
physically based on the Chronicle Map. In order to store the
hybrid trajectory data, we need to merge streaming and his-
torical trajectories. Themerging process is not a simple union
operation as implemented in Spark, but needs to be able to
support data updates at the physical Chronicle Map layer.
To support data updates, we design the mRDD model, to be
detailed in Sect. 5. In addition, the local indexes and global
index are also stored in the Chronicle Map, and need to be
updated after the data update processing.

Hybrid Analysis The hybrid analysis includes offline anal-
ysis for historical trajectory data and online analysis for
streaming trajectory data. Specifically,Dragoon supports two
types of online analyses, as depicted in Fig. 3. The first type
of online analysis, called latest online analysis, focuses on the
latest location data values of the observed moving objects.
The second type of online analysis, termed as period online
analysis, is performed on both the latest location data and
previous historical trajectory data of moving objects (i.e., the
data pertaining to a certain recent time period). The hybrid
analysis details are given in Sect. 6.

5 Hybrid storage

The streaming trajectory data are collected continuously.
Instead of using mini-batch strategy that divides incoming
data into small batches and manages them separately, our
system Dragoon appends the incoming data into the previ-
ous data partitions, which incurs an update in the underlying
storage for each arriving trajectory point. However, the origi-
nalRDDsof Spark are immutable, and any update on anRDD
will create a new RDD, resulting in high storage costs due
to unnecessary data copies. Hence, how to support frequent
RDD updates of streaming data is the key to implement the
hybrid storage. In view of this, we propose a mutable RDD
(mRDD) model that is designed to be compatible with the
original RDD model of Spark. The mRDD model includes

123



Dragoon: a hybrid and efficient big trajectory management... 293

Fig. 4 An example of RDD share

three parts, i.e., RDD Share, RDD Update, and RDD Mir-
ror, in order to support hybrid storage for both historical
and streaming trajectory data. In the next of this section, we
will detail these three parts by orders. To distinguish, we use
mRDDs to denote our proposed mRDD model of Dragoon,
while we use RDDs to represent the original RDD model of
Spark.

5.1 RDD share

In Spark, data are logically stored in the distributed data parti-
tions, but are stored physically in the distributed data blocks.
That is to say, each data partition corresponds to a data block
in the underlying storage layer. Inspired by the multi-version
data structures [41], we develop an effective mechanism for
data sharing across different RDDs, termed as RDD Share.
When updating some data in an RDD, the RDD Share first
identifies data partitions without any data updates, and then,
the newly created data RDD directly reuses those data par-
titions that have not been recently updated. This mechanism
can avoid large amounts of unnecessary data copies for the
data update processing.

In Spark, the data partitions of an RDD are managed in an
RDD-specific space, and thus, different data RDDs aremain-
tained in separated storage spaces. To support RDD Share
across different RDDs, we assign to each data partition (i.e.,
physical data block) a unique ID, as shown in Fig. 4. To gen-
erate a unique ID for each data partition in the data space, we
combine the RDD ID and the sequence number of the data
partition in its data RDD. For example, in Fig. 4, the data
partition ID “rdd1-p1” combines the RDD ID “rdd1” and the
sequence number “p1” of the data partition in its belonging
data RDD.

In the original RDD design of Spark, each data parti-
tion only belongs to one specific data RDD and each RDD
only manages its own data partitions. When a data RDD is
released, its data partitions are also liberated. However, in
our mRDD model, each data partition can be shared among
multiple mRDDs. Therefore, the life cycle of each data parti-

tion needs to bemaintained individually to support consistent
data management. In other words, when an RDD is released,
its data partitions cannot be released if they are shared with
other mRDDs. As an example, in Fig. 4, the data partition
“rdd1-p2” is shared by both RDD1 and RDD2. When RDD1

is released by the system, it’s data partition “rdd1-p2” can-
not be liberated directly, since it is also shared by another
RDD2. Otherwise, inconsistent data issues can be raised. To
avoid incorrect release of data partitions, we extend the block
manager in each node by introducing a Reference Table that
maintains a reference count for each data partition. The refer-
ence count of a data partition indicates the number ofmRDDs
that share this partition. An example of the reference table
is depicted in Fig. 4, where the reference count of data par-
tition rdd1-p1 is 1, as it is only used by mRDD1, while the
reference count of data partition “rdd1-p2” is 2, the reason is
that it is shared by both mRDD1 and mRDD2.

When a data partition is created by an RDD, a new row
corresponding to this data partition is inserted into the refer-
ence table, and its reference count is initialized to 1. When
a new RDD shares this data partition, its reference count is
incremented by 1. Similarly, when an RDD that shares this
data partition is released, the corresponding reference count
of this data partition is decremented by 1. Finally, when the
reference count of a data partition equals 0, this data parti-
tion and its physical data block can be released safely. Note
that the reference table can be implemented using Chronicle
Map. In addition, each node in theDragoon systemmaintains
a reference table by its block manager.

RDD Share mechanism could share data partitions across
different data RDDs, and it decouples an RDD’s life cycle
from the life cycles of its data partitions. Assume that there is
an RDD and it has 1000 data partitions and only one partition
needs to be updated, which could be caused by trajectory
data editing or incoming streaming trajectory management.
In order to support these kinds of data updates, Spark creates
a new RDD that maintains one updated partition, and copies
the remaining 999 partitions. In contrast, our systemDragoon
creates a new RDD that maintains the updated partition but
shares the remaining 999 partitions. Thus, RDD share can
avoid large amounts of unnecessary data copies caused by
data updates.

5.2 RDD update

In this subsection, we detail how to update those data par-
titions that are needed to be updated because of trajectory
editing ormanagement of trajectory streams,whichwe called
that as RDD Update. The RDD Update contains three dif-
ferent data update strategies, including the Newest-Only, the
Share-Append, and the Share-Update, which offer supports
for different relevant update scenarios in trajectory manage-
ment. In order to show how to perform data updates on

123



294 Z. Fang et al.

(a) (b) (c)

Fig. 5 A running example of RDD update

our mRDDs using these three update strategies, we use a
running example as illustrated in Fig. 5 that includes four
moving objects o1, o2, o3, and o4. At time t0, their loca-
tions are stored separately in four data partitions (i.e., P1,
P2, P3, and P4) according to the id information of moving
objects, where o1(0) represents the location of o1 at time t0.
At time t1, new locations o1(1) and o3(1) are generated by
moving objects o1 and o3, respectively. Hence, Dragoon has
three update strategies for these two new location updates in
this running example. (i) replacing the old values with these
two new locations; (ii) appending these two new locations to
the end of historical data; and (iii) inserting these two new
locations into corresponding historical data partitions. In the
next of this subsection, we proceed to detail how these three
update strategies work using the running example, and ana-
lyze the strengths, shortcomings, and adapted scenarios of
each update strategy.

The Newest-Only update strategy assumes users only
focus on the latest location data values when the objects are
moving, meaning that the historical trajectory data values of
moving objects can be ignored directly. This scenario is com-
mon in streaming settings, where both stateful and stateless
stream computing are based on the latest data. In addition, it
is also common when editing and cleaning trajectory data to
store only the latest correct values to save storage space. The
Newest-Only strategy does not need to create a new RDD to
perform an update, but replaces the old values directly in the
old mRDDs with the new ones. Specifically, to perform an
update,wefirst identify thedata partitionwhere it locates, and
then, we update this data partition directly. Here, a data parti-
tion is mutable, as it is implemented by Chronicle Map [20].
However, the RDD and its data partitions are not changed in
logically. An example of applying the Newest-Only strategy
is depicted in Fig. 5a, where o1(0) in P1 is replaced by o1(1),
while o3(0) in P3 is replaced by o3(1) after these two data
updates. The Newest-Only update strategy is useful due to
three reasons as follows.

– First, the Newest-Only strategy provides the possibility
for the efficient data updates in RDDs using Chronicle

Map, which is required in many application scenar-
ios such as trajectory editing, trajectory cleaning, and
streaming trajectory processing.

– Second, the Newest-Only update strategy does not create
a newdataRDD for a data update operation,which avoids
the overheads associated with data copying compared
with the original Spark.

– Last but not the least, the Newest-Only strategy always
keeps the latest data in mRDDs when the data is updated.
Consequently, we can directly obtain the latest data val-
ues without interruptions when continuously fetching
data in real time, which is meaningful in streaming tra-
jectory processing settings.

However, theNewest-Only update strategy has two limita-
tions. First, it replaces the previous data values with the latest
new data values, and thus, the historical trajectory data are no
longer available for further analysis. Therefore, the Newest-
Only strategy cannot support period online analysis. Second,
it updates the data in the distributed environment, which may
cause data inconsistencies when reading and writing the data
simultaneously. Thus, we need to introduce access permis-
sions before reading orwriting themRDDs, resulting in some
additional time costs, whichwill be detailed in “RDDmirror”
subsection.

The Share-Append update strategy assumes that the lat-
est data values are appended to the end of the historical data
values, where the historical data do not need to be updated.
This scenario alignswith historical analyses that involve both
the latest and previous locations of a streaming trajectory.
An example is to find trajectories of moving objects that
have moved together during the past 30 min [37]. The Share-
Append strategy is based on the RDD Share, where the new
data are placed in newly created data partitions. An example
of Share-Append is shown in Fig. 5b, where new data parti-
tions P5 and P6 containing the two updated locations o1(1)
and o3(1) are appended to the end of the historical storage
space. There are three advantages by using the Share-Append
update strategy.

123



Dragoon: a hybrid and efficient big trajectory management... 295

– First, the Share-Append update strategy does not signifi-
cantly affect the data distribution. Specifically, when the
historical data are uniformly distributed in the system, a
Share-Append data update does not yield a skewed data
distribution.

– Second, the data partitions under the Share-Append are
naturally divided according to the temporal information
of trajectories, which is beneficial for trajectory analytics
with the temporal filtering.

– Last but not the least, the latest data are maintained in
newly created data partitions and has no effect on the
shared data partitions. Thus, the shared data partitions
can be regarded as immutable with Share-Append strat-
egy, which avoids data inconsistency issues caused by
concurrent reads and writes.

Although the Share-Append strategy is simple and does
not cause updates on historical trajectory data, it has two
drawbacks. First, the data are distributed according to its
temporal information. To obtain a different data distribution
(e.g., according to the spatial information) of trajectories,
the historical data need to be repartition and rebuild indexes
periodically. Second, although a single update does not sig-
nificantly affect the data distribution, the continuous data
updates may result in declining of query performance.

The Share-Update update strategy assumes that only a
small fraction of the entire dataset is updated at a time. This
is because the locations generated by moving objects at a
specific time aremuch fewer than all archived historical loca-
tions in the entire dataset. The Share-Update strategy is based
on RDD Share, where a newly created RDD shares data par-
titions without data changes, and copies the remaining data
partitions by inserting the new incoming data. Note that,
unlike the Newest-Only strategy, the update in Share-Update
is an insertion operation instead of a replace operation. An
example of Share-Update is shown in Fig. 5c, where the
data in P1 are updated to o1(0, 1), while the data in P3 are
updated to o3(0, 1). The Share-Update combines the RDD
updatemechanismwith RDDShare, which has the following
strengths.

– First, trajectory data can be divided using different data
partition strategies in order to support flexible data bal-
ancing and efficient global management.

– Second, the new incoming data can be distributed uni-
formly to different cluster nodes in order to improve
parallel and overall performance.

– Last but not the least, the latest trajectory data are main-
tained in the newly copied data partitions and have no
effect on those shared data partitions.

The Share-Update strategy can efficiently overcome the
disadvantages of the Newest-only and Share-Append strate-

gies. Nonetheless, it still needs additional time costs for
applying write and read permissions, as does the Newest-
Only update strategy.

In summary, the Dragoon system provides three differ-
ent data update strategies to form RDD Update for different
trajectory related updating scenarios. Besides, each update
strategy is based on different assumptions, and has its own
advantages and adaptation scenarios. It is worth mention-
ing that the proposed mRDD model of Dragoon is totally
compatible with the original RDD model of Spark. There-
fore, the existing transformation and action operations in
mRDD are the same with those supported by RDD. The
difference between mRDD and RDD is that mRDD intro-
duces the updatemechanism to support efficient data updates,
which belongs to one of the transformation operations that
also follows the lazy evaluation of Spark.

5.3 RDDmirror

In the original design of RDD, an RDD is read-only and can-
not be updated directly; thus, there does not exist any data
inconsistencies.However, as discussed earlier,we introduced
the mRDD model to support data updates in mRDDs, which
makes the RDD be writeable and readable. To avoid the data
inconsistencies caused by concurrent data reading or writing,
data updates require permission controls and locking mech-
anisms to manage permissions. As data in a mutable RDD
are stored and managed at the granularity of data partitions,
the read and write permissions can also be controlled at the
granularity of data partitions.

In this subsection, we introduce the RDD Mirror mecha-
nism, which further extends the reference table in the block
manager to implement read/write permissions and locks
in a distributed environment. Specifically, the RDD Mirror
records permission information (i.e., a read count and a write
flag) for each data partition in the reference table, as depicted
in Fig. 4.When the write flag of a data partition is 0, meaning
that no task is writing this data partition; otherwise, when its
write flag is 1, it indicates that a task is writing this data par-
tition now. The read count records the number of concurrent
readings. As an example in Fig. 4, assume that data partition
rdd1-p2 is currently being read by two applications and its
read count is 2.

When a task applies for a read or write permission of an
RDD, it creates an RDD mirror that can be used for recov-
ery. RDD Mirror shares all the unchanged partitions via the
RDD Share, and it updates the permission information of
the changed data partitions. The RDDMirror needs to check
for permission conflicts before establishing an RDD mirror.
After both the reference count and the permission infor-
mation are successfully updated, the RDD mirror is fully
established. The RDDmirrors can be classified into readable
RDD mirrors and writable RDD mirrors as follows.

123



296 Z. Fang et al.

Readable RDD Mirror When an application reads an
RDD, it needs to obtain a read permission before creating
a readable mirror of this RDD. The readable RDD mirror
shares all the data partitions with the original RDD and
checks its write flag for each data partition. If a data par-
tition exists whose write flag equals 1, the read permission
request fails; otherwise, if all the write flags of the data par-
titions equal 0, their read counts are incremented by 1. After
the reading is completed, their read counts are decremented
by 1.

Writable RDD Mirror When an application updates an
RDD, it needs to apply for the write permission and create
a writable mirror of this RDD. The writable RDD mirror
requires that none of its data blocks are read or written by
other tasks, i.e., the read count and thewrite flag of every data
partition are equal to 0. In Fig. 4, if a write permission request
for rdd1-p2 is issued by an application, the request will fail
as the read count of rdd1-p2 is 2. If there are no conflicts
for this write permission request, we set the write flags of
all the data partitions in this RDD to 1. After completing the
writing, the write flags are set as 0.

5.4 Fault tolerance

In this subsection, we introduce the fault tolerance mech-
anisms of the Dragoon system related to the distributed
processing process and read/write permissions. To begin
with, the Spark platform offers multiple levels of data per-
sistence, including the task and process levels. If an RDD is
not cached, it can be regarded as being persisted at the task
level, meaning that the data will be lost if a task fails. While a
cached RDD, either in memory or on disk, is persisted at the
process level, which denotes that the data can be recovered
if a task fails, it will be lost if the process crashes. To persist
data at higher levels, users have to manually and regularly
save the dataset by using other services (e.g., HDFS), which
is inconvenient and time-consuming.

In Dragoon, trajectory data persisted at the ChronicleMap
storage are saved transparently through reliable services at
runtime. Moreover, this persistence does not sacrifice the
performance of in-memory data access. To achieve this, a
Chronicle Map instance is created by default upon a file in
shared memory (e.g., /dev/shm in Linux). Data in this file
can survive task failures and can be accessed at in-memory
speed. Furthermore, to serve as a reliable distributed stor-
age, several techniques are applied to prevent both historical
and streaming data storage from failures. For example, Dra-
goon asynchronously backs up the files in shared memory
or on disk to a reliable file system (e.g., HDFS), so that the
data can survive task failures and node crashes. As a result,
missing data can be reloaded automatically under the Spark
recomputation mechanism. In addition, when updating data
mRDDs in Dragoon, the RDD Mirror function is integrated

Algorithm 1: IdPartitioning Algorithm
Input: the historical trajectory dataset S, a partition key value k

1 for each trajectory T ∈ S do
2 PartitionId ← 〈�T .id/k�〉
3 output (PartitionId, T )

Algorithm 2: GridPartitioning Algorithm
Input: the historical trajectory dataset S, a grid cell width lg

1 for each trajectory T ∈ S do
2 for each GPS record r ∈ T do
3 GridId ← 〈�r .l.x/lg�, �r .l.y/lg�〉
4 output (GridId, r )

Algorithm 3: STRPartitioning Algorithm
Input: the historical trajectory dataset S, the number of leaf

nodes in R-tree nnodes
1 initialize the R-tree r t ← ∅
2 SampleDataset = sample(S)
3 r t = STR.build(SampleDataset, nnodes)
4 for each trajectory T ∈ S do
5 for each GPS record r ∈ T do
6 PartitionId ← r t .locate(r)
7 output (PartitionId, r )

into the block manager of each node to implement read/write
permissions and locks. In addition, every update request is
saved as a log file in Chronicle Map in order to ensure that
the data updates are executed in order.

6 Hybrid analysis

In this section, we present the detailed hybrid analysis
pipeline for historical and streaming trajectory data. As dis-
cussed in Sect. 4, the pipeline contains four stages, i.e.,
loading, preprocessing, management, and analysis. Thus, we
offer the details of four stages in the offline and online tra-
jectory data analysis pipelines, respectively.

6.1 Offline analysis pipeline

The offline analysis pipeline for historical trajectory data is
simple, since the entire trajectory dataset is known in advance
and can be loaded into the Dragoon system at once for the
subsequent processing.

Loading The first stage is to load the entire historical tra-
jectory dataset. The historical trajectory dataset is usually
stored in the HDFS system, and hence, it can be loaded into
Dragoon in parallel. In this stage, a customizable data loader
is provided to support different file formats (e.g., txt, csv, or
xml).

123



Dragoon: a hybrid and efficient big trajectory management... 297

Preprocessing The second stage includes format transfor-
mation (e.g., trajectory points to segments), data partitioning,
and index construction. The customizable data partitioners
are provided as follows, which use different features (e.g., the
id, spatial, or temporal information) of trajectories to partition
the loaded trajectory data considering different characteris-
tics of trajectories. In other words, trajectories with the same
or similar id/spatial location/time features will be sent to the
same data partition for parallel processing.

– IDPartitioner is based on the HashPartitioner of Spark,
with the pseudo-code depicted in Algorithm 1. It takes
as inputs the whole historical trajectory dataset S and
a partition key value k. For each trajectory T in S, the
algorithm first computes the Parti tionId of the data
partition that T belongs to (line 2). Specifically, the T .id
represents the ID of the moving object that generated this
trajectory T . Next, it sends T to this data partition, where
trajectories with the same PartitionIds are distributed to
the same data partition (line 3).

– GridPartitioner is inspired by the Grid-index [44], with
the pseudo-code shown in Algorithm 2. It takes as inputs
the whole historical trajectory dataset S and a grid cell
width lg . For each location r in each trajectory T in S,
the algorithm first computes the Grid Id of the spatial
grid cell that r belongs to (line 3). Note that the r .l is
the spatial location of this GPS record r , which includes
r .l.x and r .l.y. Next, it sends r to its corresponding data
partition, where locations in the same spatial grid cell are
distributed to the same data partition (line 4).

– STRPartitioner is inspired by the STR tree [27], with its
pseudo-code presented in Algorithm 3. It takes as inputs
the whole historical trajectory dataset S and the number
of leaf nodes nnodes in R-tree. The algorithm first ran-
domly samples the whole trajectory dataset S (line 2)
to get a sampled dataset SampleDataset , and then, it
uses the SampleDataset to build an R-tree by apply-
ing the STR algorithm [27] with nnodes (line 3). Next, it
partitions the S into several disjoint data partitions with
approximately equal size based on the R-tree (line 4-7).
The STRPartitioner can achieve better load balance com-
pared with the former GridPartitioner, because it divides
the dataset according to the data distribution of the entire
dataset.

– TimePartitioner is also based on the HashPartitioner of
Spark, with the pseudo-code depicted in Algorithm 4. It
also takes as inputs the whole historical trajectory dataset
S and a partition key value k. For each GPS record r
of each trajectory T in S, the algorithm first computes
the Parti tionId of the data partition that r belongs to
(line 3) based on temporal information of GPS records.
It is worth mentioning that r .time represents the specific
timestamp of this GPS record r when it is generated.

Algorithm 4: TimePartitioning Algorithm
Input: the historical trajectory dataset S, a partition key value k

1 for each trajectory T ∈ S do
2 for each GPS record r ∈ S do
3 PartitionId ← 〈�r .time/k�〉
4 output (PartitionId, r )

Next, the TimePartitioner will send each r to its corre-
sponding data partition, indicating that trajectories with
similar timestamps are distributed to the same data par-
tition (line 4).

With different trajectory data partitioners, the Dragoon
system could support more flexible data balancing. After
the data partitioning, Dragoon builds the local indexes and
a global index similar to the way how it is done in UlTra-
Man [20]. Specifically, Dragoon builds a local index in each
data partition, and then builds a global index based on the
features of all data partitions. For example, to build a global
R-tree, Dragoon needs to collect pids and MBRs from every
data partition, where the pid is the partition ID, and theMBR
is the partition’s spatial minimum bounding.

Management The historical trajectory data management
includes how to store the data and the indexes. The storage
in Dragoon is implemented based on Chronicle Map, which
is an off-heap memory and an embedded key-value storage
designed for low-latency and multiple-process access. The
reason why we adopt Chronicle Map to store the trajectory
data is that it provides efficient data updates and can ease the
garbage collector pressure in Spark. Compared with Spark,
our system based on Chronicle Map achieves better scalabil-
ity, as confirmed by our experiments in Sect. 8.

Analysis The offline trajectory analysis contains typical
querying and mining tasks of historical trajectory data. The
offline analysis can be accelerated by global filtering using
the global index, and then, its result can be refined by local
analyses aided by local index in each data partition. More
details about the offline analysis tasks of historical trajectory
data that we focused on in this work will be discussed in
Sect. 7.

6.2 Online analysis pipeline

The online analysis pipeline for streaming trajectory data is
illustrated in Fig. 6. The online analysis of streaming trajec-
tory data not only focuses on the latest trajectory data values
but also needs to merge the latest data with historical trajec-
tory data. It is worth mentioning that the latest data is the
data that has arrived at the most recent time point. For the
latest online analysis, we aim at the latest spatial data val-
ues of all moving objects instead of new incoming data at the

123



298 Z. Fang et al.

Fig. 6 Online analysis pipeline for trajectory streams

Algorithm 5: Online IdPartitioning
Input: a set St of the newly arriving trajectory points at time t ,

a partition key value k
1 for each GPS point r ∈ St do
2 PartitionId ← 〈�r .id/k�〉
3 output (PartitionId, r ) 
 IdPartitioner

Algorithm 6: Online GridPartitioning
Input: a set St of the newly arriving trajectory points at time t ,

a grid cell width lg
1 for each GPS point r ∈ St do
2 GridId ← 〈�r .l.x/lg�, �r .l.y/lg�〉
3 output (GridId, r ) 
 GridPartitioner

most recent time point. This is because not all moving objects
update their locations at every time point. As an example, in
Fig. 5, the latest (i.e., the newly arriving) data includes o1(1)
and o3(1), whereas the latest data values of all the four mov-
ing objects at time t1 are o1(1), o2(0), o3(1), and o4(0), where
o2 and o4 do not update their locations at time t1. In addition,
the latter is our focused latest online analysis. In contrast, for
another period online analysis, we aim at both the latest and
previous data values of moving objects.

Loading In the first stage, Dragoon continuously reads
the newly arriving data from a trajectory stream. The system
reads the data stream similar to how it is done by Spark
Streaming, which reads the data stream during the last few
seconds (e.g., every 5 s) as a mini-batch, and each batch of
streaming data is processed as an independent RDD. The
customizable data loader used in the offline analysis can be
also used here.

Preprocessing Although both the online and offline tra-
jectory preprocessing need data partitioning process that is

based on the id, spatial location, or temporal information of
trajectories, and the index construction process, there are sev-
eral differences between the online and offline preprocessing.
First, offline trajectory data partitioning takes the entire his-
torical trajectory dataset as an input and executes the data
partitioning only once, while the streaming trajectory data
are partitioned by real-time partitioners that take trajectory
data points of moving objects that are observed at each time
as inputs, and execute the data partitioning at each time in
real time. Second, the index construction of offline analysis
also usually executes only once and the (local and global)
indexes generally do not need to be updated. However, in the
streaming trajectory settings, not only trajectory data in data
partitions but also the local and global indexes need to be
updated during the next merge process stage.

– Online IdPartitioner is similar as the IdPartitioner of
offline trajectory preprocessing, with the pseudo-code
depicted in Algorithm 5. The difference is that the Online
IdPartitioner takes as inputs a set St of the newly arriving
trajectory points at time t and a partition key value k.
For each GPS point r in St , the algorithm first computes
the Parti tionId of the data partition that r belongs to
(line 2). Next, it sends r to its corresponding data parti-
tion (line 3). Note that the mRDD update process, which
merges the newly arriving trajectory points to historical
trajectory data, will be executed at the next stage. Dif-
ferent from Algorithm 1, Algorithm 5 repeats the above
processing at every time.

– Online GridPartitioner, as the pseudo-code is shown in
Algorithm 6, which is similar as Algorithm 2. The only
difference is that the online method takes a set St of the
newly arriving trajectory points at time t as an input,
while the offlinemethod takes the entire trajectory dataset
as an input. Note that a subsequent merge process will be
performed by merging the new coming data with histori-
cal trajectory data in this data partition. However, the grid
cells are fixed for all locations generated by the moving
objects at every time, which could result in a skew parti-
tioning. To get better data partitioning and data balancing,
the Online STRPartitioner is also provided as follows.

– Online STRPartitioner is also similar as the STRPar-
titioner of the offline trajectory preprocessing, with its
pseudo-code presented in Algorithm 7. It takes a set St
of the newly arriving trajectory points at time t instead of
the entire trajectory dataset as an input. The online STR-
Partitioner can achieve better load balance comparedwith
the online GridPartitioner, because it divides the dataset
according to the data distribution of each St in real time.

– Online TimePartitioner can be easily implemented by
the Share-Append strategy of Dragoon since the trajec-
tory stream comes in chronological time order. Thus, the
detailed algorithm is omitted here.

123



Dragoon: a hybrid and efficient big trajectory management... 299

Algorithm 7: Online STRPartitioning
Input: a set St of the newly arriving trajectory points at time t ,

the number of leaf nodes in R-tree nnodes
1 initialize the R-tree r t ← ∅
2 SampleDataset = sample(St )
3 r t = STR.build(SampleDataset, nnodes)
4 for each GPS point r ∈ St do
5 PartitionId ← r t .locate(r .l)
6 output (PartitionId, r ) 
 STRPartitioner

Management The online trajectory management involves
the merge process about merging newly arriving trajectory
points with the historical trajectory data. The real-time par-
titioner in the previous preprocessing stage may generate
the same partitions all the times (e.g., IDPartitioner and
GridPartitioner) or the different partitions at different time
(e.g., TimePartitioner and STRPartitioner). In the former
case, we directly distribute the partitioned St to the corre-
sponding existing data partitions using the Newest-Only or
Share-Update strategies based on mRDD model, which is
highlighted as a red line ”Merge1” in Fig. 6. In the latter
case, we append newly created data partitions of St to the
existing partitions using the Share-Append strategy, to real-
ize the ”Merge2” in Fig. 6. During the merging, both the
writable RDD mirror and readable RDD mirror are used to
avoid data inconsistencies: One is for updating processing
and the other is for result reading processing. In addition,
both local and global indexes also need to be updated after
data merging process.

Analysis The online analysis of streaming trajectory data
includes the latest online analysis and period online analysis,
as depicted in Fig. 6. The latest online analysis considers only
the latest data for all moving objects. However, the period
online analysis needs both the latest and historical data in a
given time period. More details about the online analysis of
trajectory streams will be discussed in Sect. 7.

7 Analytic case studies

We demonstrate Dragoon’s flexibility through several typi-
cal offline and online trajectory data analytic case studies,
including the (online) ID queries, the (online) range queries,
the (online) k nearest neighbor (kNN) queries, the offline
trajectory editing, and the real-time co-movement pattern
detection on trajectory streams.

To begin with, let O = 〈o1, o2, ..., om〉 be a set of moving
objects, in which each oi ∈ O (1 ≤ i ≤ m) is a moving
object that can produce a trajectory or a streaming trajectory
as defined below.

Definition 1 (Trajectory). A trajectory Ti , generated by the
moving object oi (1 ≤ i ≤ m) in the geographical space, is

usually represented by a sequence of chronologically ordered
GPS records, i.e., Ti = 〈r1, r2, ..., rn〉. Each GPS record r j
(1 ≤ j ≤ n) ∈ Ti can be represented as a triple (id, l, time),
where l is the spatial location of the object oid (id = i) at
the timestamp t ime. Note that the l usually consists of a
geospatial coordinate set (longitude, latitude).

Definition 2 (Streaming Trajectory). A streaming trajec-
tory generated by a moving object oi (1 ≤ i ≤ m) is
also a time-ordered sequence of GPS records, i.e., STi =
〈r1, r2, ...〉. Note that, different from the trajectory Ti ,
the streaming trajectory STi of the moving object oi is
unbounded.

Hence, a static trajectory dataset (STD) contains all the
trajectories generated by O , i.e., STD = 〈T1, T2, ..., Tm〉. A
dynamic trajectory dataset (DTD) contains all the streaming
trajectories generated by O , i.e.,DTD = 〈ST1, ST2, ..., STm〉.
In the sequel, we proceed to introduce the typical offline and
online trajectory analysis cases on both historical and stream-
ing trajectory data. In addition, an experimental evaluation
of these analysis cases will be detailed in Sect. 8.

7.1 Trajectory editing

Given a static trajectory dataset STD, there may have noisy
sample points [57]. For example, when a GPS receiver is in
an urban canyon and satellite visibility is poor, inaccurate
locations may occur. To clean such trajectory noisy points,
trajectory editing operations are used. More specifically, the
trajectory editing aims to update the noisy trajectory points
with correct ones. As depicted in Fig. 2a, the trajectory edit-
ing in Spark will result in many unnecessary data copies
due to the immutability of RDDs. In contrast, Dragoon pro-
vides the mRDD model that enables to update data RDDs
directly, as shown in Fig. 2b, providing a more effective
and powerfulmechanism for trajectory datamanagement and
maintenance.

7.2 ID and online ID queries

ID and online ID queries aim to find one specific trajectory
according to its ID information, which are useful in trajectory
monitoring scenarios, as defined below.

Definition 3 (ID and Online ID Query). Given a specific
id, the ID query and online ID query find the trajectory Ti
in STD and streaming trajectory STi in DTD respectively,
which is generated by the moving object oi , where i = id.

For the offline ID query, the IdPartitioner first partitions
the entire trajectory dataset STD into multiple data partitions
according to IDs of moving objects to enable subsequent
parallel processing. As shown in Algorithm 1, if we set k =

123



300 Z. Fang et al.

10000, the IdPartitioner could assign (i.e., partitionID= id/k)
moving objects whose IDs between 0 and 10000 to data par-
tition P0, and whose IDs between 10001 and 20000 to data
partition P1, etc. Then, we build a local Hash index in each
partition, where the object ID is used as the key and the tra-
jectory points are regarded as the values. Since the Chronicle
Map itself is a hash map, the local Hash index can be imple-
mented easily based on the Chronicle Map storage. Next, a
global index can be built based on the features of all data
partitions. The features of a partition include the partition ID
and themoving object ID range in this data partition. Consid-
ering the example described above, the global index contains
〈(P0.I D, [0, 10000]), (P1.I D, [10001, 20000]), ...〉. Finally,
an ID query can use the global index to filter unnecessary data
partitions based on the given id, and it can use a local Hash
index to find the final result directly.

For the online ID query, the Real-Time IdPartitioner is
used to assign the newly arriving trajectory points at time
t (St ) to several data partitions according to the IDs of the
streaming trajectories, and then merges them with the histor-
ical locations in each data partition. The online ID query is an
instance of the latest online analysis, as it returns the current
location of a streaming trajectory whose ID equals the given
ID at each time; thus, the online ID query is conducted on
the current locations of all streaming trajectories at each time
point. Therefore, all three different update strategies covered
in Sect. 5 can be used for this merging processing. In addi-
tion, we also need to update the local and global indexes after
trajectory merging.

7.3 Range and online range queries

Range and online range queries aim to find trajectories in
a certain spatial range region, which are useful in applica-
tions such as traffic monitoring and hotspot detection [57],
as defined below.

Definition 4 (Range and Online Range Query). Given a
certain spatial search region Q, an STD, and a DTD, the
range query finds the trajectories in STD that have intersected
with Q, while the online range query finds the streaming
trajectories in DTD whose current spatial locations locate
inside Q. Note that the search region Q is usually represented
as a rectangle 〈[minx , miny], [maxx ,maxy]〉.

For the offline range query, we adopt the GridPartitioner
to partition STD based on spatial information of trajectories,
where a local R-tree is built on each data partition and a
global grid index is built on the whole trajectory dataset STD.
Similar to the ID query, the global grid index can filter those
data partitions that are not intersected with search region Q,
and then, localR-trees canbeutilized to support rangequeries
on the candidate partitions to obtain the final result.

For the online range query, the online GridPartitioner is
first used to partition the new incoming points (St ) from the
streaming trajectories and then merge the incoming points
with the historical data of corresponding data partitions. The
online range query is also an instance of the latest online
analysis. It returns the steaming trajectories whose current
locations are contained in the search region Q, and the query
is performed on the latest locations of all streaming trajec-
tories. Thus, all three update strategies can be employed
to merge the data. In addition, the corresponding local and
global indexes are updated after data merging.

7.4 kNN and online kNN queries

kNN and online kNN queries aim to find k nearest trajec-
tories for a specified spatial location, which are useful in
location-based services such as trajectory classification and
ride sharing [13], as defined below.

Definition 5 (kNN and Online kNN Query). Given a loca-
tion l, an STD, a DTD, and an integer k ≥ 1, the k nearest
neighbor (kNN) query finds k nearest trajectories in STD for
l, i.e., Rk = {Ti |1 ≤ i ≤ k, d(Ti , l) ≤ d(Tj , l)(Tj /∈ Rk)},
and online kNN query finds k streaming trajectories in
DTD whose current locations are closest to l, i.e., ORk =
{STi |1 ≤ i ≤ k, d(STi .rt , l) ≤ d(STj .rt , l)(STj /∈ ORk)}.
Note that the distance computation d(Ti , l) and d(STi , l)
between location l to a trajectory Ti or STi follow the
work [13], although other distance functions can also be
implemented in the Dragoon system.

For the offline kNN query, we adopt the STRParti-
tioner [47] to uniformly partition the trajectory data accord-
ing to its spatial information. Here, the R-tree variant [20] is
used to improve kNNquery efficiency,where each node of R-
tree maintains both the minimal bounding rectangle (MBR)
and a count of distinct trajectories contained in its MBR.
During the kNN query, global filtering is utilized to obtain
candidate data partitions with trajectory counts no less than
k, and then, local kNN queries are performed in the can-
didate partitions individually. Finally, the local results from
the candidate partitions are sorted in ascending order of their
distances to the query location, and then, the global top-k
trajectories are returned.

For the online kNN query, we use the MBRs in the global
R-tree index instead of a STRPartitioner to partition the latest
locations from the streaming trajectories. This is because the
STRPartitioner could cause additional cost for data merge as
discussed in Sect. 6.2. Next, we merge the data and update
the local and global indexes. Similar to the online ID and
Range queries, the online kNN query is an instance of latest
online analysis. The online kNN query returns k trajectories
whose current locations are closest to the query location at
each time; thus, it is performed on the latest locations of all

123



Dragoon: a hybrid and efficient big trajectory management... 301

streaming trajectories. Hence, all three update strategies can
be used for data merging.

7.5 Co-movement pattern detection

Co-movement pattern detection aims to discover co-moving
objects that satisfy specific spatiotemporal constraints [14],
including the closeness, the significance M , the duration K ,
the consecutiveness L , and the connectionG. Here, we focus
on the real-time co-movement pattern detection on stream-
ing trajectories, which is useful in many applications such
as future movement prediction. The real-time co-movement
pattern detection is an example of period online analysis,
and thus, we must consider the latest locations as well as the
historical locations of each streaming trajectory.

We directly adopt the state-of-the-art method [14] for
the real-time co-movement pattern mining. However, the
underlying system of Dragoon is different from that of the
Flink platform, which can achieve better scalability. This
is because, the state2 storage in Flink is based on on-heap
memory to enable high performance, which has a significant
pressure on the garbage collector (GC), especially for the big
trajectory data maintenance and processing. In contrast, our
system uses Chronicle Map for physical storage, which is
off-heap memory that relieves the GC pressure, while guar-
anteeing the efficiency at the same time. In addition, the
streaming trajectory data maintained by states in Flink are
released after completing the stream analysis. In contrast,
Dragoon provides permanent storage of streaming trajectory
data, and hence, the data can be used for subsequent trajec-
tory analytics in the future.

Since the real-time co-movement pattern detection is an
instance of the period online analysis, the Newest-Only
update strategy is not applied anymore. This is because the
Newest-Only strategy directly discards the previous location
values of moving objects. The co-movement pattern detec-
tion method updates the indexes during querying to further
improve query efficiency. In addition, the intermediate results
(e.g., the clusters) also need to be stored. Themethod contains
two phases, clustering and enumeration. For the clustering
phase, both the Share-Append and Share-Update strategies
can be employed to merge data; for the enumeration phase,
only the Share-Update strategy can be used since we need
to partition the data according to its ID in order to realize
parallel pattern detection (i.e., ID partitioning is used in the
method [14]).

2 https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/
stream/state/.

Table 1 Statics of datasets

Attributes GeoLife Taxi Brinkhoff

#trajectories 18,670 20,151 100,000

#locations 24,876,978 2,273,039,208 4,769,059,392

#snapshots 92,645 6,030,792 71,800

Ave. length 1,332 112,800 47,690

Data size 1.5G 102G 201G

8 Experimental evaluations

In this section, We evaluate the performance of Dragoon
with typical trajectory analytic cases as discussed in Sect. 7,
and we compare Dragoon with the existing state-of-the-art
offline trajectory management system UlTraMan and also
the general-purpose online processing systems, including
Spark Streaming and Flink. Recall that the core component
of Dragoon is the mRDD model, based on which hybrid tra-
jectory data analytics including offline and online analytics
can be efficiently supported. Hence, in the subsequent exper-
iments, we evaluate the performance of two components of
Dragoon, i.e., mRDD model and hybrid trajectory data ana-
lytics. (i) To verify the performance of mRDD model, we
first report the performance of offline trajectory editing that
are based on mRDD model, and then, we report the data
update performance during online trajectory queries. This
is because, when performing online ID/Range/kNN query
analytics, Dragoon first merges the newly arriving trajec-
tory points with historical trajectory data in the underlying
storage. This merge process is mainly based on the mRDD
model, where three update strategies (i.e., Newest-Only,
Share-Append, and Share-Update) provided by Dragoon are
evaluated. (ii) To evaluate the performance of hybrid tra-
jectory data analytics, we use several typical offline (i.e.,
ID/Range/kNN queries) and online (i.e., real-time moving
pattern detection and ID/Range/kNN queries) trajectory ana-
lytic cases, as discussed in Sect. 7.

Datasets In our experiments, we use two real-life datasets
(i.e., GeoLife and Taxi) and one synthetic dataset (i.e.,
Brinkhoff), whose detailed information including the num-
ber of trajectories, the number of locations, the number of
snapshots, average length, and data size are summarized in
Table 1.

– GeoLife3: This dataset keeps the GPS records of each
user during a period of more than 3 years. The GPS
information is collected periodically, and 91% of the tra-
jectories are sampled every 5 s.

3 https://research.microsoft.com/en-us/projects.

123

https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/stream/state/
https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/stream/state/
https://research.microsoft.com/en-us/projects


302 Z. Fang et al.

– Taxi4: This dataset is generated by taxies in Hangzhou,
China. Trajectories are identified by the number plate of
taxis, and each trajectory represents the trace of a taxi for
3 months with a sampling rate of every 5 s.

– Brinkhoff5: This dataset is generated via the Brinkhoff
generator [12]. The trajectories are generated on the real
road network of Las Vegas city. Positions of moving
objects are updated every 1 second, and an object moves
along a road network with random but reasonable direc-
tion and speed.

Parameters In experiments, we study the effect on the
performance of varying settings for five parameters, as sum-
marized in Table 2, where default values are shown in bold.
Here, n represents the number of editing times on a static tra-
jectory dataset in trajectory editing. Second, Or denotes the
percentage of moving objects w.r.t. the entire trajectories in
the offline trajectory analytic cases, which also represents the
percentage ofmoving objectswho issue updates at every time
during the online analysis. Besides, ε represents the query
region used in (online) range queries w.r.t. the size of the
whole region that contains all trajectory points. k denotes the
k used in (online) kNN queries. N represents the number of
slave worker nodes for Dragoon system. In addition, parame-
ters used in real-time co-movement pattern detection are set
as the default values in previous work [14], i.e., M = 15,
K = 180, L = 30, and G = 30. Note that we adopt the
L1-norm as the similarity distance between two locations of
trajectories in the following experiments for simplification.
However, it is easy to support other distance functions.

Performance Metrics (i) For the ID/Range/kNN query
and trajectory editing, the execution time (i.e., the average
processing time for each query or editing) is employed to
evaluate their performance. (ii) For the online ID/Range/kNN
query and co-movement pattern detection, we use both the
latency and throughput as performancemetrics.More specif-
ically, for the online ID/Range/kNN query, we verify the
update and query processing phases, separately. In the update
phase that targets finding corresponding data partitions and
then inserting the newly arrived trajectory points into the his-
torical data partitions, the update latency denotes the average
time for inserting current St (all the points arrived at time t)
into historical trajectories, and the update throughout repre-
sents the number of St inserted by the system per second. In
the query phase processing, the query latency is defined as
the average response time for each online ID/Range/kNN
query, and the query throughout denotes the number of
ID/Range/kNN queries processed by the system per second.
(iii) Last but not the least, we also report the memory occu-
pation of system during data updating processing scenarios

4 This is a proprietary dataset.
5 https://iapg.jade-hs.de/personen/brinkhoff/generator/.

Table 2 Parameter ranges and default values

Parameter Range

The number of editings n 100, 200, 300, 400, 500

The ratio of objects Or (%) 10, 20, 40, 60, 80, 100

The query area ε (%) 0.01, 0.02, 0.04, 0.08, 0.16, 0.32

The value of k 4, 6, 8, 10, 12, 14

The slave workers N 1, 2, 4, 8, 10

including both trajectory editing and update phases of online
ID/Range/kNN queries.

Experimental Setup All experiments were conducted on
a cluster consisting of 11 nodes, where one node serves as
the master node, and the remaining nodes serve as worker
nodes. Each node is equipped with two 12-core processors
(Intel XeonE5-2620 v3 2.40GHz), 64GBRAM, and aGiga-
bit Ethernet. Each cluster node runs the Ubuntu 14.04.3 LTS
system with Hadoop 2.7.1, Spark 2.1.1, and Chronicle Map
3.14.0. In each slave node, we allocate 40GB main mem-
ory for trajectory data storage and computation. All system
modules were implemented in Scala.

8.1 Offline analysis

For offline trajectory analysis, we explore the performance of
Dragoon in terms of execution time and compare it with the
state-of-the-art offline trajectory management systemUlTra-
Man. First, we compareDragoon andUlTraMan using offline
ID/Range/kNN queries. Figures 7, 8, and 9 show the results
on three datasets, where each measurement is an average of

(a) (b)

Fig. 7 Performance of ID queries versus Or

(a) (b)

Fig. 8 Performance of range queries versus ε

123

https://iapg.jade-hs.de/personen/brinkhoff/generator/


Dragoon: a hybrid and efficient big trajectory management... 303

five random queries. Figure 7 verifies the impact of Or on
the performance of ID queries, Fig. 8 concerns the impact
of ε on range query performance, and Fig. 9 depicts the
impact of k on kNNquery efficiency. Figures 7, 8, and 9 show
that UlTraMan and Dragoon perform similarly in offline tra-
jectory queries. This is because Dragoon extends Spark to
support streaming trajectory data management and analyt-
ics, while the techniques used for offline trajectory analysis
in Dragoon and UlTraMan are the same.

In addition,weproceed to use trajectory editing to evaluate
the mRDD performance, and compare it with RDD of UlTra-
Man. Specifically, we report the execution time for trajectory
editing and the memory occupied by the system when each
editing is completed. Figure 10 plots the results of Dragon
compared with that of state-of-the-art system UlTraMan on
Taxi and Brinkhoff datasets by varying the number of editing
times n from 100 to 500, where the execution time is denoted
by polyline and the memory occupation is denoted by col-
umn. As we can see, the memory occupation of UlTraMan
increases obviously, and UlTraMan fails to support trajec-
tory editing when n reaches 400 (on Taxi dataset) or 300

(a) (b)

Fig. 9 Performance of kNN queries versus k

(a) (b)

Fig. 10 Performance of trajectory editing versus n

(on Brinkhoff dataset). The reason is that UlTraMan is still
based on immutable RDDs of Spark, meaning that a large
number of unnecessary data copies are generated during the
update process, incurring excessive memory pressure on the
system, as we have discussed in Sect. 3.1. In contrast, Dra-
goon always occupies a low system memory, and offers low
update time because its updates are directly and based on
mutable RDDs. Not to mention that we only performed 500
trajectory editing operations here while there aremassive tra-
jectory points (e.g., GeoLife contains tens of millions points,
and Brinkhoff includes hundreds of millions points). Note
that the trajectory editing experiments are conducted on the
whole trajectory dataset instead of a single RDD. To sum up,
Dragoon is more suitable, efficient, and scalable than UlTra-
Man for trajectory updating scenarios.

Last but not the least, we offer insights into the offline
scalability performance of Dragoon by modifying the num-
ber of slave workers N . The results are shown in Table 3.
As expected, the ID/Range/kNN query performance first
improves dramatically and then improves slowly when vary-
ing N from 1 to 10. This is because, on the one hand, the
degree of parallelism ascends with the growth of N ; on the
other hand, the communication cost in the distributed envi-
ronment also increases.

8.2 Online ID query

Next, we first evaluate the performance of Dragoon about
latency and throughput using online ID queries in terms of
data update and query phases, separately. Figure 11 shows the
update latency, update throughput, query latency, and query
throughput on the three datasets when Or ranges from 10
to 100%. We consider the Newest-Only, Share-Append, and
Share-Update strategies for both data updates and ID queries,
and compare with Spark Streaming.

In terms of data updates, the first observation is the update
latency increases and update throughput decreases with the
growth of Or . That is because, as Or increases, the size
of the latest trajectory data generated by moving objects
that needed to be merged with the historical trajectory data
grows. Second, Spark Streaming achieves the best update
efficiency, followed by the Share-Append, Share-Update,

Table 3 Scalability evaluation of Dragoon (ms)

Slave workers ID Query Range Query kNN Query
GeoLife Taxi Brinkhoff GeoLife Taxi Brinkhoff GeoLife Taxi Brinkhoff

1 1.51 2.15 2.55 10.71 24.16 35.16 268.68 402.77 899.19

2 1.08 1.52 1.75 5.64 12.26 16.74 119.41 169.23 359.67

4 0.83 1.16 1.30 3.32 7.13 9.46 65.61 91.48 191.32

8 0.62 0.87 1.12 2.21 4.69 6.03 40.57 55.44 106.88

10 0.51 0.70 0.82 1.71 3.53 4.34 27.24 36.22 64.10

123



304 Z. Fang et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 11 Performance of online ID queries versus Or

and Newest-Only. The Share-Append update performance
is slightly lower than that of Spark Streaming. The reason is
that the Share-Append needs additional time to serialize the
trajectory data that need to be stored in the Chronicle Map,
while Spark Streaming stores the data in the main memory
directly. In addition, the update latencies and throughputs of
Newest-Only and Share-Update are almost the same. This
is because both of them handle data updates by using local
Hash indexes. The difference is that the Newest-Only finds
the corresponding historical trajectory data and then replaces
its value,while the Share-Update finds the corresponding his-
torical trajectory data and then appends data to it. However,
the performance of both the Newest-Only and Share-Update
are slightly slower than that of the Share-Append strategy due
to the additional cost incurred by RDDMirror that is needed
to avoid data inconsistencies in the distributed environment
of Dragoon.

For online ID queries, the first observation is that the
latency increases and the throughput drops slightly as Or

grows. The reason is that the implementation of the ID query
is based on a hash map, which means the performance of that
is affected slightly by the trajectory data size. The second
observation is that the Newest-Only strategy has the lowest
query latency and the highest query throughput, followed by
the Share-Update and Share-Append strategies, while Spark
Streaming performs worst especially on the large datasets.

This is because (i) Newest-Only only stores the latest loca-
tions of the moving objects, thus using only minimal storage;
(ii) as discussed in Sect. 5.2, Share-Append divides the data
according to the temporal information, while Share-Update
and Newest-Only can achieve stronger ID filtering capabili-
ties; and (iii) the bigger the data volume Or , the larger data
pressure on the Spark Streaming system.

Finally, we also evaluate the online update performance
of mRDD in terms of memory occupation during the update
phase of online ID query. The results are shown in Table 4,
where N denotes Newest-Only, A stands for Share-Append,
U denotes Share-Update, and S represents Spark Streaming.
The first observation is that thememory occupation increases
as Or varies from 10 to 100. The second observation is that
the Newest-Only strategy has the smallest memory occupa-
tion, since it only keeps the newest location points of moving
objects in the system. Last but not least, both Share-Append
and Share-Update occupy fewer system memory compared
with that of Spark Streaming. The reason is that the under-
lying storage of Dragoon is based on the off-heap Chronicle
Map, while Spark Streaming relies on the on-heap memory
and JVM mechanism that lead to additional memory costs.
Note that the memory occupation is related to data volumes
and update strategies, but is not affected by the query types
and data partitioning methods, so the memory costs of the
online Range/kNN queries are omitted.

123



Dragoon: a hybrid and efficient big trajectory management... 305

Table 4 Online updating performance of mRDD versus memory occupation (%)

Or (%) GeoLife Taxi Brinkhoff
N A U S N A U S N A U S

10 0.05e−3 0.06 0.07 0.07 0.06e−3 3.49 3.37 4.17 0.33e−3 6.73 6.72 6.73

20 0.11e−3 0.13 0.14 0.14 0.13e−3 7.23 7.31 7.81 0.67e−3 12.11 12.23 13.14

40 0.23e−3 0.26 0.25 0.26 0.29e−3 15.08 15.26 16.99 1.43e−3 25.45 25.67 26.88

60 0.34e−3 0.41 0.42 0.41 0.40e−3 22.37 22.19 23.06 2.17e−3 37.88 37.34 38.15

80 0.44e−3 0.47 0.48 0.48 0.51e−3 28.83 28.67 30.15 2.79e−3 50.54 50.67 52.13

100 0.47e−3 0.53 0.54 0.55 0.59e−3 35.5 35.34 37.92 3.07e−3 65.46 65.53 67.78

8.3 Online range query

Weproceed to explore the performance of Dragoon and com-
pare it with Spark Streaming using online range queries on
the Taxi and Brinkhoff datasets. Figure 12 plots the update
and query latency/throughput for the two datasets when vary-
ing Or from 10 to 100% and changing the query region
area ε from 0.01 to 0.32%. Here, we only report the update
latency and update throughput when varying Or , as the
update latency and throughput are not affected by ε. In addi-
tion, since we adopt the Grid index as the global index and
the R-tree as the local index, we fix the grid cell side length
to

√
0.08%, and the R-tree node capacity to 64.

For data updates, the first observation is that the average
update latency grows and the average throughput decreases
with the increasing of Or . The reason is that more recent spa-
tial locations generated bymoving objects need to bemerged
with historical trajectory data as the growth of Or . Similar to
the observations for the online ID queries, Spark Streaming
has the best update performance, while Newest-Only and
Share-Update have similar update efficiency, but both are
slower than Share-Append strategy.

For online range queries, the first observation is that
the query latency increases and the query throughput drops
as Or grows due to the larger search spaces. Second, the
query latencies and throughputs of Dragoon using the three
update strategies, Newest-Only, Share-Append, and Share-

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 12 Performance of online range queries versus Or and ε

123



306 Z. Fang et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 13 Performance of online kNN queries versus Or and k

Update, perform better than that of Spark Streaming on large
datasets (i.e., when Or exceeds 40%). This is because, during
the online range queries, Spark Streaming suffers from the
garbage collector (GC) pressure caused by the large big vol-
umes of data. The third observation is that the query latency
and throughput remain stable at first but then increases when
ε exceeds 0.08%. This is because the grid side length is fixed
to

√
0.08%. When ε exceeds 0.08%, the search region size

exceeds the area of each grid cell, and thus, it contains much
more grid cells, resulting in the decrease of query efficiency
in terms of latencies and throughputs.

Last but not the least, the query performance of the
Newest-Only is the best, because it only maintains the latest
values in the Dragoon system. In addition, the query perfor-
mance of Share-Update is better than that of Share-Append.
The reason behind is that Share-Update can use the Grid
index to partition the data, i.e., Share-Update partition the tra-
jectory data according to location information, which ismore
efficient for the online range queries, while Share-Append
partitions data according to its temporal information, as dis-
cussed in Sect. 5.2.

8.4 Online kNN query

Furthermore, we proceed to investigate the performance of
Dragoon on online kNNqueries using the Taxi and Brinkhoff

datasets. Figure 13 shows the update and query performances
using latency and throughput performance metrics when
varying Or from 10 to 100% and changing k from 4 to
14. As for online range queries, parameter k does not affect
the update performance, and thus, the update latency and
throughput performance are also omitted when varying k.

For the data updates, the first observation is that the latency
increases and the throughput decreases as Or grows, as more
new incoming trajectory data that are needed to be merged.
The second observation is that Spark Streaming achieves
the lowest update latency because its update operations are
performed in main memory. As in previous experiments,
Share-Append performs best for data updates, while Newest-
Only and Share-Update have similar update performance.

For the online kNN queries, the first observation is that
Dragoon using the three update strategies performs better
about latencies and throughputs than that of Spark Stream-
ing on large datasets (i.e., when Or ≥ 40) due to the high
GC pressure in Spark Streaming. In other words, all Newest-
Only, Share-Append, and Share-Update have a more stable
query performance than Spark Streaming. The second obser-
vation is that the query latency increases, and the query
throughput decreases with the growth of k due to larger
search spaces. The third observation is that the Share-Update
strategy has a better query performance than that of theShare-
Append, as the Share-Update partitions the data spatially,

123



Dragoon: a hybrid and efficient big trajectory management... 307

(a) (b)

(c) (d)

(e) (f)

Fig. 14 Clustering performance of pattern detection

which is more suitable for the online kNN queries. The last
observation is that the query performance of Newest-Only
is the best as only the latest locations of the moving objects
are managed in the system, and the data storage is much
lower than the twoother update strategies (i.e., Share-Append
and Share-Update). In other words, the search space is much
smaller when compared to the other update strategies.

8.5 Co-movement pattern detection

Finally, we study the performance of Dragoon using real-
time co-movement pattern detection while comparing it
with general-purpose platforms Flink and Spark Streaming.
We compare with these two representative general systems,
because no unified online trajectory management and ana-
lytic system exist, and therefore, we directly adopt the latest
work [14] on Flink and extend it to work with Spark Stream-
ing as comparison methods. Figures 14 and 15 show the
clustering and enumeration performance of pattern detec-
tion when varying Or from 10 to 100%. In particular, the
real-time co-movement pattern detection includes two stages,
clustering and enumeration, where the data and indexes are
updated during the clustering process to improve efficiency.
In the clustering phase, we evaluate the Share-Append and
Share-Update strategies, and compare them with Flink and
Spark Streaming. Note that the Newest-Only strategy cannot
be used for pattern detection since pattern detection needs

(a) (b)

(c) (d)

(e) (f)

Fig. 15 Enumeration performance of pattern detection

historical trajectory data, while Newest-Only only keeps the
latest data values. In the enumeration phase, Share-Update
is used to compare with Flink and Spark Streaming. This is
because Share-Append does not support ID partitioning [14],
as discussed in Sect. 5.2.
Specifically, we use both the latency and throughput to eval-
uate the clustering and enumeration separately. The first
observation is that Flink performs best. This is because Flink
processes each tuple in real time, while Spark Streaming
and Dragoon apply mini-batch semantics. However, Flink is
unable to support pattern detection on the large Taxi dataset
when Or ≥ 60% and the larger Brinkhoff dataset when
Or ≥ 40%. The reason is that the intermediate results are
so large that they exceed the Flink system’s capability, while
Dragoon uses mutable RDDs based on Chronicle Map to
reduce the reliance on main-memory storage. Second, Dra-
goon performs better than Spark Streaming on large datasets
(i.e., Taxi with Or ≥ 60% and Brinkhoff with Or ≥ 40%),
but is slower than Spark Streaming on small datasets. This is
because, on the one hand, Dragoon needs additional costs
for storing data in Chronicle Map instead of putting tra-
jectory data in the system’s memory directly; on the other
hand, Dragoon utilizes the mRDD model to reduce the pres-
sure on the system’s main-memory storage, especially when
the dataset size is large. Similar to Flink, Spark Streaming
cannot support real-time co-movement pattern detection on

123



308 Z. Fang et al.

Table 5 Workload of Dragoon
versus min, max, and average
location points (×103) in each
data partition

Methods GeoLife Taxi Brinkhoff
Min Max Average Min Max Variance Min Max Variance

IdPartitioning 9 1106 248 51 97,132 22,730 32,881 53,148 47,691

GridPartitioning 433 810 248 20,156 53,381 22,730 44,157 60,322 47,691

STRPartitioning 198 356 248 19,400 37,171 22,730 45,169 52,158 47,691

large datasets. The third observation is that the Share-Append
strategy performs better than the Share-Update strategy dur-
ing the clustering phase, as additional RDD Mirror cost is
needed for Share-Update to avoid data inconsistency in the
distributed environment. Finally, clustering and enumeration
latency increases while clustering and enumeration through-
put decrease when Or grows due to larger search spaces.

To conclude, although Flink achieves the best efficiency
for online co-movement pattern detection on streaming tra-
jectories, Dragoon offers the best scalability performance.
Overall, Dragoon gives consideration to both efficient and
scalable management and analytics on big trajectory data.

8.6 Systemworkload

To give deep insights into the workload performance of
Dragoon, we conduct a set of experiments to study the
system’s workload balance considering different data par-
titioning methods. Specifically, we first count the number of
trajectory location points in each data partition after all the
points in the dataset are loaded and updated in Dragoon.
Then, we calculate the min, max, and average trajectory
points among all data partitions when Dragoon finishes
merging all the arriving trajectory points to the historical
trajectory dataset. Table 5 depicts the results under three
different partitioning methods (i.e., IdPartitioning, Grid-
Partitioning, and STRPartitioning). As observed, the data
distribution with IdPartitioning is the most unbalanced. This
is because IdPartitioning only considers the ID information
of moving objects, while GridPartitioning and STRPartition-
ing consider the spatial information of trajectories with a
more balanced data distribution. In addition, STRPartition-
ing performs better than GridPartitioning. The reason is that
STRPartitioning divides the dataset according to the data dis-
tribution of newly arriving trajectory points in real time. It
is worth noting that Dragoon can achieve better workload
balance by repartitioning the data periodically.

8.7 Summary

Overall, we conclude thatDragoon is an efficient and scalable
system for trajectory data management that is able to support
both offline and online analytics. For offline analytics, Dra-
goon has a similar query performance as the state-of-the-art
offline trajectory management system, UlTraMan. Neverthe-

less, Dragoon has better update performance than UlTraMan
due to its mutable RDD model. For online analytics, Dra-
goon has better scalability than the general-purpose online
processing systems, Spark Streaming and Flink. More-
over, Dragoon achieves better online ID/Range/kNN query
performance than Spark Streaming on larger datasets. More-
over, when comparing the three proposed update strategies,
Newest-Only strategy achieves the best performance for the
latest online queries, while the Share-Update has the best
flexibility for period online queries.

9 Conclusions

In this paper, we propose the Dragoon system, a new hybrid
and efficient trajectory data management and analytic sys-
tem. To support the management of both historical and
streaming trajectories, Dragoon adopts the mRDD model,
including the RDD Share, the RDD Update, and the RDD
Mirror. The RDD Share is used to avoid unnecessary data
copies for unchanged data blocks during data updates, while
the RDD Update provides three update strategies, including
Newest-Only, Share-Append, and Share-Update, that target
different scenarios, and the RDD Mirror enables read/write
controls to avoid data inconsistencies in a distributed environ-
ment. In addition, Dragoon’s hybrid analysis pipeline offers
support for both historical and streaming trajectories. Exper-
imental studies on large real and synthetic datasets offer
insight into the scalability and performance of Dragoon, and
comparewith state-of-the-art systems, yielding the following
findings.

– For the historical trajectory data, Dragoon achieves
similar performance as the existing trajectory system
UlTraMan in terms of offline trajectory queries. How-
ever, Dragoon decreases up to doubled storage overhead
during trajectory editing scenarios.

– For the streaming trajectory data, although existing gen-
eral streaming systems Spark Streaming and Flink are
capable of higher update efficiency for small workloads,
Dragoon achieves at least 40% improvement of scala-
bility for period online analytics and offers an average
doubled performance improvement for latest online ana-
lytics.

123



Dragoon: a hybrid and efficient big trajectory management... 309

– Share-Append achieves the best update efficiency, while
the Newest-Only achieves the best query efficiency.
However, Newest-Only is unsuitable for period online
analyses, and Share-Append only supports temporal data
partitioning.

In the future, it is of interest to apply Dragoon for
the bigger trajectory data management and processing, and
design more effective indexes to support additional types
of trajectory data analysis (e.g., offline trajectory similarity
computing and online sub-trajectory clustering). In addition,
extending the proposed mRDD model for general big data
management or developing another new dataset-enhanced
model for big structured data analytics is also promising
direction.

Acknowledgements This work was supported in part by the NSFC
under Grant Nos. 62025206 and 61972338, the National Key R&D
Program of China under Grant No. 2018YFB1004 003, and the NSFC-
Zhejiang Joint Fund under Grant No. U1609217. Yunjun Gao is the
corresponding author of the work.

References

1. Apache Hadoop. http://hadoop.apache.org/ (2008)
2. Apache Samza. http://samza.apache.org/ (2013)
3. Apache Flink. http://flink.apache.org/ (2014)
4. Apache Spark. http://spark.apache.org/ (2014)
5. Apache Storm. http://storm.apache.org/ (2014)
6. DiDi Brain. https://www.didiglobal.com/science/brain (2018)
7. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D.J., Rasin, A., Sil-

berschatz, A.: HadoopDB: an architectural hybrid of MapReduce
and DBMS technologies for analytical workloads. PVLDB 2(1),
922–933 (2009)

8. Akidau, T., Bradshaw, R., Chambers, C., Chernyak, S., Fernández-
Moctezuma, R., Lax, R., McVeety, S., Mills, D., Perry, F., Schmidt,
E., Whittle, S.: The dataflow model: a practical approach to bal-
ancing correctness, latency, and cost in massive-scale, unbounded,
out-of-order data processing. PVLDB 8(12), 1792–1803 (2015)

9. Ali, M., Chandramouli, B., Raman, B.S., Katibah, E.: Real-
time spatio-temporal analytics using microsoft streaminsight. In:
SIGSPATIAL, pp. 542–543 (2010)

10. Bao, J., Li, R., Yi, X., Zheng, Y.: Managing massive trajectories on
the cloud. In: SIGSPATIAL, pp. 41:1–41:10 (2016)

11. Boykin, P.O., Ritchie, S., O’Connell, I., Lin, J.J.: Summingbird: a
framework for integrating batch and online MapReduce computa-
tions. PVLDB 7(13), 1441–1451 (2014)

12. Brinkhoff, T.: A framework for generating network-based moving
objects. GeoInformatica 6(2), 153–180 (2002)

13. Brunsdon, C., Zheng, Y., Zhou, X.: Computing with spatial trajec-
tories. IJGIS 27(1), 208–209 (2013)

14. Chen, L., Gao, Y., Fang, Z., Miao, X., Jensen, C.S., Guo, C.:
Real-time distributed co-movement pattern detection on stream-
ing trajectories. PVLDB 12(10), 1208–1220 (2019)

15. Cho, H., Shiokawa, H., Kitagawa, H.: JsFlow: integration of mas-
sive streams and batches via JSON-based dataflow algebra. In:
NBIS, pp. 188–195 (2016)

16. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Elmeleegy,
K., Sears, R.: MapReduce online. In: NSDI, pp. 313–328 (2010)

17. Cudré-Mauroux, P., Wu, E., Madden, S.: TrajStore: an adaptive
storage system for very large trajectory data sets. In: ICDE, pp.
109–120 (2010)

18. Dean, J., Ghemawat, S.: MapReduce: simplified data processing
on large clusters. Commun. ACM 51(1), 107–113 (2008)

19. DeWitt, D.J., Halverson, A., Nehme, R.V., Shankar, S., Aguilar-
Saborit, J., Avanes, A., Flasza, M., Gramling, J.: Split query
processing in polybase. In: SIGMOD, pp. 1255–1266 (2013)

20. Ding, X., Chen, L., Gao, Y., Jensen, C.S., Bao, H.: UlTraMan: a
unified platform for big trajectory data management and analytics.
PVLDB 11(7), 787–799 (2018)

21. Düntgen, C., Behr, T., Güting, R.H.: BerlinMOD: a benchmark for
moving object databases. VLDB J. 18(6), 1335–1368 (2009)

22. Ge, Y., Xiong, H., Zhou, Z., Ozdemir, H.T., Yu, J., Lee, K.C.:
Top-eye: top-k evolving trajectory outlier detection. In: CIKM, pp.
1733–1736 (2010)

23. Gudmundsson, J., Laube, P., Wolle, T.: Computational Movement
Analysis, pp. 423–438. Springer, Berlin (2012)

24. Hasani, Z., Kon-Popovska, M., Velinov, G.: Lambda architecture
for real time big data analytic. In: ICT Innovations, pp. 133–143
(2014)

25. Kulkarni, S., Bhagat, N., Fu, M., Kedigehalli, V., Kellogg, C., Mit-
tal, S., Patel, J.M., Ramasamy,K., Taneja, S.: TwitterHeron: stream
processing at scale. In: SIGMOD, pp. 239–250 (2015)

26. Kumar, V., Andrade, H., Gedik, B., Wu, K.: DEDUCE: at the
intersection of MapReduce and stream processing. In: EDBT, pp.
657–662 (2010)

27. Leutenegger, S.T., Lopez, M.A., Edgington, J.: STR: a simple
and efficient algorithm for R-tree packing. In: ICDE, pp. 497–506
(1997)

28. Li, R., He, H., Wang, R., Huang, Y., Liu, J., Ruan, S., He, T., Bao,
J., Zheng, Y.: Just: Jd urban spatio-temporal data engine. ICDE
(2020)

29. Li, R., He, H., Wang, R., Ruan, S., Sui, Y., Bao, J., Zheng, Y.:
Trajmesa: a distributed nosql storage engine for big trajectory data.
ICDE (2020)

30. Li, R., Ruan, S., Bao, J., Li,Y.,Wu,Y., Zheng,Y.:Queryingmassive
trajectories by path on the cloud. In: SIGSPATIAL, pp. 77:1–77:4
(2017)

31. Li, Z., Han, J., Ji, M., Tang, L., Yu, Y., Ding, B., Lee, J., Kays,
R.: Movemine: mining moving object data for discovery of animal
movement patterns. TIST 2(4), 37:1–37:32 (2011)

32. Ma, S., Zheng, Y., Wolfson, O.: Real-time city-scale taxi rideshar-
ing. TKDE 27(7), 1782–1795 (2015)

33. Mahmood, A.R., Punni, S., Aref, W.G.: Spatio-temporal access
methods: a survey (2010–2017). GeoInformatica 23(1), 1–36
(2019)

34. Patroumpas, K., Kefallinou, E., Sellis, T.: Monitoring continuous
queries over streaming locations. In: SIGSPATIAL, pp. 41:1–41:10
(2008)

35. Patroumpas, K., Pelekis, N., Theodoridis, Y.: On-the-fly mobil-
ity event detection over aircraft trajectories. In: SIGSPATIAL, pp.
259–268. ACM (2018)

36. Ruan, S., Li, R., Bao, J., He, T., Zheng, Y.: Cloudtp: a cloud-based
flexible trajectory preprocessing framework. In: ICDE, pp. 1601–
1604 (2018)

37. Salmon, L., Ray, C.: Design principles of a stream-based frame-
work for mobility analysis. GeoInformatica 21(2), 237–261 (2017)

38. Shang, Z., Li, G., Bao, Z.: DITA: distributed in-memory trajec-
tory analytics. In: Das, G., Jermaine, C.M., Bernstein, P.A. (eds.)
SIGMOD, pp. 725–740 (2018)

39. Tan, H., Luo, W., Ni, L.M.: CloST: a hadoop-based storage system
for big spatio-temporal data analytics. In: CIKM, pp. 2139–2143
(2012)

123

http://hadoop.apache.org/
http://samza.apache.org/
http://flink.apache.org/
http://spark.apache.org/
http://storm.apache.org/
https://www.didiglobal.com/science/brain


310 Z. Fang et al.

40. Tang, M., Yu, Y., Malluhi, Q.M., Ouzzani, M., Aref, W.G.: Loca-
tionspark: a distributed in-memory data management system for
big spatial data. PVLDB 9(13), 1565–1568 (2016)

41. Tao,Y., Papadias, D.:MV3R-tree: a spatio-temporal accessmethod
for timestamp and interval queries. In: VLDB, pp. 431–440 (2001)

42. Wang, H., Zheng, K., Xu, J., Zheng, B., Zhou, X., Sadiq, S.W.:
Sharkdb: an in-memory column-oriented trajectory storage. In:
CIKM, pp. 1409–1418 (2014)

43. Wang, L., Cai, R., Fu, T.Z., He, J., Lu, Z., Winslett, M., Zhang, Z.:
Waterwheel: realtime indexing and temporal range query process-
ing over massive data streams. In: ICDE, pp. 269–280 (2018)

44. Wang, W., Yang, J., Muntz, R.R.: STING: a statistical information
grid approach to spatial data mining. In: PVLDB, pp. 186–195
(1997)

45. Wang, Y., Zheng, Y., Xue, Y.: Travel time estimation of a path using
sparse trajectories. In: SIGKDD, pp. 25–34 (2014)

46. Xie, D., Li, F., Phillips, J.M.: Distributed trajectory similarity
search. VLDB 10(11), 1478–1489 (2017)

47. Xie, D., Li, F., Yao, B., Li, G., Zhou, L., Guo, M.: Simba: efficient
in-memory spatial analytics. In: SIGMOD, pp. 1071–1085 (2016)

48. Xie, X., Mei, B., Chen, J., Du, X., Jensen, C.S.: Elite: an elastic
infrastructure for big spatiotemporal trajectories. VLDB J. 25(4),
473–493 (2016)

49. Xu, W., Zhou, K., Yu, Y., Tan, Q., Peng, Q., Guo, B.: Gradient
domain editing of deforming mesh sequences. ACM Trans. Graph.
26(3), 84 (2007)

50. Yang, F., Merlino, G., Ray, N., Léauté, X., Gupta, H., Tschetter,
E.: The RADStack: open source lambda architecture for interactive
analytics. In: HICSS, pp. 1703–1712 (2017)

51. Yu, L., Yu, J., Zhang, M., Zhang, X., Liu, Y., Zhang, H., Min, W.:
Large scale traffic signal network optimization: a paradigm shift
driven by big data. In: ICDE, pp. 1832–1840 (2019)

52. Yuan,H., Li,G.:Distributed in-memory trajectory similarity search
and join on road network. In: ICDE, pp. 1262–1273 (2019)

53. Yuan, J., Zheng, Y., Xie, X.: Discovering regions of different func-
tions in a city using human mobility and POIs. In: SIGKDD, pp.
186–194 (2012)

54. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly,
M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed
datasets: a fault-tolerant abstraction for in-memory cluster com-
puting. In: NSDI, pp. 15–28 (2012)

55. Zhan,X., Zheng,Y.,Yi,X.,Ukkusuri, S.V.: Citywide traffic volume
estimation using trajectory data. TKDE 29(2), 272–285 (2017)

56. Zhang, M., Wo, T., Lin, X., Xie, T., Liu, Y.: Carstream: an indus-
trial system of big data processing for internet-of-vehicles. PVLDB
10(12), 1766–1777 (2017)

57. Zheng, Y.: Trajectory data mining: an overview. TIST 6(3), 29:1–
29:41 (2015)

58. Zheng, Y., Capra, L., Wolfson, O., Yang, H.: Urban Computing:
Concepts, Methodologies, and Applications. TIST 5(3), 38:1–
38:55 (2014)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Dragoon: a hybrid and efficient big trajectory management system for offline and online analytics
	Abstract
	1 Introduction
	2 Related work
	2.1 Offline/online trajectory analytic systems
	2.2 General-purpose hybrid approaches

	3 Background
	3.1 Resilient distributed datasets
	3.2 Hybrid management and analytics
	3.3 Chronicle map

	4 System overview
	5 Hybrid storage
	5.1 RDD share
	5.2 RDD update
	5.3 RDD mirror
	5.4 Fault tolerance

	6 Hybrid analysis
	6.1 Offline analysis pipeline
	6.2 Online analysis pipeline

	7 Analytic case studies
	7.1 Trajectory editing
	7.2 ID and online ID queries
	7.3 Range and online range queries
	7.4 kNN and online kNN queries
	7.5 Co-movement pattern detection

	8 Experimental evaluations
	8.1 Offline analysis
	8.2 Online ID query
	8.3 Online range query
	8.4 Online kNN query
	8.5 Co-movement pattern detection
	8.6 System workload
	8.7 Summary

	9 Conclusions
	Acknowledgements
	References




