
GeoFlink: A Distributed and Scalable Framework for the
Real-time Processing of Spatial Streams

Salman Ahmed Shaikh
shaikh.salman@aist.go.jp

Artificial Intelligence Research Center
AIST

Tokyo, Japan

Komal Mariam∗

kmariam.msee17seecs@seecs.edu.pk
School of Electrical Engineering and Computer Science

National University of Sciences and Technology
Islamabad, Pakistan

Hiroyuki Kitagawa
kitagawa@cs.tsukuba.ac.jp

Center for Computational Sciences
University of Tsukuba

Tsukuba, Japan

Kyoung-Sook Kim
ks.kim@aist.go.jp

Artificial Intelligence Research Center
AIST

Tokyo, Japan

ABSTRACT
Apache Flink is an open-source system for scalable processing of
batch and streaming data. Flink does not natively support efficient
processing of spatial data streams, which is a requirement of many
applications dealing with spatial data. Besides Flink, other scal-
able spatial data processing platforms including GeoSpark, Spatial
Hadoop, etc. do not support streaming workloads and can only
handle static/batch workloads. To fill this gap, we present GeoFlink,
which extends Apache Flink to support spatial data types, indexes
and continuous queries over spatial data streams. To enable efficient
processing of spatial continuous queries and for the effective data
distribution across Flink cluster nodes, a gird-based index is intro-
duced. GeoFlink currently supports spatial range, spatial 𝑘NN and
spatial join queries on point data type. An experimental study on
real spatial data streams shows that GeoFlink achieves significantly
higher query throughput than ordinary Flink processing.

CCS CONCEPTS
•Computingmethodologies→Distributed computingmethod-
ologies; Vector / streaming algorithms; MapReduce algorithms.

KEYWORDS
GeoFlink; Spatial data; Stream processing; Distributed; Scalable

ACM Reference Format:
Salman Ahmed Shaikh, Komal Mariam, Hiroyuki Kitagawa, and Kyoung-
Sook Kim. 2020. GeoFlink: A Distributed and Scalable Framework for the
Real-time Processing of Spatial Streams. In Proceedings of the 29th ACM
International Conference on Information and Knowledge Management (CIKM

∗This work was done during an internship at AIRC, AIST, Tokyo, Japan

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3412761

’20), October 19–23, 2020, Virtual Event, Ireland. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3340531.3412761

1 INTRODUCTION
With the increase in the use of GPS-enabled devices, spatial data
is omnipresent. Many applications require real-time processing of
spatial data, for instance, route guidance in disaster evacuation,
patients tracking to prevent the spread of serious diseases, etc. Such
applications entail real-time processing of millions of tuples per
second. Existing spatial data processing frameworks, for instance,
PostGIS [18] and QGIS [19] are not scalable to handle such huge
data and throughput requirements, while scalable platforms like
Apache Spark [10], Apache Flink [3], etc. do not natively support
spatial data processing, resulting in increased spatial querying cost.
Besides, there exist a few solutions to handle large scale spatial
data, for instance Hadoop GIS [2], Spatial Hadoop [6], GeoSpark
[23], etc. However, they cannot handle real-time spatial streams. To
fill this gap, we present GeoFlink, which extends Apache Flink to
support distributed and scalable processing of spatial data streams.
/ / De f i n i ng dataStream bounda r i e s & c r e a t i n g index
double minX = 1 1 5 . 5 0 , maxX = 1 1 7 . 6 0 ,

minY = 3 9 . 6 0 , maxY = 4 1 . 1 0 ;
in t g r i d S i z e = 1 0 0 ;
UniformGrid uGrid = new UniformGrid (

g r i d S i z e , minX , maxX , minY , maxY) ;
/ / Ord inary point s t ream
DataStream<Point > S1 = SpatialStream .

PointStream (oStream , " GeoJSON " , uGrid) ;
/ / Query point s t ream
DataStream<Point > S2 = SpatialStream .

PointStream (qStream , " GeoJSON " , uGrid) ;
/ / Cont inous jo in query
DataStream<Tuple2 < S t r i ng , S t r i n g >> j o i nS t r e am =

Jo inQuery . S p a t i a l J o i nQu e r y (S1 , S2 ,
r ad i u s , windowSize , windowSl ideStep , uGrid) ;

Code 1: A GeoFlink (Java) code for spatial join query

Usually, two types of indexes are used for spatial data: 1) Tree-
based, 2) Grid-based. Unlike static data, stream tuples arrive and
expire at a high velocity. Hence, tree-based spatial indexes are not
suitable for it owing to their high maintenance cost [20]. Therefore,
to enable real-time processing of spatial data streams, a light weight

Resource Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

3149

https://doi.org/10.1145/3340531.3412761
https://doi.org/10.1145/3340531.3412761

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland Salman Ahmed Shaikh, Komal Mariam, Hiroyuki Kitagawa, and Kyoung-Sook Kim

logical grid index is introduced in this work. GeoFlink assigns grid-
cell ID(s) to the incoming stream tuples based on which the objects
are processed, pruned and/or distributed dynamically across the
cluster nodes. GeoFlink currently supports the most commonly
used spatial queries, i.e., spatial range, spatial 𝑘NN and spatial join
on point data. It provides a user-friendly Java/Scala API to register
spatial continuous queries (CQs). GeoFlink is an open source project
and is available at Github1.

Example 1.1 (Use case: Patients tracking). A city administration
is interested in monitoring the movement of a number of their
high-risk patients. Particularly, the administration is interested in
knowing and notifying all the residents in real-time, if a patient
happens to pass them within certain radius 𝑟 . Let 𝑆1 and 𝑆2 denote
the real-time ordinary residents’ and patients’ location stream, re-
spectively, obtained through their smart-phones. Then, this query
includes real-time join of 𝑆1 and 𝑆2, such that it outputs all the
𝑝 ∈ 𝑆1 that lie within 𝑟 distance of any 𝑞 ∈ 𝑆2. Code 1 shows
the implementation of this real-time CQ using GeoFlink’s spatial
join. The details of each statement in the code is discussed in the
following sections.

The main contributions of this work are summarized below:
• The core GeoFlink, which extends Apache Flink to support
spatial data types, index and CQs.

• Grid-based spatial index for the efficient processing, pruning
and distribution of spatial streams.

• Grid-based spatial range, 𝑘NN and join queries.
• An extensive experimental study on real spatial data streams.

The rest of the paper is organized as follows: Sec. 2 presents
related work. Sec. 3 briefly discusses Apache Flink programming
model. In Sec. 4, GeoFlink architecture is presented. Secs. 5 and 6
detail the Spatial Stream and the Spatial Query Processing layers
of GeoFlink. In particular, Sec. 5.1.2 presents the GeoFlink’s Gird
index. In Sec. 7 detailed experimental study is presented while Sec.
8 concludes our paper and highlights a few future directions.

2 RELATEDWORK
Existing spatial data processing frameworks like ESRI ArcGIS [7],
PostGIS [18] and QGIS [19] are built on relational DBMS and are
therefore not scalable to handle huge data and throughput require-
ments. Besides, scalable spatial data processing frameworks, for in-
stance, Hadoop GIS [2], Spatial Hadoop [6], GeoSpark [23], Parallel
Secondo [15] and GeoMesa [13], cannot handle real-time process-
ing of spatial data streams. Apache Spark [10], Apache Flink [3]
and similar distributed and horizontally scalable platforms support
large-scale, real-time processing of data streams. However, they do
not natively support spatial data processing and thus cannot process
it efficiently. One can find a number of extensions of these platforms
to support spatial data processing. GeoSpark [23] processes spa-
tial data by extending Spark’s native Resilient Distributed Dataset
(RDD) to create Spatial RDD (SRDD) along with a Spatial Query Pro-
cessing layer on top of the Spark API to run spatial queries on these
SRDDs. For efficient spatial query processing, GeoSpark creates a
local spatial index (Grid, R-tree) per RDD partition rather than a
single global index. For re-usability, the created index can be cached
1GeoFlink @ Github https://github.com/aistairc/GeoFlink

on main memory and can also be persisted on secondary storage
for later use. However, the index once created cannot be updated,
and must be recreated to reflect any change in the dataset due to the
immutable nature of RDDs. LocationSpark [22], GeoMesa [13] and
Spark GIS [4] are a few other spatial data processing frameworks
developed on top of Apache Spark. All these frameworks, like the
GeoSpark, do not support real-time stream processing as we do.

For real-time queries, Apache Spark introduces Spark Stream-
ing that relies on micro-batches to address latency concerns and
mimic streaming computations. Latency is inversely proportional
to batch size; however, the experimental evaluation in [14] shows
that as the batch size is decreased to very small to mimic real-time
streams, Apache Spark is prone to system crashes and exhibits
lower throughput and fault tolerance. Furthermore, even with the
micro-batching technique, Spark only approaches near real-time
results at best, as data buffering latency still exists, however, minis-
cule. Other distributed streaming platforms worth considering are
Apache Samza [9] and Apache Storm [21]. Performance comparison
by Fakrudeen et al. [1] revealed that both the Samza and Storm
demonstrate a lower throughput and reliability than Apache Flink
[3]. Thus, we extend Apache Flink, a distributed and scalable stream
processing engine, to support real-time spatial stream processing.
Furthermore, to enable efficient spatial query processing and data
partitioning, a light-weight logical grid-based index is proposed.

3 FLINK PROGRAMMING MODEL
Apache Flink uses two data collections to represent data in a pro-
gram: 1) DataSet: A static and bounded collection of tuples, 2) DataS-
tream: A continuous and unbounded collection of tuples. However,
both the collections are treated as streams internally. A Flink pro-
gram consists of 3 building blocks: 1) Source, 2) Transformation(s),
and 3) Sink. When executed, Flink programs are mapped to stream-
ing dataflows, consisting of streams and transformation operators.
Each dataflow starts with one or more sources and ends in one
or more sinks. The dataflows resemble arbitrary directed acyclic
graphs (DAGs); however, special forms of cycles are permitted via
iteration constructs [3]. By its very definition, dataflow processing
offers low latency, thus for the real-time analytics use cases, Apache
Flink is a natural choice.

Flink’s DataStream API enables transformations like filter, map,
reduce, keyby, aggregations, window, etc. on unbounded data streams
and provides seamless connectivity with data sources and sinks
like Apache Kafka (source/sink), Apache Cassandra (sink), etc. [3].
Aggregates on streams (counts, sums, etc.), are scoped by windows,
such as "count over the last 5 minutes", or "sum of the last 100
elements", since it is impossible to count all elements in a stream,
because streams are in general unbounded. Windows can be time
driven (e.g., every 30 seconds) or data driven (e.g., every 100 el-
ements). One typically distinguishes different types of windows,
such as tumbling windows (no overlap), sliding windows (with
overlap), and session windows (punctuated by a gap of inactivity).
When using windows, output is generated based on the complete
window contents as it moves. While many operations in a dataflow
simply look at one individual event at a time, some operations re-
member information across multiple events (for example window
operators). These operations are called stateful.

Resource Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

3150

https://github.com/aistairc/GeoFlink

GeoFlink: A Distributed and Scalable Framework for the Real-time Processing of Spatial Streams CIKM ’20, October 19–23, 2020, Virtual Event, Ireland

Programs in Flink are inherently parallel and distributed. During
execution, an operator is divided into one or more subtasks (opera-
tor instances) which are independent of one another and execute in
different threads that may be on different machines or containers.
The number of an operator’s subtasks depends on the amount of its
parallelism. A user can define the parallelism of each operator or
set the maximum parallelism globally for all operators. Flink paral-
lelism depends on the number of available task slots, where a good
default number of task slots is equivalent to the number of CPU
cores. In Flink, keys are responsible for the data distribution across
the task slots or operator instances. All the tuples with the same
key are guaranteed to be processed by a single operator instance.
In addition, many of Flink’s core data transformations like join,
groupby, reduce and windowing require the data to be grouped
on keys. Keying operations are enabled by KeyBy operator, which
logically partitions stream tuples with respect to their keys. Intelli-
gent key assignment ensures the uniform data distribution among
operator instances and hence leverage the performance offered by
parallelism.

Streams can transport data between two operators in a one-to-
one (or forwarding) pattern, or in a redistributing pattern. One-to-
one streams preserves partitioning and order of elements, while
redistributing streams change the partitioning of streams. Each
operator subtask sends data to different target subtasks, depending
on the selected transformation. By default, each operator preserves
the partitioning and order of the operator before it, thus preserv-
ing the source parallelism. While keying operations causes data
reshuffling and distribution overhead, data forwarding may cause a
load imbalance and even idling of cores that are not in use, thus not
fully leveraging computation power of the entire cluster. Therefore,
to guarantee efficient execution of queries, one must find the right
balance between data redistribution and data forwarding. Further-
more, as parallel instances of operators cannot communicate with
each other, data locality per instance must be ensured by the user.

4 GEOFLINK ARCHITECTURE
Fig. 1 shows the proposed GeoFlink architecture. Users can register
queries to GeoFlink through a Java/Scala API and its output is
available via a variety of sinks provided by Apache Flink. The
GeoFlink architecture has two important layers: 1) Spatial Stream
Layer and 2) Real-time Spatial Query Processing Layer.

Spatial Stream Layer: This layer is responsible for converting
incoming data stream(s) into spatial data stream(s). Apache Flink
treats spatial data stream as ordinary text stream, which may leads
to its inefficient processing. GeoFlink converts it into spatial data
stream of geometrical objects, i.e., point, line or polygon.
Furthermore, this layer assigns Grid index keys to the spatial
objects for their efficient distribution and processing.

Real-time Spatial Query Processing Layer: This layer enables
spatial queries’ execution over spatial data streams. GeoFlink
currently supports the most widely used spatial queries, i.e., spatial
range, spatial 𝑘NN and spatial join queries over point objects.
Users can use Java or Scala to write the spatial queries or custom
applications. This layer makes extensive use of the Grid index for
the efficient queries’ execution.

Figure 1: GeoFlink architecture

5 SPATIAL STREAM LAYER
This layer deals with the spatial stream construction and the Grid
index (key) assignment to the stream tuples.

5.1 Spatial Stream Indexing
5.1.1 Tree vs. Grid Spatial Indexes. The spatial data index struc-
tures can be classified into two broad categories: 1) Tree-based, and
2) Grid-based. Tree-based spatial indexes like R-tree, Quad-tree and
KDB-tree can significantly speed-up the spatial query processing;
however, their maintenance cost is high specially in the presence
of heavy updates (insertions and deletions) [12]. On the other hand,
grid-based indexes enable fast updates. However, they cannot an-
swer queries as efficiently as tree-based indexes [16] [11]. Since
the GeoFlink is meant to support streaming applications with very
high updates, the maintenance cost of the index employed has to
be as small as possible. To this end, grid-based index seems to be a
natural choice for GeoFlink.

5.1.2 GeoFlink Grid Index. A grid index [5] is a space-partitioned
structure where a predefined area is divided into equal-sized cells
of some fixed length 𝑙 , as shown in Figure 2.

The grid index used in this work is aimed at filtering/pruning
objects during spatial queries’ execution and helping the uniform
distribution of spatial objects across GeoFlink’s distributed cluster
nodes. The Grid (𝐺) is constructed by partitioning a 2D rectangular
space, given by (𝑀𝑖𝑛𝑋,𝑀𝑖𝑛𝑌), (𝑀𝑎𝑥𝑋,𝑀𝑎𝑥𝑌) (𝑀𝑎𝑥𝑋 −𝑀𝑖𝑛𝑋 =

𝑀𝑎𝑥𝑌−𝑀𝑖𝑛𝑌), into square shaped cells of length 𝑙 . Here we assume
that 𝐺 ’s boundary is known, which can be estimated through data
stream’s geographical location. Let 𝐶𝑥,𝑦 ∈ 𝐺 be a grid cell with in-
dices 𝑥 and 𝑦, respectively, then 𝐿1 (𝐶𝑥,𝑦), 𝐿2 (𝐶𝑥,𝑦), ..., 𝐿𝑛 (𝐶𝑥,𝑦) de-
note its neighbouring layers, where 𝐿1 (𝐶𝑥,𝑦) is given by, {𝐶𝑢,𝑣 |𝑢 =

𝑥 ± 1, 𝑣 = 𝑦 ± 1,𝐶𝑢,𝑣 ≠ 𝐶𝑥,𝑦}. Similarly, 𝐿2 (𝐶𝑥,𝑦), ..., 𝐿𝑛 (𝐶𝑥,𝑦)
are defined. Each cell 𝐶𝑥,𝑦 ∈ 𝐺 is identified by its unique key
obtained by concatenating its 𝑥 and 𝑦 indices. Figure 2 shows
a grid structure with a cell 𝐶𝑥,𝑦 , its unique key, and its layers
𝐿1 (𝐶𝑥,𝑦), 𝐿2 (𝐶𝑥,𝑦), ..., 𝐿4 (𝐶𝑥,𝑦).

Resource Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

3151

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland Salman Ahmed Shaikh, Komal Mariam, Hiroyuki Kitagawa, and Kyoung-Sook Kim

Figure 2: GeoFlink grid index

Within GeoFlink, each stream tuple is assigned key(s) on its
arrival, depending upon the 𝐺 cell(s) it belongs. A geometrical
object belongs to a cell 𝑐 if its coordinates lie within the boundary
of 𝑐 . In this work, we assume that a point can belongs to only
one cell, whereas, a line and polygon can belong to multiple cells
depending upon their sizes and positions. Hence, a single key is
assigned to a point whereas an array of key(s) may need to be
assigned to a line and polygon. Since the focus of this work is
point object, one key is assigned per stream tuple. Let 𝑆 denotes a
spatial stream, then the coordinates of a tuple 𝑠 ∈ 𝑆 are given by 𝑠 .𝑥
and 𝑠 .𝑦. Given the grid boundary (𝑀𝑖𝑛𝑋,𝑀𝑖𝑛𝑌), (𝑀𝑎𝑥𝑋,𝑀𝑎𝑥𝑌)
and grid size 𝑚, the cell length is computed as 𝑙 = 𝑀𝑎𝑥𝑋−𝑀𝑖𝑛𝑋

𝑚 ,
and the key of a 𝑠 ∈ 𝑆 is obtained as 𝑥𝐼𝑛𝑑𝑒𝑥 = ⌊ 𝑠.𝑥−𝐺.𝑀𝑖𝑛𝑋

𝑙
⌋,

𝑦𝐼𝑛𝑑𝑒𝑥 = ⌊ 𝑠.𝑦−𝐺.𝑀𝑖𝑛𝑌

𝑙
⌋, and 𝑠 .𝑘𝑒𝑦 = 𝑥𝐼𝑛𝑑𝑒𝑥 ⊙ 𝑦𝐼𝑛𝑑𝑒𝑥 . Where

𝑥𝐼𝑛𝑑𝑒𝑥 and 𝑦𝐼𝑛𝑑𝑒𝑥 are fixed length indices of bit length 𝑛 and ⊙
denotes a concatenation operator. For instance, let 𝐺 is given by
(𝑀𝑖𝑛𝑋,𝑀𝑖𝑛𝑌) = (0, 0), (𝑀𝑎𝑥𝑋,𝑀𝑎𝑥𝑌) = (90, 90) and𝑚 = 9, then,
for a 𝑠 ∈ 𝑆 with coordinates (25, 42) and 𝑛 = 4, 𝑠 .𝑘𝑒𝑦 is given by:
𝑥𝐼𝑛𝑑𝑒𝑥 = 0010, 𝑦𝐼𝑛𝑑𝑒𝑥 = 0100, 𝑠 .𝑘𝑒𝑦 = 00100100.

The grid-based index used in this work is logical, that is, it only
assigns a key to the incoming streaming tuples or moving objects.
Besides, no physical data structure is needed, hence no update is
required when a stream tuple expires or an updated object location
is received. This makes our grid index fast and memory efficient. In
GeoFlink, a grid index is constructed through UniformGrid class.
UniformGrid 𝐺 = new UniformGrid

(G r i dS i z e , MinX , MaxX , MinY , MaxY) ;

where GridSize=50 generates a grid of 50x50 cells, with the
bottom-left (MinX, MinY) and top-right (MaxX, MaxY) coordinates,
respectively.

5.2 Spatial Objects Support
GeoFlink currently supports GeoJSON and CSV input stream for-
mats from Apache Kafka and Point type spatial objects. However,
we are working on its extension to support other input formats and
spatial objects including lines and polygons.

GeoFlink user needs to make an appropriate Apache Kafka con-
nection by specifying the kafka topic name and bootstrap server(s).

Once the connection is established, the user can construct spatial
stream from GeoJSON input stream by utilizing the PointStream
method of the GeoFlink’s SpatialStream class.
DataStream<Point > 𝑆 = SpatialStream .

PointStream (geoJSONStream , " GeoJSON " , 𝐺) ;

5.3 Spatial Stream Partitioning
Uniform partitioning of data across distributed cluster nodes plays
a vital role in efficient query processing. As discussed in Section 3,
Apache Flink keyBy transformation logically partitions a stream
into disjoint partitions in such a way that all the tuples with the
same key are assigned to the same partition or to the same operator
instance. If the number of unique keys are larger than the amount of
parallelism, multiple keys are assigned to a single operator instance.

To enable uniform data partitioning in GeoFlink, which takes
into account data spatial proximity, grid index is used. As discussed
earlier, GeoFlink assigns a grid cell key to each incoming stream
tuple based on its spatial location. Since all the spatially close tuples
belong to a single grid cell, thus, are assigned the same key, which is
used by the Flink’s keyBy operator for stream distribution. It is good
to have the number of keys greater than or equal to the amount of
parallelism, to enable the Flink to distribute data uniformly.

It is worth mentioning that, GeoFlink receives distributed data
streams from distributed messaging system, for instance, Apache
Kafka [8]. To enable uniform distribution of incoming data stream
across GeoFlink cluster nodes, right configuration is needed. Many
times, improper configuration becomes a serious bottleneck, re-
sulting in reduced system throughput. For instance, assuming that
Kafka is used as a data source then its topic must be partitioned
keeping in view the Flink cluster parallelism, i.e., the number of
topic partitions must be greater than or equal to the Flink paral-
lelism so that no GeoFlink operators’ instance remain idle while
fetching the data. The detailed discussion on the configuration is
outside the scope of this work.

6 SPATIAL QUERY PROCESSING LAYER
This layer provides support for a number of basic spatial operators
required by most of the spatial data processing and analysis appli-
cations. The supported operators (queries) include spatial range,
spatial 𝑘NN and spatial join queries. All the queries discussed in
this section are window-based and are continuous in nature, i.e.,
they generate window-based continuous results on continuous data
stream. Namely, one output is generated per window aggregation
as it slides. Due to the stateless nature of most of the Flink’s trans-
formations, the queries’ results are computed in a non-incremental
fashion, i.e., the results are generated using all the objects in each
window without considering the past window results. To reduce
the query execution cost, GeoFlink makes use of the grid index.
Unless stated otherwise, in the following, the notations 𝑆 , 𝑞, 𝑟 , and 𝑙
are used for spatial data stream, query object, query radius and grid
cell length, respectively. Furthermore, window size and window
slide step (also known as window parameters) are denoted by𝑊𝑛

and𝑊𝑠 , respectively. Since most of the spatial queries deal with
neighbourhood computation, we define 𝑟 -neighbors of 𝑞 as follows.

Definition 6.1 (𝑟 -neighbors(𝑞)). Geometrical objects that lie within
the radius 𝑟 of 𝑞.

Resource Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

3152

GeoFlink: A Distributed and Scalable Framework for the Real-time Processing of Spatial Streams CIKM ’20, October 19–23, 2020, Virtual Event, Ireland

One traditional and a very effective approach to reduce the com-
putation cost of a query is to prune out the objects which cannot
be an 𝑟 -neighbor(𝑞). Given a cell 𝐶𝑥,𝑦 ∈ 𝐺 containing 𝑞 as shown
in Figure 2, the pruning cell layers are defined as follows:

• Guaranteed Layers (𝐿𝑔 (𝐶𝑥,𝑦)): The objects in this layer
are guaranteed to be an 𝑟 -neighbor(𝑞).
𝐿𝑔 (𝐶𝑥,𝑦) = {𝐶𝑢,𝑣 |𝑢 = 𝑥 ± 𝑔, 𝑣 = 𝑦 ± 𝑔,𝐶𝑢,𝑣 ≠ 𝐶𝑥,𝑦}, where
𝑔 = ⌊ 𝑟

𝑙
√
2
⌋ − 1.

• Candidate Layers (𝐿𝑐 (𝐶𝑥,𝑦)): The objects in this layer may
or may not be an 𝑟 -neighbor(𝑞). Hence, require (distance)
evaluation.
𝐿𝑐 (𝐶𝑥,𝑦) = {𝐶𝑢,𝑣 |𝑢 = 𝑥 ±𝑐, 𝑣 = 𝑦±𝑐,𝐶𝑢,𝑣 ∉ 𝐿𝑔 (𝐶𝑥,𝑦),𝐶𝑢,𝑣 ≠
𝐶𝑥,𝑦}, where 𝑐 = ⌈ 𝑟

𝑙
⌉.

• Non-neighbouring Layers (𝐿𝑛 (𝐶𝑥,𝑦) : others): The ob-
jects in this layer cannot be an 𝑟 -neighbor(𝑞). Hence, can be
safely pruned.

The cells in the layers 𝐿𝑔 (𝐶𝑥,𝑦), 𝐿𝑐 (𝐶𝑥,𝑦) and 𝐿𝑛 (𝐶𝑥,𝑦) are dis-
joint. In the following, we call the objects belonging to the 𝐿𝑔 (𝐶𝑥,𝑦),
𝐿𝑐 (𝐶𝑥,𝑦) and 𝐿𝑛 (𝐶𝑥,𝑦) layers as the guaranteed-, candidate-, and
non-neighbors of 𝑞, respectively.

Example 6.2. Let the grid (𝐺) of Fig. 2 is given by (𝑀𝑖𝑛𝑋,𝑀𝑖𝑛𝑌)
= (0, 0), (𝑀𝑎𝑥𝑋,𝑀𝑎𝑥𝑌) = (90, 90), then 𝑙 = 10. Assuming that 𝑞
lies in the cell 𝐶𝑥,𝑦 and let 𝑟 = 30. Then, 𝑔 = ⌊ 𝑟

𝑙
√
2
⌋ − 1 = 1 and

the guaranteed layer is given by the layers within red boundary
in Fig. 2, excluding the cell 𝐶𝑥,𝑦 . All the objects in this layer are
guaranteed-neighbors of 𝑞 results. Similarly, 𝑐 = ⌈ 𝑟

𝑙
⌉ = 3 and the

candidate layer is given by the layers within blue boundary in the
figure, excluding the guaranteed layer and 𝐶𝑥,𝑦 . All the objects
in this layer are candidate-neighbors of 𝑞 and must be evaluated
using distance function to find if they are 𝑟 -neighbors(𝑞). Rest of
the layers contain only non-neighbors of 𝑞.

6.1 Spatial Range Query
Definition 6.3 (Spatial Range Query). Given 𝑆 , 𝑞, 𝑟 ,𝑊𝑛 and𝑊𝑠 ,

range query returns the 𝑟 -neighbors(𝑞) in 𝑆 for each aggregation
window.

A spatial range query returns all the 𝑠 ∈ 𝑆 in a window, that lie
within the 𝑟 -distance of 𝑞. The query results are generated periodi-
cally based on𝑊𝑛 and𝑊𝑠 . Such a query can be easily distributed
and parallelized, i.e., the 𝑆 tuples can be divided across distributed
cluster nodes, where each tuple is checked for 𝑟 -neighbors(𝑞). This
is a naive approach and require distance computation between all
𝑠 ∈ 𝑆 and 𝑞, which can be computationally expensive, specially
when the distance function is expensive, for instance, road distance.

A more efficient way is to prune out the objects which cannot
be part of the query result, thus reducing the number of distance
computations and the query processing cost. An effective pruning
requires some index structure to identify the objects which can
be safely pruned. Hence, we propose a grid-based spatial range
query consisting of Filter and Refine phases as shown in Figure
3. Herein the Filter phase prunes out the objects which cannot be
part of the query output and the Refine phase evaluates the un-
pruned objects using distance function. Precisely, given 𝑞 and 𝑟 ,
each GeoFlink node computes 𝐿𝑔 (𝐶𝑞) and 𝐿𝑐 (𝐶𝑞) sets, where 𝐶𝑞
denotes the cell containing 𝑞. The Filter phase prunes out the 𝑆

tuples which are not part of 𝐿𝑔 (𝐶𝑞) or 𝐿𝑐 (𝐶𝑞). Filtered stream is
then shuffled to keep the data balanced across the nodes in the Refine
phase. Since the 𝑆 objects corresponding to 𝐿𝑔 (𝐶𝑞) are guaranteed 𝑟 -
neighbour(𝑞), only the objects corresponding to 𝐿𝑐 (𝐶𝑞) are checked
for 𝑟 -neighbour(𝑞) using distance function in the Refine phase. From
Fig. 3, the number of operator instances in filter and refine phases
are 𝑢 and 𝑣 , respectively, where 𝑢 ≥ 𝑣 . To execute a spatial range
query via GeoFlink, SpatialRangeQuerymethod of RangeQuery class
is used.

Figure 3: Spatial Range Query Data Flow

DataStream<Point > rangeOut = RangeQuery .
SpatialRangeQuery (𝑆 , 𝑞 , 𝑟 , 𝑊𝑛 , 𝑊𝑠 , 𝐺) ;

6.2 Spatial 𝑘NN Query
Definition 6.4 (Spatial 𝑘NN Query). Given 𝑆 , 𝑞, 𝑟 ,𝑊𝑛 ,𝑊𝑠 and a

positive integer 𝑘 , 𝑘NN query returns the nearest 𝑘 𝑟 -neighbors(𝑞)
in 𝑆 for each aggregation window. If less than 𝑘 neighbors exists
then all the 𝑟 -neighbors(𝑞) are returned.

To find 𝑘NN naively, distances between all 𝑠 ∈ 𝑆 in a window
and 𝑞 are computed and the 𝑘 nearest objects to 𝑞 are returned for
each window. This query can be easily distributed and parallelized,
i.e., the 𝑆 tuples can be divided across the cluster nodes, where each
node computes and maintains its 𝑘 nearest neighbors. The 𝑘NNs
are then merged and sorted on a single cluster node to generate
the true 𝑘NNs per window. However, this approach is expensive
due to the large number of distance computations.

Figure 4: 𝑘NN Query Data Flow

This work presents an efficient grid-based 𝑘NN approach, con-
sisting of Filter, Refine andMerge phases as shown in Figure 4. In the

Resource Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

3153

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland Salman Ahmed Shaikh, Komal Mariam, Hiroyuki Kitagawa, and Kyoung-Sook Kim

Figure 5: Spatial Join Query Data Flow

Filter phase, the objects in the non-neighbouring layers are pruned.
The Refine phase evaluates the objects in the guaranteed and candi-
date layers using distance function. The Merge phase is responsible
for integrating the 𝑘NNs from distributed cluster nodes and sorting
them to obtain true 𝑘NNs. Precisely, given 𝑞 and 𝑟 , GeoFlink nodes
compute 𝐿𝑔 (𝐶𝑞) and 𝐿𝑐 (𝐶𝑞) sets, where𝐶𝑞 denotes the cell contain-
ing 𝑞. The Filter phase prunes out the 𝑆 tuples which are not part
of 𝐿𝑔 (𝐶𝑞) or 𝐿𝑐 (𝐶𝑞). Filtered stream is then shuffled to keep the
data balanced across the nodes in the Refine phase. To compute the
𝑘NNs in the Refine phase, distances of the nearest 𝑘 𝑟 -neighbors(𝑞)
are maintained on a heap. The heap’s root points to the 𝑘𝑡ℎ nearest
object and is updated as a new candidate 𝑘NN is found. The Refine
phase is executed in a distributed fashion, i.e., each node computes
its own copy of 𝑘NNs. The Merge phase receives 𝑘NNs from all
the distributed nodes for each window, integrates and sorts them
to obtain true 𝑘NNs. To execute a spatial 𝑘NN query in GeoFlink,
SpatialKNNQuery method of the KNNQuery class is used.

DataStream <Pr i o r i t yQueue <Tuple2 <Point , Double>>>
kNNOut = KNNQuery . Spat ia lKNNQuery (𝑆 , 𝑞 , 𝑟 , 𝑘 , 𝑊𝑛 , 𝑊𝑠 , 𝐺) ;

Please note that the output of the 𝑘NN query is a stream of sorted
lists with respect to the distance from 𝑞, where each list consists of
𝑘NNs corresponding to a window.

6.3 Spatial Join Query
Definition 6.5. (Spatial Join Query) Given 𝑟 ,𝑊𝑛 ,𝑊𝑠 , and two

streams 𝑆1 (Ordinary stream) and 𝑆2 (Query stream), spatial join
query returns all the 𝑟 -neighbors(𝑞𝑖) in 𝑆1 for each aggregation
window, where 𝑞𝑖 ∈ 𝑆2.

Spatial join is an expensive operation, where each tuple of query
stream must be checked against every tuple of ordinary stream. To
achieve this using a naive approach, low rate stream is replicated on
all the cluster nodes whereas high rate stream is divided across them.
However, this involves a large number of distance computations

equivalent to the Cartesian product of the two streams and heavy
shuffling of the tuples.

Hence, we propose an efficient grid index based spatial join. Fig-
ure 5 gives an overview of the GeoFlink spatial join. The proposed
spatial join consists of the following three phases: 1) Replication
phase, 2) Filter phase, and 3) Refine phase. Let 𝑆1 and 𝑆2 denote
an ordinary and a query stream, respectively. Assuming that 𝐶𝑞
denotes a cell containing a query object 𝑞, then given 𝑟 , the Replica-
tion phase computes the 𝐿𝑔 (𝐶𝑞) and 𝐿𝑐 (𝐶𝑞) layers for each 𝑞 ∈ 𝑆2
in the current window. Next, the 𝑞 ∈ 𝑆2 are replicated in such a way
that each replicated point is assigned keys from the sets 𝐿𝑔 (𝐶𝑞)
and 𝐿𝑐 (𝐶𝑞). We denote the replicated query stream by 𝑆2′. Next,
we make use of Apache Flink’s key-based join transformation to
join the two streams, i.e., 𝑆1 and 𝑆2′. The Flink’s key-based join
enables the tuples from the two streams with the same key to land
on the same operator instance. This causes the join to be evalu-
ated only between 𝑞 ∈ 𝑆2′ and 𝑝 ∈ 𝑆1 belonging to the cells in
𝐿𝑔 (𝐶𝑞) and 𝐿𝑐 (𝐶𝑞), while filtering out the non-neighbors of 𝑞. In
Figure 5, this corresponds to the Filter phase. In the Refine phase,
since the 𝑝 ∈ 𝑆1 corresponding to 𝐿𝑔 (𝐶𝑞) are guaranteed to be
part of the join output, they are sent to the output directly with-
out distance evaluation. However, for 𝑝 ∈ 𝑆1 corresponding to
𝐿𝑐 (𝐶𝑞), distance-based evaluation is done to find if 𝑝 ∈ 𝑆1 is an
𝑟 -neighbors(𝑞), where 𝑞 ∈ 𝑆2′. To execute a spatial join query via
GeoFlink, SpatialJoinQuery method of the JoinQuery class is used.
DataStream<Tuple2 < S t r i ng , S t r i n g >> jo inOu t =

Jo inQuery . S p a t i a l J o i nQu e r y (𝑆 , 𝑞 , 𝑟 , 𝑊𝑛 , 𝑊𝑠 , 𝐺) ;

Example 6.6. Let 𝑆1 and 𝑆2 denote ordinary and query streams,
respectively. We would like to perform the spatial window-join
between these streams. Assuming that the window contains twenty
𝑆1 points 𝑝1, 𝑝2, ..., 𝑝20 and two 𝑆2 points 𝑞1, 𝑞2. Let 𝑆1 points are
assigned cell-IDs (keys) based on their coordinates as follows: 𝑐1− >

𝑝1, 𝑝2, 𝑝3, 𝑐2− > 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑐3− > 𝑝8, 𝑝9, 𝑐4− > 𝑝10, 𝑝11, 𝑝12,
𝑐5− > 𝑝13, 𝑝14, 𝑝15 and 𝑐6− > 𝑝16, 𝑝17, 𝑝18, 𝑝19, 𝑝20. Assuming
that 𝑞1 and 𝑞2 belong to cells 𝐶𝑞1 and 𝐶𝑞2, respectively, and their

Resource Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

3154

GeoFlink: A Distributed and Scalable Framework for the Real-time Processing of Spatial Streams CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
H
ig
he
rb

et
te
r→

0

100K

200K

300K

400K

500K

600K

50 x 50 100 x 100 150 x 150 200 x 200 250 x 250

Th
ro

u
gh

p
u

t
(T

u
p

le
s/

se
c)

Grid Size

Naive Grid-based

(a) Varying grid size

0

100K

200K

300K

400K

500K

600K

200 400 600 800 1000

Th
ro

u
gh

p
u

t
(T

u
p

le
s/

se
c)

Query Radius (m)

Naive Grid-based

(b) Varying query radius

0

100K

200K

300K

400K

500K

600K

5 10 15

Th
ro

u
gh

p
u

t
(T

u
p

le
s/

se
c)

Window Size (sec)

Naive Grid-based

(c) Varying window size

0

100K

200K

300K

400K

500K

600K

1 5 10

Th
ro

u
gh

p
u

t
(T

u
p

le
s/

se
c)

Window Slide (sec)

Naive Grid-based

(d) Varying window slide step

Figure 6: Spatial range query

H
ig
he
rb

et
te
r→

0

100K

200K

300K

400K

500K

600K

50 x 50 100 x 100 150 x 150 200 x 200 250 x 250

Th
ro

u
gh

p
u

t
(T

u
p

le
s/

se
c)

Grid Size

Naive Grid-based

(a) Varying grid size

0

100K

200K

300K

400K

500K

600K

5 10 15 20 25

Th
ro

u
gh

p
u

t
(T

u
p

le
s/

se
c)

k

Naive Grid-based

(b) Varying 𝑘

0

100K

200K

300K

400K

500K

600K

5 10 15

Th
ro

u
gh

p
u

t
(T

u
p

le
s/

se
c)

Window Size (sec)

Naive Grid-based

(c) Varying window size

0

100K

200K

300K

400K

500K

600K

1 5 10

Th
ro

u
gh

p
u

t
(T

u
p

le
s/

se
c)

Window Slide (sec)

Naive Grid-based

(d) Varying window slide step

Figure 7: Spatial kNN query

H
ig
he
rb

et
te
r→

0

50K

100K

150K

200K

250K

300K

350K

50 x 50 100 x 100 150 x 150 200 x 200 250 x 250

Th
ro

u
gh

p
u

t
(T

u
p

le
s/

se
c)

Grid Size

Naive Grid-based

(a) Varying grid size

0

50K

100K

150K

200K

250K

300K

350K

400K

10 20 30 40 50

Th
ro

u
gh

p
u

t
(T

u
p

le
s/

se
c)

Query Stream Arrival Rate (Tuples/sec)

Naive Grid-based

(b) Varying query stream arrival rate

0

50K

100K

150K

200K

250K

300K

350K

400K

5 10 15

Th
ro

u
gh

p
u

t
(T

u
p

le
s/

se
c)

Window Size (sec)

Naive Grid-based

(c) Varying window size

0

50K

100K

150K

200K

250K

300K

350K

400K

1 5 10

Th
ro

u
gh

p
u

t
(T

u
p

le
s/

se
c)

Window Slide (sec)

Naive Grid-based

(d) Varying window slide step

Figure 8: Spatial join query

neighbouring cells in candidate layers are given by 𝐿𝑐 (𝐶𝑞1) =

{𝑐2, 𝑐3} and 𝐿𝑐 (𝐶𝑞2) = {𝑐3, 𝑐5}, respectively. For the sake of simplic-
ity in this example, we assume that the guaranteed layer does not
exist. To enable our grid-based spatial join, 𝑆2 objects are replicated
and assigned cell-IDs as: 𝑐2− > 𝑞1, 𝑐3− > 𝑞1, 𝑞2 and 𝑐5− > 𝑞2.
Let 𝑆2′ denotes the replicated query stream, then the spatial join
between 𝑆1 and 𝑆2′ is executed in GeoFlink using three join op-
erator instances handling keys 𝑐2, 𝑐3 and 𝑐5, respectively, as: Join
Instance 1) 𝑞1 join 𝑝4, 𝑝5, 𝑝6, 𝑝7, Join Instance 2) 𝑞1, 𝑞2 join 𝑝8, 𝑝9
and Join Instance 3) 𝑞2 join 𝑝13, 𝑝14, 𝑝15. Since the join is executed
between query points and their candidate neighbors in 𝑆1 only, the
non-neighbors of 𝑞 in 𝑆1 belonging to 𝑐1, 𝑐4 and 𝑐6 are pruned out.

7 EXPERIMENTAL EVALUATION
7.1 Streams and Environment
For GeoFlink evaluation, Microsoft T-Drive data [24] is used, con-
taining the GPS trajectories of 10,357 taxis during the period of
February 2 to 8, 2008 in the Beijing city. The total number of tuples
in the dataset is 17 million and the total distance of the trajecto-
ries is around 9 million kilometres. Each tuple consists of a taxi id,
datetime, longitude and latitude. The dataset is loaded into Apache
Kafka [8] and is supplied as a distributed stream to GeoFlink cluster.

For the experiments, a 4 nodes Apache Flink cluster with Ge-
oFlink (1 Job Manager and 3 Task Managers (30 task slots)) and a 3
nodes Apache Kafka cluster (1 Zookeeper and 2 Broker Nodes) are
used. The clusters are deployed on AIST AAIC cloud [17], where
each VM has 128 GB memory and 20 CPU cores (Intel skylake 1800
MHz processor). All the VMs are operated by Ubuntu 16.04.

7.2 Evaluation
This section compares our proposed grid-based spatial queries with
their respective naive approaches discussed in sections 6.1, 6.2 and
6.3. To keep the comparison fair, efforts are made to distribute
the data streams uniformly across the cluster nodes for the naive
approaches. The evaluation is presented in terms of system through-
put (maximum number of stream tuples processed by the system
per second). Unless otherwise stated, following default parameter
values are used in the experiments: grid size (𝑚): 150 x 150 cells, 𝑟 :
400 meters,𝑊𝑛 : 10 seconds,𝑊𝑠 : 5 seconds and 𝑘 : 10. Each experi-
ment is performed three times and their average values are reported
in the graphs. Since the T-Drive data stream is from Beijing city,
we made use of the following rectangular bounding box of the
city in terms of longitudes and latitudes for the grid construction:
bottom-left = 115.5, 39.6, top-right = 117.6, 41.1. Euclidean distance
is used for the distance computation.

Resource Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

3155

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland Salman Ahmed Shaikh, Komal Mariam, Hiroyuki Kitagawa, and Kyoung-Sook Kim

Fig. 6 evaluates the spatial range query. The throughput of the
grid-based approach is far higher compared to the naive approach
for all the parameters’ variation, mainly due to the effective gird-
based pruning. In Fig. 6(a), the throughput of the grid-based ap-
proach is slightly lower for𝑚 = 50x50. This is because at this𝑚,
individual cells are quite large, resulting in poor pruning. In Fig.
6(b), we varied query radius (𝑟). Since the increase in 𝑟 results in big-
ger query result-set, throughput decreases with the increase in 𝑟 . In
Figs. 6(c) and 6(d), window size (𝑊𝑛) and slide step (𝑊𝑠) are varied,
respectively. Increasing𝑊𝑛 results in a decrease in the through-
put which is quite obvious. On the other hand, increasing𝑊𝑠 in
Fig. 6(d) results in an increase in the system throughput, because
larger slide step means less overlapping as the window slides. This
results in the decrease in the number of distance computations and
hence increase in the system throughput. Note that the parameters
variation do not have much impact on grid-based approach. Please
understand that parameters variation have an effect on number
of distance computations, query output size and/or query output
frequency. Due to the strong pruning, grid-based approach is left
with a fraction of distance computations, hence, this effect is not
significant in grid-based approach. However, the effects of output
size and frequency are same on both the approaches.

Fig. 7 evaluates the 𝑘NN query. The throughput of the grid-
based approach is almost twice compared to the respective naive
approach for most of the variation of the parameters, due to the
reasons discussed in the last paragraph. The variation of the differ-
ent parameters has more or less same effect on the processing of
the 𝑘NN query as in the case of the range query. The only differ-
ent parameter in the 𝑘NN query is 𝑘 (Fig. 7(b)). Increasing 𝑘 very
slightly decreases the throughput because for the larger 𝑘 values,
larger sorted 𝑘NN lists need to be maintained.

Fig. 8 evaluates the spatial join query. The throughput of the
grid-based join query is comparatively far higher than the naive
approach, and in most cases more than double. This is because
the grid-based approach is capable of pruning a large number of
non-neighbors and hence require far less distance computations
compared to the naive approach. The trends in the variation of the
different parameters are essentially the same as that of the previous
queries. The Fig. 8 includes variation in the query stream arrival
rate as an additional evaluation, the increase of which results in
the reduced system throughput, which is obvious. Because with
the increase in the number of query points, more computations are
needed. However, this reduction is not significant in the grid-based
approach, proving the effectiveness of the proposed approach.

8 CONCLUSION AND FUTUREWORK
This work presents GeoFlink which extends Apache Flink to sup-
port spatial data types, index and continuous queries. To enable
efficient processing of continuous spatial queries and for the effec-
tive data distribution among Flink cluster nodes, a gird-based index
is introduced. The grid index enables the pruning of the spatial
objects which cannot be part of a spatial query result and thus
guarantees efficient query processing. Similarly it helps in uniform
data distribution across distributed cluster nodes. GeoFlink cur-
rently supports spatial range, spatial 𝑘NN and spatial join queries
on geometrical point objects. Extensive experimental study proves

that GeoFlink is quite effective for the spatial queries compared to
ordinary Flink. As a future direction, we are working on GeoFlink’s
extension to support line and polygon data types and other complex
query operators. Furthermore, we are looking into other efficient
spatial index structures for spatial stream processing.

ACKNOWLEDGMENTS
This research was partly supported by JSPS KAKENHI Grant Num-
bers JP20K19806 and JP19H04114 and a project commissioned by
the New Energy and Industrial Technology Development Organi-
zation (NEDO).

REFERENCES
[1] Fakrudeen Ali Ahmed, Jianmei Ye, and Jody Arthur. 2019. Eval-

uating Streaming Frameworks for Large-Scale Event Streaming.
https://medium.com/adobetech/evaluating-streaming-frameworks-for-
large-scale-event-streaming-7209938373c8. [Online; accessed 10-March-2020].

[2] Ablimit Aji, FushengWang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,
and Joel Saltz. 2013. Hadoop GIS: A High Performance Spatial Data Warehousing
System over Mapreduce. Proc. VLDB Endow. 6, 11 (Aug. 2013), 1009–1020.

[3] ApacheFlinkDoc. 2019. Dataflow Programming Model. https://ci.apache.org/
projects/flink/flink-docs-stable/concepts/programming-model.html. [Online;
accessed 06-November-2019].

[4] Furqan Baig, Hoang Vo, Tahsin M. Kurç, Joel H. Saltz, and Fusheng Wang. 2017.
SparkGIS: Resource Aware Efficient In-Memory Spatial Query Processing. In
Proceedings of the 25th ACM SIGSPATIAL. ACM, 28:1–28:10.

[5] Jon Louis Bentley and Jerome H. Friedman. 1979. Data Structures for Range
Searching. ACM Comput. Surv. 11, 4 (Dec. 1979), 397–409.

[6] A. Eldawy and M. F. Mokbel. 2015. SpatialHadoop: A MapReduce framework for
spatial data. In 2015 IEEE 31st ICDE. 1352–1363.

[7] ESRI. [n.d.]. ESRI: See patterns, connections, and relationships. https://www.esri.
com/. [Online; accessed 12-November-2019].

[8] The Apache Software Foundation. [n.d.]. Apache Kafka - A Distributed Streaming
Platform. http://spark.apache.org/. [Online; accessed 11-November-2018].

[9] The Apache Software Foundation. [n.d.]. Apache Samza - Distributed Stream
Processing. http://samza.apache.org/. [Online; accessed 11-November-2018].

[10] The Apache Software Foundation. [n.d.]. Apache Spark - Lightning-Fast Cluster
Computing. http://spark.apache.org/. [Online; accessed 11-November-2018].

[11] Ralf Hartmut Guting. 1994. An introduction to spatial database systems. VLDB
Journal 3 (1994), 357 – 399.

[12] Marios Hadjieleftheriou, Yannis Manolopoulos, Yannis Theodoridis, and Vassilis J.
Tsotras. 2017. R-Trees: A Dynamic Index Structure for Spatial Searching. Springer
International Publishing, Cham, 1805–1817.

[13] James N. Hughes, Andrew Annex, and et al. 2015. GeoMesa: a distributed archi-
tecture for spatio-temporal fusion. In Geospatial Informatics, Fusion, and Motion
Video Analytics V, Vol. 9473.

[14] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and V. Markl.
2018. Benchmarking Distributed Stream Data Processing Systems. In 2018 IEEE
34th International Conference on Data Engineering (ICDE). 1507–1518.

[15] Jiamin Lu and Ralf Güting. 2012. Parallel SECONDO: Boosting database engines
with Hadoop. Proceedings of the ICPADS, 738–743.

[16] Yannis Manolopoulos, Yannis Theodoridis, and Vassilis J. Tsotras. 2009. Spatial
Indexing Techniques. Springer US, Boston, MA, 2702–2707.

[17] National Institute of Advanced Industrial Science and Technology (AIST). [n.d.].
AIST Artificial Intelligence Cloud (AAIC). https://www.airc.aist.go.jp.

[18] PostGIS. [n.d.]. PostGIS: Spatial and Geographic objects for PostgreSQL. http:
//postgis.net/. [Online; accessed 10-March-2020].

[19] QGIS. 2020. QGIS, A Free and Open Source Geographic Information System.
https://qgis.org/en/site/. [Online; accessed 31-March-2020].

[20] Darius Sidlauskas, Simonas Saltenis, Christian W. Christiansen, Jan M. Johansen,
and Donatas Saulys. 2009. Trees or grids?: indexing moving objects in main
memory. In 17th ACM SIGSPATIAL, Proceedings. 236–245.

[21] Apache Storm. [n.d.]. Apache Storm: Distributed realtime computation system.
https://storm.apache.org/. [Online; accessed 10-March-2020].

[22] Mingjie Tang, Yongyang Yu, Walid G. Aref, Ahmed R. Mahmood, Qutaibah M.
Malluhi, and Mourad Ouzzani. 2019. LocationSpark: In-memory Distributed
Spatial Query Processing and Optimization. ArXiv abs/1907.03736 (2019).

[23] Jia Yu, Zongsi Zhang, and Mohamed Sarwat. 2019. Spatial data management in
apache spark: the GeoSpark perspective. GeoInformatica 23, 1 (2019), 37–78.

[24] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. 2011. Driving with Knowl-
edge from the Physical World. In Proceedings of the 17th ACM SIGKDD. Associa-
tion for Computing Machinery, New York, NY, USA, 316–324.

Resource Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

3156

https://medium.com/adobetech/evaluating-streaming-frameworks-for-large-scale-event-streaming-7209938373c8
https://medium.com/adobetech/evaluating-streaming-frameworks-for-large-scale-event-streaming-7209938373c8
https://ci.apache.org/projects/flink/flink-docs-stable/concepts/programming-model.html
https://ci.apache.org/projects/flink/flink-docs-stable/concepts/programming-model.html
https://www.esri.com/
https://www.esri.com/
http://spark.apache.org/
http://samza.apache.org/
http://spark.apache.org/
https://www.airc.aist.go.jp
http://postgis.net/
http://postgis.net/
https://qgis.org/en/site/
https://storm.apache.org/

	Abstract
	1 Introduction
	2 Related Work
	3 Flink Programming Model
	4 GeoFlink Architecture
	5 Spatial Stream Layer
	5.1 Spatial Stream Indexing
	5.2 Spatial Objects Support
	5.3 Spatial Stream Partitioning

	6 Spatial Query Processing Layer
	6.1 Spatial Range Query
	6.2 Spatial kNN Query
	6.3 Spatial Join Query

	7 Experimental Evaluation
	7.1 Streams and Environment
	7.2 Evaluation

	8 Conclusion and Future Work
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 43.33, 717.48 Width 527.71 Height 19.06 points
 Origin: bottom left

 1
 0
 BL

 2
 AllDoc
 20

 CurrentAVDoc

 43.3262 717.479 527.7125 19.0635

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 8
 7
 8

 1

 HistoryList_V1
 qi2base

