## **Introduction to Distributed Databases**

- Basic Concepts and Notions
- **II.** <u>Distributed DB Design</u>
- Distributed Query Processing

# II. Distributed Database Design

## II. 1. Design Approach

## ■ Top-Down Design Process

- Design a Global Schema
- Distribute the Global Schema objects to obtain Local Schemas
- → Definition of Homogeneous Distributed Database : "DDB in which each local DB is managed by the same DBMS"; Gardarin et al. 1989.
- Advantages
- The growing ease of incremental business: By the facility of adding a new site
- Increases performance: Exploit the capacities of parallel treatments/processing

### Bottom-Up Design Process

- · Consists of integrating existing LS in one or more Global Schemas
- Allows the integration of existing local Database into a Federated Database
- Needs a semantic reconciliation of schemas (data type,
- Ensures the continuity of services
  - Fragmentation & allocation are imposed
- → Definition of Heterogeneous Distributed DB: "Distr. DB in which the local databases are managed by different DBMS"; Gardarin et al. 1989

## II.2. Fragmentation Strategies

Fragmentation (Definition):

Sub-relation obtained by selection of tuples and attributs from a global relation. Each fragment has a subset of the tuples of the relation.

- → Two possible ways to divide a relation : *Horizontally* ( selection of tuples), *Vertically* (selection of attributs). In addition, "there is possibility of nesting a fragments in hybrid fashion"
- Fragmentation Rules: the main objective is to preserve the semantic consistency of the DDB
  - 1.: Decomposition without loss of information (R1, R2, ... Rn)
  - 2.: No duplication: restriction predicates define disjoint sets of tuples
  - 3.: Reconstruction rule (global relation): R = Function (R1, R2, ...Rn)

## II.2. Fragmentation Strategies

#### Primary Horizontal Fragmentation PHF

- PHF partitions a relation along its tuples. It is defined by a selection operation on the the relation : Ri=  $\sigma_{Fi}(R)$ , 1 <= i <= k where Fi is the selection formula used to obtain fragment Ri (also called fragmentation predicate)
- Wines (w\_Id, vineyard, vintage, Area) ∈ GS
  - Wines1=  $\sigma_{Area=Bourgogne}$  (Wines)
  - − Wines2= σ<sub>Area≠Bourgogne</sub>(Wines)
- 3: Reconstruction rule (global relation) : Wines = Wines1  $\cup$  Wines2

#### Benefits

 Favors the selection Queries by limiting the number of accessed fragments

### II.2. Fragmentation Strategies: Derived Horizontal Fragment

- Objective: The PHF can also be useful for processing of join queries. We need to modify the HF definition By applying Semi-join predicates
- DHF Def.: Partitioning function of a relation into sub-sets of tuples, each being defined by a semi-join operation of the relation with a fragment of another relation.
- **Example**: Wines (w\_Id, vineyard, vintage, area), Drink (w\_Id, drinker\_Id, date, quantity)

  - Reconstruction Rule : Drink = Drink1 ∪ Drink2
- Exercice: Select \* from W, D where W.w\_Id= D.w\_Id and area= «Bourgogne »
- DHF Benefits?
  - Improves joins between pairs of fragments Wines 1 ∞ Drink 1 and Wines 2 ∞ Drink 2

# II.2. Derived Horizontal Fragmentation (2)

| Wines 1 | w_ld       | vineyard     | vintage    | aera       |
|---------|------------|--------------|------------|------------|
|         | 1          | Chablis      | 2010       | Bourgogne  |
|         | 2          | Pommard      | 2009       | Bourgogne  |
| Wines2  | w_ld       | wineyard     | vintage    | aera       |
| Willesz | w_iu       | willeyalu    | viiitage   | aera       |
|         | 3          | Juliennas    | 2010       | Beaujolais |
|         | 4          | Chinon       | 2011       | Loire      |
| B 1 1 1 | 1.1.1.1    | and the said | 1          |            |
| Drink1  | drinker_ld | wineld       | date       | quantity   |
|         | 1          | 1            | 14/02/2012 | 1          |
|         | 1          | 2            | 1/1/2013   | 2          |
|         |            |              |            |            |
| Drink2  | drinker_ld | wineld       | date       | quantity   |
|         | 1          | 3            | 14/02/2013 | 3          |
|         | 3          | 4            | 1/1/2013   | 2          |

#### II.2. Fragmentation Strategies: Vertical fragmentation

- VF Defintion: «The VF function distributes a relation on projection attributes: fragments are obtained by projections applyed to a logical relation ».
- The reconstruction operator for VF: « is the join of the fragments on the common attributes »
- **Example**: Wines (w\_Id, vineyard, vintage, area, degree, price) ∈ GS
  - -Wines1=  $\pi_{w_Id}$ , vineyard, area, vintage(Wines)
  - Wines2=  $\pi_{\text{W_Id, degree, price}}$  (Wines)
  - Reconstruction rule: Wines = Wines1 ∞ Wines2
- VF Benefits:
  - Favors project queries by limiting the number of accessed fragments.

### II.2. Fragmentation Strategies: Hybrid fragmentation

- Wines (w\_Id, vineyard, vintage, aera, degree, price) ∈ GS
  - Wines1=  $\pi_{w_{Id}, \text{ degree, price}}$  (Wines)
  - Wines2 =  $\sigma_{\text{area}=\text{bourgogne}}(\pi_{\text{w\_Id, wineyard, vintage, aera}}(\text{Wines}))$
  - − Wines3 =  $\sigma_{\text{aera} \neq \text{bourgogne}} (\pi_{\text{w\_Id, wineyard, vintage, aera}} (\text{Wines}))$
  - Reconstruction rule: Wines = Wines1 ∞ (Wines2 ∪ Wines3)
  - Benefits?
    - Benefits of horizontal & vertical fragmentations!

# II.3. Choice of a fragmentation Strategy

- Complex issue because it depends on access requirements of queries
  - Classification of Queries:
    - Repetitive Queries
    - Ad-hoc Queries
  - Query Types: < Simple, Medium, Complex>
  - Query Natures: <Selection, Projection, Join>

## II.4. Allocation of fragments (1/2)

- ■Logically group data in accordance with the access objectives of applications ⇒ performance
  - Ex: Wines 1 & Drink 1 will be grouped on the same site
- Data Placement
  - to allocate fragments on sites

# II.4. Fragment allocation (2/2)



### **Exercice** (will be done in the next tutorial)

- We consider the following Global Relational Schema GRS:

  Cars (regNum, Brand(=marque), type, power, renting\_agency, price)

  Customers (customerId, name, firstname, address, phone)

  Emp (empId, name, firstname, address, renting\_agency, salary, commi.)

  Rent (regNum, customerId, date, discount).
- Hypothesis: We consider 3 agencies : <Pau, Agen, Toulouse>
- Constraints:
  - Each car is managed by a single agency.
  - Each agency manages its sales performance and issues invoices to its customers.
  - Each employee is assigned to an agency, his salary and his commissions managed only by Toulouse.

#### Questions :

- Fragments?
- Fragments' allocation?
- Reconstruction rules?