
130 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Dask: Parallel Computation with Blocked algorithms
and Task Scheduling

Matthew Rocklin‡∗

https://www.youtube.com/watch?v=1kkFZ4P-XHg

F

Abstract—Dask enables parallel and out-of-core computation. We couple
blocked algorithms with dynamic and memory aware task scheduling to achieve
a parallel and out-of-core NumPy clone. We show how this extends the effective
scale of modern hardware to larger datasets and discuss how these ideas can
be more broadly applied to other parallel collections.

Index Terms—parallelism, NumPy, scheduling

Introduction

The Scientific Python stack [Oli07] rarely leverages parallel
computation. Code built off of NumPy [vdW11] or Pandas
[McK10] generally runs in a single thread on data that fits
comfortably in memory. Advances in hardware in the last
decade in multi-core processors and solid state drives provide
significant and yet largely untapped performance advantages.

However, the Scientific Python stack consists of hundreds
of software packages, papers, PhD theses, and developer-
years. This stack is a significant intellectual and financial
investment that, for the most part, does not align well with
modern hardware. We seek software solutions to parallelize
this software stack without triggering a full rewrite.

This paper introduces dask, a specification to encode
parallel algorithms, using primitive Python dictionaries, tuples,
and callables. We use dask to create dask.array a parallel
N-dimensional array library that copies the NumPy interface,
uses all of the cores in a modern processor, and manages data
well from disk. Dask.array serves both as a general library for
parallel out-of-core ndarrays and also as a demonstration
that we can parallelize complex codebases like NumPy in
a straightforward manner using blocked algorithms and task
scheduling.

We first define dask graphs and give a trivial example
of their use. We then share the design of dask.array a
parallel ndarray. Then we discuss dynamic task scheduling
and policies to minimize memory footprint. We then give two
examples using dask.array on computational problems.
We then briefly discuss dask.bag and dask.dataframe,

* Corresponding author: mrocklin@gmail.com
‡ Continuum Analytics

Copyright c○ 2015 Matthew Rocklin. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

two other collections in the dask library. We finish with
thoughts about extension of this approach into the broader
Scientific Python ecosystem.

Modern Hardware

Hardware has changed significantly in recent years. The
average personal notebook computer (the bulwark of most
scientific development) has roughly four physical cores and
a solid state drive (SSD). The four physical cores present op-
portunities for linear speedup of computationally bound code.
We refer to algorithms that use multiple cores simultaneously
as parallel. The solid state drives have high read bandwidths
and low seek times which enables them to serve as large and
cheap extensions of physical memory. We refer to systems that
efficiently use disk as extensions of memory as out-of-core.

Modern workstations extend these trends to include sixteen
to sixty-four cores, hundreds of gigabytes of RAM, and
RAID arrays of SSDs offering 2GB/s read bandwidths. These
systems rival small clusters in scale but continue to offer
the convenience of single-machine administration and shared-
memory computing. This system rivals the performance of
massively parallel distributed systems up to a surprisingly
large scale while maintaining a low maintenance and program-
ming cost.

Dask Graphs

Normally humans write programs and then compil-
ers/interpreters interpret them (e.g. python, javac,
clang). Sometimes humans disagree with how these
compilers/interpreters choose to interpret and execute their
programs. In these cases humans often bring the analysis,
optimization, and execution of code into the code itself.

Commonly a desire for parallel execution causes this shift
of responsibility from compiler to human developer. In these
cases we often represent the structure of our program explicitly
as data within the program itself.

Dask is a specification that encodes task schedules with
minimal incidental complexity using terms common to all
Python projects, namely dicts, tuples, and callables. Ideally
this minimum solution is easy to adopt and understand by a
broad community.

https://www.youtube.com/watch?v=1kkFZ4P-XHg
mailto:mrocklin@gmail.com


DASK: PARALLEL COMPUTATION WITH BLOCKED ALGORITHMS AND TASK SCHEDULING 131

Fig. 1: A simple dask dictionary

We define a dask graph as a Python dictionary mapping
keys to tasks or values. A key is any Python hashable, a value
is any Python object that is not a task, and a task is a Python
tuple with a callable first element.

Example

Consider the following simple program
def inc(i):

return i + 1

def add(a, b):
return a + b

x = 1
y = inc(x)
z = add(y, 10)

We encode this as a dictionary below:
d = {’x’: 1,

’y’: (inc, ’x’),
’z’: (add, ’y’, 10)}

While less pleasant than our original code this representation
can be analyzed and executed by other Python code, not just
the CPython interpreter. We don’t recommend that users write
code in this way, but rather that it is an appropriate target for
automated systems. Also, in non-toy examples the execution
times are likely much larger than for inc and add, warranting
the extra complexity.

Specification

We represent a computation as a directed acyclic graph of tasks
with data dependencies. Dask is a specification to encode such
a graph using ordinary Python data structures, namely dicts,
tuples, functions, and arbitrary Python values.

A dask graph is a dictionary mapping identifying keys
to values or tasks. We explain these terms after showing a
complete example:
{’x’: 1,
’y’: 2,
’z’: (add, ’x’, ’y’),
’w’: (sum, [’x’, ’y’, ’z’])}

A key can be any hashable value that is not a task.

’x’
(’x’, 2, 3)

A task is a tuple with a callable first element. Tasks represent
atomic units of work meant to be run by a single worker.
(add, ’x’, ’y’)

We represent a task as a tuple such that the first element is a
callable function (like add), and the succeeding elements are
arguments for that function.

An argument may be one of the following:
1. Any key present in the dask like ’x’
2. Any other value like 1, to be interpreted literally
3. Other tasks like (inc, ’x’)
4. List of arguments, like [1, ’x’, (inc,
’x’)]

So all of the following are valid tasks
(add, 1, 2)
(add, ’x’, 2)
(add, (inc, ’x’), 2)
(sum, [1, 2])
(sum, [’x’, (inc, ’x’)])
(np.dot, np.array([...]), np.array([...]))

The dask spec provides no explicit support for keyword
arguments. In practice we combine these into the callable
function with functools.partial or toolz.curry.

Dask Arrays

The dask.array submodule uses dask graphs to create a
NumPy-like library that uses all of your cores and operates
on datasets that do not fit in memory. It does this by building
up a dask graph of blocked array algorithms.

The dask.array submodule is not the first library to im-
plement a "Big NumPy Clone". Other partial implementations
exist including Biggus an out-of-core ndarray specialized
for climate science, Spartan [Pow14] a distributed memory
ndarray, and Distarray a distributed memory ndarray that
interacts well with other distributed array libraries like Trilli-
nos. There have also been numerous projects in traditional high
performance computing space including Elemental [Pou13],
High Performance Fortran, etc.. Finally Theano [Ber10], an
array compiler in Python with powerful optimizations and
GPU support, statically schedules and reasons about array
computations and has proven particularly valuable in machine
learning applications.

Each of these implementations focuses on a particular
application or problem domain. Dask.array distinguishes itself
in that it focuses on a very general class of NumPy operations
and streaming execution through dynamic task scheduling.

Blocked Array Algorithms

Blocked algorithms compute a large result like "take the sum
of these trillion numbers" with many small computations like
"break up the trillion numbers into one million chunks of size
one million, sum each chunk, then sum all of the intermediate
sums." Through tricks like this we can evaluate one large
problem by solving very many small problems.

Blocked algorithms have proven useful in modern numerical
linear algebra libraries like Flame [Gei08] and Plasma [Agu09]

http://biggus.readthedocs.org/en/latest/
https://github.com/spartan-array/spartan
http://docs.enthought.com/distarray/


132 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

and more recently in data parallel systems like Dryad [Isa07]
and Spark [Zah10]. These compute macroscopic operations
with a collection of related in-memory operations.

Dask.array takes a similar approach to linear algebra li-
braries but focuses instead on the more pedestrian ndarray
operations, like arithmetic, reductions, and slicing common in
interactive use.

Example: arange

Dask array functions produce Array objects that hold on to
dask graphs. These dask graphs use several numpy functions
to achieve the full result. In the following example one call to
da.arange creates a graph with three calls to np.arange

>>> import dask.array as da
>>> x = da.arange(15, chunks=(5,))
>>> x # Array object metadata
dask.array<x-1, shape=(15,), chunks=((5, 5, 5)), dtype=int64>
>>> x.dask # Every dask array holds a dask graph
{(’x’, 0): (np.arange, 0, 5),
(’x’, 1): (np.arange, 5, 10),
(’x’, 2): (np.arange, 10, 15)}

Further operations on x create more complex graphs
>>> z = (x + 100).sum()
>>> z.dask
{(’x’, 0): (np.arange, 0, 5),
(’x’, 1): (np.arange, 5, 10),
(’x’, 2): (np.arange, 10, 15),
(’y’, 0): (add, (’x’, 0), 100),
(’y’, 1): (add, (’x’, 1), 100),
(’y’, 2): (add, (’x’, 2), 100),
(’z’, 0): (np.sum, (’y’, 0)),
(’z’, 1): (np.sum, (’y’, 1)),
(’z’, 2): (np.sum, (’y’, 2)),
(’z’,): (sum, [(’z’, 0), (’z’, 1), (’z’, 2)])}

Dask.array also holds convenience functions to execute this
graph, completing the illusion of a NumPy clone
>>> z.compute()
1605

Array metadata

In the example above x and z are both dask.array.Array
objects. These objects contain the following data

1. A dask graph, .dask
2. Information about shape and chunk shape, called
.chunks

3. A name identifying which keys in the graph cor-
respond to the result, .name

4. A dtype
The second item here, chunks, deserves further explana-

tion. A normal NumPy array knows its shape, a dask array
must know its shape and the shape of all of the internal NumPy
blocks that make up the larger array. These shapes can be
concisely described by a tuple of tuples of integers, where
each internal tuple corresponds to the lengths along a single
dimension.

In the example above we have a 20 by 24 array cut
into uniform blocks of size 5 by 8. The chunks attribute
describing this array is the following:
chunks = ((5, 5, 5, 5), (8, 8, 8))

Fig. 2: A dask array

Where the four fives correspond to the heights of the blocks
along the first dimension and the three eights correspond to
the widths of the blocks along the second dimension. This
particular example has uniform sizes along each dimension
but this need not be the case. Consider the chunks of the
following example operations
>>> x[::2].chunks
((3, 2, 3, 2), (8, 8, 8))

>>> x[::2].T.chunks
((8, 8, 8), (3, 2, 3, 2))

Every dask.array operation, like add, slicing, or
transpose must take the graph and all metadata, add new
tasks into the graph and determine new values for each piece
of metadata.

Capabilities and Limitations

Adding subgraphs and managing metadata for most of NumPy
is difficult but straightforward. At present dask.array is
around 5000 lines of code (including about half comments and
docstrings). It encompasses most commonly used operations
including the following:

• Arithmetic and scalar mathematics, +, *, exp,
log, ...

• Reductions along axes, sum(), mean(), std(),
sum(axis=0), ...

• Tensor contractions / dot products / matrix multiply,
tensordot

• Axis reordering / transpose, transpose
• Slicing, x[:100, 500:100:-2]
• Fancy indexing along single axes with lists or NumPy

arrays, x[:, [10, 1, 5]]
• A variety of utility functions, bincount, where,
...

However dask.array is unable to handle any operation
whose shape can not be determined ahead of time. Consider
for example the following common NumPy operation
x[x > 0] # can not determine shape of output

The shape of this array depends on the number of positive
elements in x. This shape is not known given only metadata;
it requires knowledge of the values underlying x, which are
not available at graph creation time. Note however that this
case is fairly rare; for example it is possible to determine the



DASK: PARALLEL COMPUTATION WITH BLOCKED ALGORITHMS AND TASK SCHEDULING 133

shape of the output in all other cases of slicing and indexing,
e.g.
x[10::3, [1, 2, 5]] # can determine shape of output

Dynamic Task Scheduling

We now discuss how dask executes task graphs. How we
execute these graphs strongly impacts performance. Fortu-
nately we can tackle this problem with a variety of approaches
without touching the graph creation problem discussed above.
Graph creation and graph execution are separable problems.
The dask library contains schedulers for single-threaded,
multi-threaded, multi-process, and distributed execution.

Current dask schedulers all operate dynamically, meaning
that execution order is determined during execution rather
than ahead of time through static analysis. This is good
when runtimes are not known ahead of time or when the
execution environment contains uncertainty. However dynamic
scheduling does preclude certain clever optimizations.

Dynamic task scheduling has a rich literature and numerous
projects, both within the Python ecosystem with projects like
Spotify’s Luigi for bulk data processing and projects without
the ecosystem like DAGuE [Bos12] for more high performance
task scheduling. Additionally, data parallel systems like Dryad
or Spark contain their own custom dynamic task schedulers.

None of these solutions, nor much of the literature in dy-
namic task scheduling, suited the needs of blocked algorithms
for shared memory computation. We needed a lightweight,
easily installable Python solution that had latencies in the
millisecond range and was mindful of memory use. Traditional
task scheduling literature usually focuses on policies to expose
parallelism or chip away at the critical path. We find that for
bulk data analytics these are not very relevant as parallelism
is abundant and critical paths are comparatively short relative
to the depth of the graph.

The logic behind dask’s schedulers reduces to the following
situation: A worker reports that it has completed a task and that
it is ready for another. We update runtime state to record the
finished task, mark which new tasks can be run, which data
can be released, etc.. We then choose a task to give to this
worker from among the set of ready-to-run tasks. This small
choice governs the macro-scale performance of the scheduler.

Instead of these metrics found in the literature we find that
for out-of-core computation we need to choose tasks that allow
us to release intermediate results and keep a small memory
footprint. This lets us avoid spilling intermediate values to
disk which hampers performance significantly. After several
other policies we find that the policy of last in, first out
is surprisingly effective. That is we select tasks whose data
dependencies were most recently made available. This causes a
behavior where long chains of related tasks trigger each other,
forcing the scheduler to finish related tasks before starting
new ones. We implement this with a simple stack, which can
operate in constant time.

We endeavor to keep scheduling overhead low at around
1ms per task. Updating executing state and deciding which
task to run must be made very quickly. To do this we maintain
a great deal of state about the currently executing computation.

The set of ready-to-run tasks is commonly quite large, in the
tens or hundreds of thousands in common workloads and so in
practice we must maintain enough state so that we can choose
the right task in constant time (or at least far sub-linear time).

Finally, power users can disregard the dask schedulers
and create their own. Dask graphs are completely separate
from the choice of scheduler and users may select the right
scheduler for their class of problem or, if no ideal scheduler
exists, build one anew. The default single-machine scheduler
is about three hundred significant lines of code and has been
adapted to single-threaded, multi-threaded, multi-processing,
and distributed computing variants.

Example: Matrix Multiply

We benchmark dask’s blocked matrix multiply on an out-of-
core dataset. This demonstrates the following:

1. How to interact with on-disk data
2. The blocked algorithms in dask.array achieve sim-
ilar performance to modern BLAS implementations
on compute-bound tasks

We set up a trivial input dataset
import h5py
f = h5py.File(’myfile.hdf5’)
A = f.create_dataset(name=’/A’,

shape=(200000, 4000), dtype=’f8’,
chunks=(250, 250), fillvalue=1.0)

B = f.create_dataset(name=’/B’,
shape=(4000, 4000), dtype=’f8’,
chunks=(250, 250), fillvalue=1.0)

out = f.create_dataset(name=’/out’,
shape=(4000, 4000), dtype=’f8’,
chunks=(250, 250))

The Dask convenience method, da.from_array, creates
a graph that can pull data from any object that implements
NumPy slicing syntax. The da.store function can then store
a large result in any object that implements NumPy setitem
syntax.
import dask.array as da
a = da.from_array(A, chunks=(1000, 1000))
b = da.from_array(B, chunks=(1000, 1000))

c = a.dot(b) # another dask Array, not yet computed
c.store(out) # Store result into output space

Results: We do this same operation in different settings.
We use either use NumPy or dask.array:

1. Use NumPy on a big-memory machine
2. Use dask.array in a small amount of memory,
pulling data from disk, using four threads

We compare different BLAS implementations:
1. ATLAS BLAS, single threaded, unblocked
2. OpenBLAS, single threaded
3. OpenBLAS, multi-threaded

For each configuration we compute the number of floating
point operations per second.

We note the following
1. Compute-bound tasks are computationally bound
by memory; we don’t experience a slowdown

2. Dask.array can effectively parallelize and block
ATLAS BLAS for matrix multiplies

https://github.com/spotify/luigi


134 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Performance
(GFLOPS)

NumPy Dask.array

ATLAS BLAS 6 18
OpenBLAS (one) 11 23
OpenBLAS (four) 22 11

TABLE 1: Matrix Multiply GigaFLOPS for NumPy/Dask.array and
for ATLAS and OpenBLAS with one and four threads

3. Dask.array doesn’t significantly improve when us-
ing an optimized BLAS, presumably this is because
we’ve already reaped most of the benefits of block-
ing and multi-core

4. One should not mix multiple forms of multi-
threading. Four dask.array threads each spawning
multi-threaded OpenBLAS DGEMM calls results in
worse performance.

Example: Meteorology
Performance is secondary to capability. In this example we use
dask.array to manipulate climate datasets that are larger
than memory. This example shows the following:

1. Use concatenate and stack to manage large
piles of HDF5 files (a common case)

2. Use reductions and slicing to manipulate stacks of
arrays

3. Interact with other libraries in the ecosystem using
the __array__ protocol.

We start with a typical setup, a large pile of NetCDF files.:
$ ls
2014-01-01.nc3 2014-03-18.nc3 2014-06-02.nc3
2014-01-02.nc3 2014-03-19.nc3 2014-06-03.nc3
2014-01-03.nc3 2014-03-20.nc3 2014-06-04.nc3
2014-01-04.nc3 2014-03-21.nc3 2014-06-05.nc3
... ... ...

Each of these files contains the temperature at two meters
above ground over the earth at quarter degree resolution, every
six hours.

>>> from netCDF4 import netCDF4
>>> t = Dataset(’2014-01-01.nc3’).variables[’t2m’]
>>> t.shape
(4, 721, 1440)

We can collect many of these files together using
da.concatenate, resulting in a single large array.

>>> from glob import glob
>>> filenames = sorted(glob(’2014-*.nc3’))
>>> temps = [Dataset(fn).variables[’t2m’]
... for fn in filenames]

>>> import dask.array as da
>>> arrays = [da.from_array(t, blockshape=(4,200,200))
... for t in temps]
>>> x = da.concatenate(arrays, axis=0)

>>> x.shape
(1464, 721, 1440)

We can now play with this array as though it were a NumPy
array. Because dask.arrays implement the __array__ pro-
tocol we can dump them directly into functions of other

Fig. 3: We use typical NumPy slicing and reductions on a large
volume of data to show the average temperature difference between
noon and midnight for year 2014

libraries. These libraries will trigger computation when they
call np.array(...) on their input.

>>> from matplotlib import imshow
>>> imshow(x[::4].mean(axis=0) - x[2::4].mean(axis=0)
... , cmap=’RdBu_r’)

This computation took about a minute on an old notebook
computer. It was bound by disk access. Meteorological cases
tend to be I/O bound rather than compute bound, taking more
advantage of dask’s memory-aware schedulers rather than
parallel computation. In other cases, such as parallel image
processing, this trend is reversed.

Other Collections

The dask library contains parallel collections other than
dask.array. We briefly describe dask.bag and
dask.dataframe

• dask.array = numpy + threading
• dask.bag = toolz + multiprocessing
• dask.dataframe = pandas + threading

Bag

A bag is an unordered collection with repeats. It is like a
Python list but does not guarantee the order of elements. Be-
cause we typically compute on Python objects in dask.bag
we are bound by the Global Interpreter Lock and so switch
from using a multi-threaded scheduler to a multi-processing
one.

The dask.bag API contains functions like map and
filter and generally follows the PyToolz API. We find that
it is particularly useful on the front lines of data analysis,
particularly in parsing and cleaning up initial data dumps like
JSON or log files because it combines the streaming properties
and solid performance of projects like cytoolz with the
parallelism of multiple processes.

>>> import dask.bag as db
>>> import json
>>> b = db.from_filenames(’2014-*.json.gz’)
... .map(json.loads)

>>> alices = b.filter(lambda d: d[’name’] == ’Alice’)
>>> alices.take(3)
({’name’: ’Alice’, ’city’: ’LA’, ’balance’: 100},
{’name’: ’Alice’, ’city’: ’LA’, ’balance’: 200},

https://toolz.readthedocs.org/en/latest/


DASK: PARALLEL COMPUTATION WITH BLOCKED ALGORITHMS AND TASK SCHEDULING 135

{’name’: ’Alice’, ’city’: ’NYC’, ’balance’: 300},

>>> dict(alices.pluck(’city’).frequencies())
{’LA’: 10000, ’NYC’: 20000, ...}

DataFrame

The dask.dataframe module implements a large
dataframe out of many Pandas DataFrames. The interface
should be familiar to users of Pandas.

>>> import dask.dataframe as dd
>>> df = dd.read_csv(’nyc-taxi-*.csv.gz’)

>>> g = df.groupby(’medallion’)
>>> g.trip_time_in_secs.mean().head(5)
medallion
0531373C01FD1416769E34F5525B54C8 795.875026
867D18559D9D2941173AD7A0F3B33E77 924.187954
BD34A40EDD5DC5368B0501F704E952E7 717.966875
5A47679B2C90EA16E47F772B9823CE51 763.005149
89CE71B8514E7674F1C662296809DDF6 869.274052
Name: trip_time_in_secs, dtype: float64

Currently dask.dataframe uses the threaded scheduler
but does not achieve the same parallel performance as
dask.array due to the GIL. We are enthusiastic about
ongoing work in Pandas itself to release the GIL.

The dask dataframe can compute efficiently on partitioned
datasets where the different blocks are well separated along
an index. For example in time series data we may know that
all of January is in one block while all of February is in
another. Join, groupby, and range queries along this index are
significantly faster when working on partitioned datasets.

Dask.dataframe benefits users by providing trivial access to
larger-than-memory datasets and, where Pandas does release
the GIL, parallel computation.

Dask for General Computing

The higher level collections
dask.array/bag/dataframe demonstrate the flexibility
of the dask graph specification to encode sophisticated
parallel algorithms and the capability of the dask schedulers
to execute those graphs intelligently on a multi-core machine.
Opportunities for parallel execution extend beyond beyond
ndarrays and dataframes.

In the beginning of this document we gave the following
toy example to help define dask graphs.

d = {’x’: 1,
’y’: (inc, ’x’),
’z’: (add, ’y’, 10)}

While this example of dask graphs is trivial it represents a
broader class of free-form computations that don’t fit neatly
into a single high-level abstraction like arrays or dataframes
but are instead just a bunch of related Python functions with
data dependencies. In this context Dask offers a lightweight
spec and range of schedulers as well as excellent error report-
ing and diagnostic facilities. In private projects we have seen
great utility and performance from using the dask threaded
scheduler to refactor and execute existing processing pipelines
on large multi-core computers.

Fig. 4: Out-of-core parallel SVD

Low Barrier to Entry

The simplicity of dask graphs (no classes or frameworks)
presents a very low barrier to entry. Users only need to
understand basic concepts common to Python (or indeed most
modern languages) like dictionaries, tuples, and functions as
variables. As an example consider the work in [Tep15] in
which the authors implement out-of-core parallel non-negative
matrix factorizations on top of dask.array without significant
input from dask core developers. This demonstrates that al-
gorithmic domain experts can implement complex algorithms
with dask and achieve good results with a minimum of
framework investment.

To demonstrate complexity we present the graph of an
out-of-core singular value decomposition contributed by those
authors to the dask.array.linalg library.

>>> import dask.array as da
>>> x = da.ones((5000, 1000), chunks=(1000, 1000))
>>> u, s, v = da.svd(x)

This algorithm is complex enough without having to worry
about software frameworks. Mathematical experts were able
to implement this without having to simultaneously develop
expertise in a complex parallel programming framework.

Final Thoughts

Extend the Scale of Convenient Data: The dask collec-
tions (array, bag, dataframe) provide reasonable access
to parallelism and out-of-core execution. These significantly
extend the scale of data that is convenient to manipulate.



136 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Low Barrier to Entry: More importantly these collections
demonstrate the feasibility of dask graphs to describe paral-
lel algorithms and of the dask schedulers to execute those
algorithms efficiently in a small space. The lack of a more
baroque framework drastically reduces the barrier to entry and
the ability of developers to use dask within their own libraries.

Administratriva and Links

Dask is available on github, PyPI, and is now included in the
Anaconda distribution. It is BSD licensed, runs on Python 2.6
to 3.4 and is tested against Linux, OSX, and Windows.

This document was compiled from numerous blogposts that
chronicle dask’s development and go more deeply into the
computational concerns encountered during dask’s construc-
tion.

Dask is used on a daily basis, both as a dependency in
other projects in the SciPy ecosystem (xray, scikit-image, ...)
and also in production in private business.

• http://dask.pydata.org/en/latest
• http://github.com/ContinuumIO/dask
• http://matthewrocklin.com/blog
• http://pypi.python.org/pypi/dask/

Acknowledgements

Dask has had several contributors, both in terms of code and in
terms of active use and reporting. Some notable contributions
follow (roughly ordered by chronological involvement):

• Stephan Hoyer - Patiently used and bug-fixed
dask.array

• Erik Welch - Implemented many of the graph optimiza-
tions

• Mariano Tepper - Implemented the
dask.array.linalg module

• Wesley Emeneker - Worked on some of slicing
• Peter Steinberg - Worked on some of rechunking
• Jim Crist - Implemented rewrite rule optimizations
• Blake Griffith - Integrated dask.array with
scikit-image and has done a variety of bug-fixing,
particularly around dask.distributed

• Min Regan-Kelley - Provided guidance around ZeroMQ
during the construction of dask.distributed

• Phillip Cloud - Improved dask.dataframe

REFERENCES

[Oli07] Travis E. Oliphant. Python for Scientific Computing,
Computing in Science & Engineering, 9, 10-20 (2007),
DOI:10.1109/MCSE.2007.58

[vdW11] Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux. The
NumPy Array: A Structure for Efficient Numerical Computation,
Computing in Science & Engineering, 13, 22-30 (2011)

[McK10] Wes McKinney. Data Structures for Statistical Computing in
Python, Proceedings of the 9th Python in Science Conference, 51-56
(2010)

[Isa07] Isard, Michael, et al. "Dryad: distributed data-parallel programs
from sequential building blocks." ACM SIGOPS Operating Systems
Review. Vol. 41. No. 3. ACM, 2007.

[Zah10] Zaharia, Matei, et al. "Spark: cluster computing with working sets."
Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing. Vol. 10. 2010. APA

[But09] Buttari, Alfredo, et al. "A class of parallel tiled linear algebra
algorithms for multicore architectures." Parallel Computing 35.1
(2009): 38-53. APA

[Bos12] Bosilca, George, et al. "DAGuE: A generic distributed DAG engine
for high performance computing." Parallel Computing 38.1 (2012):
37-51. APA

[Van08] Van De Geijn, Robert A., and Enrique S. Quintana-Ortí. "The science
of programming matrix computations." (2008). APA

[Pou13] Poulson, Jack, et al. "Elemental: A new framework for distributed
memory dense matrix computations." ACM Transactions on Mathe-
matical Software (TOMS) 39.2 (2013): 13. APA

[Tep15] Mariano Tepper and Guillermo Sapiro, "Compressed Nonnegative
Matrix Factorization is Fast and Accurate", 2015.

[Agu09] Agullo, Emmanuel, et al. "Numerical linear algebra on emerging
architectures: The PLASMA and MAGMA projects." Journal of
Physics: Conference Series. Vol. 180. No. 1. IOP Publishing, 2009.
APA

[Gei08] Van De Geijn, Robert A., and Enrique S. Quintana-Ortí. "The science
of programming matrix computations." (2008). APA

[Ber10] Bergstra, James, et al. "Theano: A CPU and GPU math compiler in
Python." Proc. 9th Python in Science Conf. 2010. APA

[Pow14] Power, Russell. Abstractions for In-memory Distributed Computa-
tion. Diss. New York University, 2014. APA

http://dask.pydata.org/en/latest
http://github.com/ContinuumIO/dask
http://matthewrocklin.com/blog
http://pypi.python.org/pypi/dask/

	Introduction
	Modern Hardware
	Dask Graphs
	Example
	Specification

	Dask Arrays
	Blocked Array Algorithms
	Example: arange
	Array metadata
	Capabilities and Limitations

	Dynamic Task Scheduling
	Example: Matrix Multiply
	Example: Meteorology

	Other Collections
	Bag
	DataFrame

	Dask for General Computing
	Low Barrier to Entry
	Final Thoughts
	Administratriva and Links
	Acknowledgements
	References

