Too secure system

Bob worries about security too much and decided to change the original Pedersen commitment scheme adding there several steps. Find the vulnerability in Bob's system!

Initialization

- 1) Choose two big primes p and q such that q|(p-1) and choose $g \in \mathbb{Z}_p^*$ of order q.
- 2) Choose $x \in \mathbb{Z}_q^*$. x is our secret.
- 3) Compute $G = g^x \mod p$
- 4) Transform G into G': 1024-bit binary number with big endian.
- 5) Using hash-function SHA-512, compute a = SHA512(G')
- 6) Find a': transform binary a into an integer number.
- 7) Find $\hat{a} = (a'^{a'}) \mod \phi(p)$, where $\phi(p)$ is Euler function.
- 8) Finally, calculate $h = g^{\hat{a}} \mod p$.

Parameters p and q are well-known and open for everyone.

Commitment

To make a commitment we choose a random r from $\{2, \ldots, p-1\}$ and calculate $c = G \cdot h^r$. The commitment would be c.

Proof

After the decision is made by sender and verifier about the verification of the commitment, sender opens x and r values, and the verifier checks the equality $c = G \cdot h^r$.

Additional information

To get integer value from the string $S = S_1 S_2 \dots S_n$ of n ASCII characters, use the following formula:

$$func(S) = \sum_{i=0}^{n-1} ASCII(S_{i+1}) \cdot 2^{8 \cdot i}$$

where $ASCII(\ldots)$ is an ASCII value of the character.

Task

Break the system with the following parameters. As a result, you should get the value r_2 which you disclose to the verifier with the string M_2 , and the verifier confirms the commitment as with (M_1, r_1) as with (M_2, r_2) .

The parameters are:

- $r_1 = 31245182471$
- $M_1 =$ 'Hi! I am Vadim Davydov from ITMO University'
- M_2 = 'Transfer the points for easy task to this team'