

Project SnappyData™ - Community

Edition

Release Notes

Software Release 1.2.0

 January 2020

2

SnappyData™ Release Notes

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH

EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR

PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE

EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY

OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND

CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED

SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE

CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR

INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF

THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE

AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE

OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE

HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE

SAME.

ANY SOFTWARE ITEM IDENTIFIED AS THIRD PARTY LIBRARY IS AVAILABLE UNDER

SEPARATE SOFTWARE LICENSE TERMS AND IS NOT PART OF A TIBCO PRODUCT. AS SUCH,

THESE SOFTWARE ITEMS ARE NOT COVERED BY THE TERMS OF YOUR AGREEMENT WITH

TIBCO, INCLUDING ANY TERMS CONCERNING SUPPORT, MAINTENANCE, WARRANTIES, AND

INDEMNITIES. DOWNLOAD AND USE OF THESE ITEMS IS SOLELY AT YOUR OWN DISCRETION

AND SUBJECT TO THE LICENSE TERMS APPLICABLE TO THEM. BY PROCEEDING TO

DOWNLOAD, INSTALL OR USE ANY OF THESE ITEMS, YOU ACKNOWLEDGE THE FOREGOING

DISTINCTIONS BETWEEN THESE ITEMS AND TIBCO PRODUCTS.

This document is subject to U.S. and international copyright laws and treaties. No part of this document

may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, TIBCO ComputeDB, SnappyData, and Snappy are either

registered trademarks or trademarks of TIBCO Software Inc. in the United States and/or other

countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle

and/or its affiliates.

All other product and company names and marks mentioned in this document are the property of their

respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system

platforms for a specific software version are released at the same time. Please see the readme.txt file

for the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS

DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.

3

SnappyData™ Release Notes

CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL

BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY

MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)

DESCRIBED IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR

INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE,

INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to

TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2017-2020. TIBCO Software Inc. All Rights Reserved.

https://www.tibco.com/patents
https://www.tibco.com/patents

4

SnappyData™ Release Notes

Contents

OVERVIEW ... 5

NEW FEATURES .. 6

EXPERIMENTAL FEATURES ... 7

STABILITY AND PERFORMANCE IMPROVEMENTS .. 8

MISCELLANEOUS .. 9

RESOLVED ISSUES .. 10

KNOWN ISSUES .. 12

UNSUPPORTED THIRD-PARTY MODULES ... 16

5

SnappyData™ Release Notes

Overview

SnappyData™ is a memory-optimized database based on Apache Spark. It delivers very high

throughput, low latency, and high concurrency for unified analytic workloads that may combine

streaming, interactive analytics, and artificial intelligence in a single, easy to manage distributed cluster.

SnappyData offers a fully functional core OSS distribution, which is the Community Edition, that is

Apache 2.0 licensed. The Enterprise Edition of the product, which is sold by TIBCO Software under

the name TIBCO ComputeDB™, includes everything that is offered in the OSS version along with

additional capabilities that are closed source and only available as part of a licensed subscription.

http://www.tibco.com/

6

SnappyData™ Release Notes

New Features

SnappyData 1.2.0 includes the following new features:

● Support for Cloud Storage and New Data Formats

Added support for external data sources such as Azure Blob Storage (WASB, not ADLS) and

GCS. Also, tested and certified support for file formats like CSV, Parquet, XML, JSON, Avro,

ORC, text.

Apache Zeppelin that is embedded with the product, is the easiest way to explore external data

sources. Refer to the notebooks under the section External Data Sources and Demos with

Big Datasets for configuring and demonstrations.

● Structured Streaming User Interface

Introducing a new UI tab to monitor Structured Streaming applications statistics and progress.

● SnappyData Metrics now Fully Compatible with Apache Spark

Apache Spark provides a flexible way to capture metrics and route these to a multitude of Sinks

(JMX, HTTP, etc). SnappyData, besides capturing metrics in its native Statistics DB, also

routes all system-wide metrics to any configured Spark Sink, enabling monitoring metrics

through a wide selection of external tools.

● Data Extractor Utility

Introducing the Data Extractor utility as a recovery service in case the cluster fails to come up in

some extreme circumstances. For example, when the disk files are corrupted. The utility also

permits users to extract their datasets from in-memory tables to cloud storage serving as a backup

mechanism.

● Multiline JSON Parsing Support

SnappyData now supports multiline JSON parsing. An existing Quickstart example has been

extended to illustrate multi-line JSON file support.

● Accessing Hive tables through External Hive Metastore

The facility is provided to access data stored in Hive tables by connecting to the existing Hive

metastore in local and remote modes.

7

SnappyData™ Release Notes

Experimental Features

SnappyData 1.2.0 provides the following features on an experimental basis. These features are

included only for testing purposes and are not yet supported officially:

● Authorization for External Tables

You can enable authorization of external tables by setting the system property

CHECK_EXTERNAL_TABLE_AUTHZ to true when the cluster's security is enabled.

System admin or the schema owner can grant or revoke the permissions on external tables to

other users.

For example: GRANT ALL ON <external-table> to <user>;

● Support ad-hoc, Interactive Execution of Scala code

You can execute Scala code using a new CLI script snappy-scala that is built with IJ APIs. You

can also run it as an SQL command using prefix exec scala.

The Scala code can use any valid/supported Spark API for example, to carry out custom data

loading/transformations or to launch a structured streaming job. Since the code is submitted as

an SQL command, you can now also use any SQL tool (based on JDBC/ODBC), including

Notebook environments, to execute ad-hoc code blocks directly. Prior to this feature, apps were

required to use the smart connector or use the SnappyData specific native Zeppelin interpreter.

exec scala command can be secured using the SQL GRANT/REVOKE permissions. System

admin (DB owner) can grant or revoke permissions for Scala interpreter privilege.

8

SnappyData™ Release Notes

Stability and Performance Improvements

SnappyData 1.2.0 includes the following stability and performance improvements:

● Improvements in the performance for single key GROUP BY column queries. (SNAP-3149)

● Avoiding possible low memory errors caused by structured streaming queries containing

aggregate operation(s) when the size of the aggregation state exceeds the memory limit.

(SNAP-3219)

● Making optimizations related to constraint propagation optional via property

spark.sql.constraintPropagation.enabled. (SNAP-3195)

● Some long-running structured streaming queries running in embedded mode can hog

embedded cluster resources, in turn affecting the performance of other analytical queries

catered by the embedded cluster. A low priority custom scheduler pool can be configured for

such streaming queries using session-level property snappydata.scheduler.pool. (SNAP-

2886)

● The property snappydata.sql.useOptimizedHashAggregateForSingleKey is by default true.

This means optimized SnappyHashAggregate is used, by default, even for the single key

GROUP BY field. (SNAP-3150)

● Optimized SnappyHashAggregate splits the generated code if the number of the group by

keys or the number of aggregates in the query exceeds 75. This fixes the issue of exception

thrown in generated code due to the function code size exceeding beyond the

limit. snappydata.sql.codeSplitThresholdInSHA property governs the splitting of the code,

the default value of which is 75. (SNAP-3141, SNAP-3035)

● Bulk inserts and imports on row tables are now faster. (SNAP-2495)

9

SnappyData™ Release Notes

Miscellaneous

SnappyData 1.2.0 release includes the following miscellaneous enhancements:

● Provided option to not retry INSERT operations. (SNAP-2801)

● Default retry of Spark tasks on failure can cause duplicates in the case of insert operations.

Provided a user property snappydata.maxRetryAttemptsForWrite, which can be set to 0 to

avoid this scenario. Other operations, as usual, retry without causing any consistency issues.

● Modified the log collection script to filter out unwanted lines from logs. A list of patterns can be

specified in the debug.conf file, and the script will ignore the conf file and lines matching those

patterns. (SNAP-2110)

● The default configuration in launch scripts is modified for user convenience. (SNAP-3229)

○ In an AWS environment, client-bind-address is set to 0.0.0.0 by default unless explicitly

specified by the user.

○ The passwordless SSH setup is no longer required for the single-host installation of the

cluster, even if the IP address is specified in the conf files.

○ The database connection from jRuby package fails to connect when using the JDBC

Connection string. This occurs due to the presence of keyword io in the driver's fully

qualified class name that is io.snappydata.jdbc.ClientDriver. To allow connections from

jRuby code, the product now supports com.snappydata.jdbc.ClientDriver class name as

well. (SNAP-3223)

10

SnappyData™ Release Notes

Resolved Issues

SnappyData 1.2.0 resolves the following major issues:

● Fixed an issue seen in executing complex queries with windowing and aggregate functions.

(SNAP-3269)

● The createTable API for Python is now fixed when used without passing schema and provider.

(SNAP-3262)

Usage example: snappy.createTable("table1",path ="/path/to/file.parquet")

● Added BOOLEAN as supported datatype in getTypeInfo query into metadata.properties.

(SDENT-75)(snappydata PR #1478)

● Fixed the Decimal value returned by SnappyData ODBC Driver. (SDENT-76)(store PR #527)

● The SQL plan display is fixed to include SnappyData specific events in the Smart Connector

mode. (SNAP-3163)

● Fixed an issue in queries involving LEFT JOIN when executed with a filter condition. (SNAP-

3215)

● Fixed the failure while running ./bin/pyspark in SnappyData distribution. (SNAP-3165)

● Fixed an issue in AQP where batch inserts did not change the sample table count. (SNAP-3199)

○ Implicitly populating sample table on creation, if the base table is provided.

○ If data is inserted into the base table using any of the following ways, then the data is also

automatically inserted into the sample tables defined on it.

■ INSERT INTO <table> VALUES SELECT * …

■ DataFrame.write …

■ JDBC Batch Insert.

● Fixed the sample table count on views. (SNAP-3204)

● Fixed an issue in self JOIN queries. (SNAP-3192)

11

SnappyData™ Release Notes

● No two streaming queries using Snappy Sink now run with the same SnappySession. (SNAP-

3033)

● Fixed the SQL built-in functions failing due to tokenization and plan caching. (SNAP-2728)

Added missing functions to the list of foldable functions with arguments that should not be

tokenized.

● With the default configuration in release 1.1.1, some queries that perform an aggregate

operation, such as group by/ sum/ avg etc., on a single key where the key column has high

cardinality can cause one or more data servers and sometimes the lead to a crash. This is fixed

in this release. (SNAP-3150)

12

SnappyData™ Release Notes

Known Issues

SnappyData 1.2.0 includes the following known issues:

Key Item Description Workaround

SNAP-1422

Catalog in Smart
connector
inconsistent with
servers.

Catalog in Smart connector
inconsistent with servers when a table
is queried from spark-shell (or from an
application that uses Smart connector
mode) the table metadata is cached on
the Smart connector side.
If this table is dropped from the
SnappyData Embedded cluster (by
using snappy-shell, or JDBC
application, or a Snappy job), the
metadata on the Smart connector side
stays cached even though the catalog
has changed (table is dropped).
In such cases, the user may see
unexpected errors such as
org.apache.spark.sql.AnalysisExcep

tion: Table `SNAPPYTABLE` already

exists in the Smart connector app

side, for example, for
DataFrameWriter.saveAsTable() API if
the same table name that was dropped
is used in saveAsTable().

• User may either create a
new SnappySession in such
scenarios.

Or

• Invalidate the cache on the
Smart Connector mode. For
example, by
calling snappy.sessionCata
log.invalidateAll().

SNAP-1153

Creating a
temporary table
with the same
name as an
existing table in
any schema
should not be
allowed.

When creating a temporary table, the
SnappyData catalog is not referred,
which means, a temporary table with
the same name as that of an existing
SnappyData table can be created. Two
tables with the same name lead to
ambiguity during query execution and
can either cause the query to fail or
return the wrong results.

Ensure that you create temporary
tables with a unique name.

SNAP-2910
DataFrame API
behavior in Spark,
Snappy.

Saving a Dataset using Spark's JDBC
provider with SnappyData JDBC driver
into SnappyData row/column tables
fails.

Use row or column provider in the
Embedded or Smart connector. For
Spark versions not supported by
Smart connector, use
the SnappyData JDBC Extension
Connector.

SNAP-3148

Unicode escape
character '\u'

does not work for
"insert into

table values()"

syntax.

Escape character '\u' is used to

indicate that code following '\u' is for

a Unicode character.

As a workaround, instead of "insert
into table values ('\u...')"

syntax, use "insert into table

select '\u...' '" syntax.

User can also directly insert the
Unicode char instead of using an
escape sequence.

For example:
create table region (val string,

description string) using column

https://jirasnappydataio.atlassian.net/browse/SNAP-1422
https://jirasnappydataio.atlassian.net/browse/SNAP-1153
https://jirasnappydataio.atlassian.net/browse/SNAP-2910
https://tibco-computedb.readthedocs.io/en/docv1.1.0/programming_guide/spark_jdbc_connector/
https://tibco-computedb.readthedocs.io/en/docv1.1.0/programming_guide/spark_jdbc_connector/
https://jirasnappydataio.atlassian.net/browse/SNAP-3148

13

SnappyData™ Release Notes

Key Item Description Workaround

The following insert query will not
insert Unicode char corresponding to
code '\u7ca5' . Instead, it will insert

a string value '\u7ca5'

insert into region values ('\u7ca5',

'unicode2')

However, following insert statement
will insert the appropriate Unicode
char:

insert into region select '\u7ca5',
'unicode2'

The following query that directly
inserts a Unicode char instead of
using escape char also works:

insert into region values ('粤' ,

'unicode')

SNAP-3146
UDF execution
from Smart
Connector.

A UDF, once executed from the smart
connector side, continues to remain
accessible from the same
SnappySession on the Smart
connector side, even if it is deleted
from the embedded side.

Drop the UDF from the Smart
connector side or use a new
SnappySession.

SNAP-3293

Cache optimized
plan for plan
caching instead of
the physical plan

Currently, SnappyData caches the
physical plan of the query for plan
caching. Evaluating the physical plan
may lead to an extra sampling job for
some type of queries (some examples
available in issues description).s

Because of this, you may notice an
extra job submitted while running the
CREATE VIEW query if the view query
contains some operations which
require a sampling job. This may
impact the performance of the
CREATE VIEW query.

SNAP-3298

Credentials set in
Hadoop
configuration in
the Spark context
can be set only
once without
restarting the
cluster.

The credentials that are embedded in
a FileSystem object. The object is
cached in FileSystem cache. The
cached object does not get refreshed
when there is a
configuration(credentials) change.

Hence, it uses the initially set
credentials even if you have set new
credentials.

Run the
org.apache.hadoop.fs.FileSystem.
closeAll() command on snappy-
scala shell or in the job. This clears
the cache. Ensure that there are no
queries running on the cluster when
you are executing the command.
After this you can set the new
credentials.

https://jirasnappydataio.atlassian.net/browse/SNAP-3146
https://jirasnappydataio.atlassian.net/browse/SNAP-3293
https://jirasnappydataio.atlassian.net/browse/SNAP-3298

14

SnappyData™ Release Notes

Key Item Description Workaround

SNAP-3306

Row tables with
altered schema
having added
columns causes
failure in recovery
mode.

A new column that is added in an
existing table in normal mode fails to
get restored in the recovery mode.

External Hive Metastore

● If the MySQL service is unresponsive due to some reason and if you query the Hive tables, the

Snappy Shell becomes unresponsive.

● Hive UDF is not accessible from SnappyData while using external Hive metastore.

● When you configure MySQL/MSSQL as the Hive metastore, the show tables in <database>

command throws a Syntax error or the following analysis exception:
Schema or database <'database'> not found;

● In the Local Hive metastore mode, if you alter the table name, the following HiveException is shown:
Unable to alter table

● When using the EMR cluster along with AWS Aurora as metastore, if you drop the hive table from

SnappyData, then SnappyData loses the visibility of the Hive Catalog. To restore the visibility, you

must restart the SnappyData cluster.

Scala Interpreter

An interpreter cannot serialize a dependent closure properly. A dependent closure is a closure that

refers to some other class, function, or variable that is defined outside the closure.

Thus, the following example fails with closure serialization error.
exec scala def multiply(number: Int, factor: Int): Int = {

 number * factor

}

val data = Array(1, 2, 3, 4, 5)

val numbersRdd = sc.parallelize(data, 1)

val collectedNumbers = numbersRdd.map(multiply(_, 2).toString()).collect()

The execution of the last line fails as the closure cannot be serialized due to this issue. This is referring

to the function multiple that is defined outside the closure. Similarly, even the following example fails:

Val x = 5

val data = Array(1, 2, 3, 4, 5)

https://jirasnappydataio.atlassian.net/browse/SNAP-3306

15

SnappyData™ Release Notes

val numbersRdd = sc.parallelize(data, 1)

val collectedNumbers = numbersRdd.map(_ * x).toString()).collect()

This is because the closure is referring to x, which is defined outside the closure. There are no issues if

the closure has no dependency on any external variables.

16

SnappyData™ Release Notes

Unsupported Third-Party Modules

The following third-party modules are not supported by SnappyData 1.2.0 although it is shipped with the

product:

• Spark RDD-based APIs:

o org.apache.spark.mllib

o GraphX (Graph Processing)

o Spark Streaming (DStreams)

• SnappyData does not support SparkR (R on Spark) or Apache Zeppelin.

