{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Queues\n", "\"Open\n", "\n", "http://openbookproject.net/thinkcs/python/english3e/queues.html\n", "- another container adapter or ADT, which is typically a first-in-first-out (FIFO) data structure\n", "- mimics real-world queue/line of people waiting for something\n", "- rule that determines who goes next is called the queuing policy\n", "- the most general queuing policy is priority queuing, in which each item/person is assigned a priority and the element with highest priority goes first, regardless of the order of the arrival\n", "- built-in alternative - deque: https://docs.python.org/3/library/collections.html#collections.deque" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The Queue ADT\n", "- can be implemented using built-in list or linked list as the container to hold the elements\n", "- queque ADT is defined by the following operations:\n", " - \\__init__ : initialize the queue\n", " - insert : add a new item to the queue\n", " - remove : remove and return the first element that was added\n", " - is_empty : check whether the queue is empty" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Linked Queue" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "class Node:\n", " def __init__(self, data):\n", " self.cargo = data\n", " self.next = None\n", " \n", " def __str__(self):\n", " return \"{}\".format(self.cargo)\n", " " ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "class Queue:\n", " def __init__(self):\n", " self.length = 0\n", " self.head = None\n", " self.tail = None\n", " \n", " def is_empty(self):\n", " return self.length == 0\n", " \n", " def insert(self, data):\n", " node = Node(data)\n", " if not self.head: # empty queue\n", " self.head = self.tail = node\n", " else:\n", " # add new node as the last node\n", " self.tail.next = node\n", " self.tail = node\n", " self.length += 1\n", " \n", " def remove(self):\n", " data = self.head.cargo\n", " # make the head point to 2nd element\n", " self.head = self.head.next\n", " self.length -= 1\n", " # update tail if the queue becomes empty after removing the first node\n", " if self.length == 0:\n", " self.tail = None\n", " \n", " return data\n", " \n", " def __len__(self):\n", " return self.length" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### quick test of Queue ADT" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "q = Queue()\n", "q.insert(1)\n", "q.insert(2)\n", "q.insert('a')\n", "assert q.remove() == 1\n", "assert len(q) == 2\n", "q.insert(100)\n", "assert q.remove() == 2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Priority Queue ADT\n", "- better built-in alternative: heapq- https://docs.python.org/3/library/heapq.html\n", "- Priority Queue ADT implementation\n", "- use the same methods/interfaces as Queue with only difference in remove function; where the item removed is the highest priority\n", " - item removed is not necessarily the first one that was added; rather an item in the queue with highest priority\n", " - e.g., if the items in the queue have names, we might choose item in alphabetical order\n", " - if they're bowling scores, we might go from highest to lowest, but if they're golf scores, we would go from lowest to highest" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "class PriorityQueue:\n", " def __init__(self):\n", " self.items = []\n", " \n", " def is_empty(self):\n", " return self.items == []\n", " \n", " def insert(self, data):\n", " self.items.append(data)\n", " \n", " def remove(self):\n", " maxi = 0\n", " for i in range(1, len(self.items)):\n", " if self.items[i] > self.items[maxi]:\n", " maxi = i\n", " item = self.items[maxi]\n", " del self.items[maxi]\n", " return item\n", " \n", " def __len__(self):\n", " return len(self.items)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### test priority queue ADT" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "q = PriorityQueue()\n", "for num in [11, 12, 14, 13]:\n", " q.insert(num)\n", " " ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "14\n", "13\n", "12\n", "11\n" ] } ], "source": [ "while not q.is_empty():\n", " print(q.remove())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The Golfer class\n", "- keeps track of the names and scores of golfers" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "class Golfer:\n", " def __init__(self, name, score):\n", " self.name = name\n", " self.score = score\n", " \n", " def __str__(self):\n", " return \"{0:16}: {1}\".format(self.name, self.score)\n", " \n", " # lowest score gets highest priority\n", " def __gt__(self, other):\n", " return self.score < other.score # lower score has the higher priority" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Hal Sutton : 20\n" ] } ], "source": [ "tiger = Golfer('Tigher Woods', 40)\n", "phil = Golfer('Phil Mickelson', 30)\n", "hal = Golfer('Hal Sutton', 20)\n", "pq = PriorityQueue()\n", "pq.insert(tiger)\n", "pq.insert(phil)\n", "pq.insert(hal)\n", "print(pq.remove())" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Phil Mickelson : 30\n", "Tigher Woods : 40\n" ] } ], "source": [ "while not pq.is_empty():\n", " print(pq.remove())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## exercises" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "1. Write an implementation of the Queue ADT using Python list. Compare the performance of this implementation to the ImprovedQueue for a range of queue lengths.\n", "- Write an implementation of the Priority Queue ADT using linked list. You should keep the list sorted so that removal is a constant time operation. Compare the performance of this implementation with the Python list implementation." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Kattis problems that can be solved using Queue\n", "1. Solve kattis problem Bank Queue: https://open.kattis.com/problems/bank\n", "- Server - https://open.kattis.com/problems/server\n", "- Ferry Loading III - https://open.kattis.com/problems/ferryloading3\n", "- Foosball Dynasty - https://open.kattis.com/problems/foosball\n", "- Disastrous Downtime: https://open.kattis.com/problems/downtime" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.2" } }, "nbformat": 4, "nbformat_minor": 2 }