{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Stacks\n",
"http://openbookproject.net/thinkcs/python/english3e/stacks.html\n",
"\n",
"- container adapters or abstract data type (ADT) that may use list or linked-list as containers to hold data\n",
"- specifically designed to operate as a LIFO (last-in-first-out) or FILO (first-in-last-out) data structure \n",
" - last item added is the first to be removed\n",
"- built-in alternative: deque - https://docs.python.org/3/library/collections.html#collections.deque\n",
" \n",
"## The Stack ADT\n",
"- an ADT is defined by the operations that can be performed on it, called an interface.\n",
"- interface of stack consists of the following basic operations:\n",
" - \\__init__ - initialize a new empty stack\n",
" - \\__len__ - returns length/size of the stack\n",
" - push - add a new item to the stack\n",
" - pop - remove and return last item that was added to the stack\n",
" - is_empty - check if the stack is empty"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Implementing stack with Python list\n",
"- Python list provides a several methods that we can take advantage of to emulate Stack ADT"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"class Stack:\n",
" def __init__(self):\n",
" self.items = []\n",
" \n",
" def __len__(self):\n",
" return len(self.items)\n",
" \n",
" def push(self, item):\n",
" self.items.append(item)\n",
" \n",
" def pop(self):\n",
" return self.items.pop()\n",
" \n",
" def is_empty(self):\n",
" return len(self.items == 0)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Applications of stack"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"s = Stack()\n",
"s.push(54)\n",
"s.push(45)\n",
"s.push('+')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## visualize stack with pythontutor\n",
"https://goo.gl/Q4wZaL"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" \n",
" "
],
"text/plain": [
""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from IPython.display import IFrame\n",
"src = \"\"\"\n",
"http://pythontutor.com/iframe-embed.html#code=class%20Stack%3A%0A%20%20%20%20def%20__init__%28self%29%3A%0A%20%20%20%20%20%20%20%20self.items%20%3D%20%5B%5D%0A%20%20%20%20%0A%20%20%20%20def%20__len__%28self%29%3A%0A%20%20%20%20%20%20%20%20return%20len%28self.items%29%0A%20%20%20%20%0A%20%20%20%20def%20push%28self,%20item%29%3A%0A%20%20%20%20%20%20%20%20self.items.append%28item%29%0A%20%20%20%20%20%20%20%20%0A%20%20%20%20def%20pop%28self%29%3A%0A%20%20%20%20%20%20%20%20return%20self.items.pop%28%29%0A%20%20%20%20%0A%20%20%20%20def%20is_empty%28self%29%3A%0A%20%20%20%20%20%20%20%20return%20len%28self.items%20%3D%3D%200%29%0A%20%20%20%20%20%20%20%20%0As%20%3D%20Stack%28%29%0As.push%2854%29%0As.push%2845%29%0As.push%28'%2B'%29&codeDivHeight=400&codeDivWidth=350&cumulative=false&curInstr=0&heapPrimitives=false&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false\n",
"\"\"\"\n",
"IFrame(src, width=900, height=500)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## using a stack to evaluate postfix notation\n",
"- infix notation: 1 + 2\n",
"- prefix notation: + 1 2\n",
"- postfix notation: 1 2 +\n",
" - operator follows the operands\n",
" - no need to use parenthesis to control oder of operations\n",
"- algorithm steps:\n",
" 1. starting at the beginning of the expression, get one term/token (operator or operand) at a time\n",
" a. if the term is an operand, push it on the stack\n",
" b. if the term is an operator, pop two operands off the stack, perform the operation on them, and push the result back on the stack\n",
" 2. When you get to the end of the expression, there should be exactly one operand left on the stack, the result."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# given a postfix notation such as: 56 47 + 2 *, the following function evaluates the result using Stack ADT\n",
"def eval_postfix(expr):\n",
" tokens = expr.split()\n",
" stack = Stack()\n",
" for token in tokens:\n",
" token = token.strip()\n",
" if not token:\n",
" continue\n",
" if token == '+':\n",
" s = stack.pop() + stack.pop()\n",
" stack.push(s)\n",
" elif token == '*':\n",
" prod = stack.pop() * stack.pop()\n",
" stack.push(prod)\n",
" # /, and - are left as exercise\n",
" else:\n",
" stack.push(int(token))\n",
" \n",
" return stack.pop()\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"206\n"
]
}
],
"source": [
"print(eval_postfix('56 47 + 2 *'))"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"206"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# which is same as: (56 + 47) * 2 in infix notation\n",
"eval('(56 + 47) * 2')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## exercises\n",
"1. Write a function that converts infix notation to postfix notation, e.g., 4 - 2 + 3 -> 4 2 - 3 +"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"2. Solve kattis problem Backspace: https://open.kattis.com/problems/backspace"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"3. Solve kattis problem Game of Thrones: https://open.kattis.com/problems/throwns"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}