{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "String Concatenation Exercise Answers.ipynb", "provenance": [], "collapsed_sections": [], "authorship_tag": "ABX9TyMZp0Lhd5RkFGA4M435V3CX", "include_colab_link": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "markdown", "metadata": { "id": "AxubPEz8qhL1" }, "source": [ "# **String Concatenation Exercise Answers**\r\n", "\r\n", "![python-tutorials.jpg]()\r\n" ] }, { "cell_type": "markdown", "metadata": { "id": "ozB4bXzuqkj7" }, "source": [ "## **Answers**\r\n", "\r\n", "\r\n", "\r\n", "### **1. Create a variable and assign it the phrase `Python Programming` by concatenating the strings `Python` and `Programming`**\r\n", "\r\n", "\r\n" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "iKLNEoqIqspL", "outputId": "c385a115-6319-4662-9224-200bb6aba0eb" }, "source": [ "# String Concatenation using '+'\r\n", "value = \"Python\" + \" \" + \"Programming\"\r\n", "print(value)" ], "execution_count": 1, "outputs": [ { "output_type": "stream", "text": [ "Python Programming\n" ], "name": "stdout" } ] }, { "cell_type": "markdown", "metadata": { "id": "N9GBlaUAsr9N" }, "source": [ "\r\n", "\r\n", "---\r\n", "\r\n" ] }, { "cell_type": "markdown", "metadata": { "id": "aRzfLmhvq9lk" }, "source": [ "### **2. Create a variable and assign it the integer `20`**\r\n" ] }, { "cell_type": "code", "metadata": { "id": "lm3pyMhoq-CN" }, "source": [ "# Assignment 20 to the variable integer\r\n", "integer = \"20\"" ], "execution_count": 7, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "TTot-8z1ss55" }, "source": [ "\r\n", "\r\n", "---\r\n", "\r\n" ] }, { "cell_type": "markdown", "metadata": { "id": "AXBmW7HprFrw" }, "source": [ "### **3. Create a variable and assign it the integer `19`**\r\n" ] }, { "cell_type": "code", "metadata": { "id": "6vKiBFG4rGP7" }, "source": [ "# Assignment 19 to the variable integer2\r\n", "integer2 = \"19\"" ], "execution_count": 8, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "f7bYcRKastd0" }, "source": [ "\r\n", "\r\n", "---\r\n", "\r\n" ] }, { "cell_type": "markdown", "metadata": { "id": "_N5_k-tprMpG" }, "source": [ "### **4. Create a variable and use the variables from steps 2 and 3 and string concatenation to assign it the string `2019`**" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "eyxkWxS4rNGH", "outputId": "06544e58-7c74-46c8-a350-3b4c8c27ad67" }, "source": [ "# Concatenating step 2 and step 3\r\n", "result = integer + integer2\r\n", "print(result)" ], "execution_count": 9, "outputs": [ { "output_type": "stream", "text": [ "2019\n" ], "name": "stdout" } ] }, { "cell_type": "markdown", "metadata": { "id": "jYJ5TLxzsHmP" }, "source": [ "**Or this can be concatenated using `formatting` style too..**" ] }, { "cell_type": "code", "metadata": { "id": "gjtaoQyWsPc0" }, "source": [ "integer = 20\r\n", "integer2 = 19" ], "execution_count": 11, "outputs": [] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "TGoCAu1Pr-3n", "outputId": "a0077d85-e220-4df6-fd30-d7b454b26d31" }, "source": [ "# Type casting into integer\r\n", "result = int('%d%d' % (integer, integer2))\r\n", "result" ], "execution_count": 13, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "2019" ] }, "metadata": { "tags": [] }, "execution_count": 13 } ] }, { "cell_type": "markdown", "metadata": { "id": "K5QGGuatsd6K" }, "source": [ "\r\n", "\r\n", "---\r\n", "\r\n" ] } ] }