{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "String Concatenation Exercise Questions.ipynb", "provenance": [], "collapsed_sections": [], "authorship_tag": "ABX9TyPeqpxnElxWNmxKiPt7tgKr", "include_colab_link": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "markdown", "metadata": { "id": "k4mwfwLnou62" }, "source": [ "# **String Concatenation Exercise Questions**\r\n", "\r\n", "![python-tutorials.jpg]()" ] }, { "cell_type": "markdown", "metadata": { "id": "rmx_eN49ngSy" }, "source": [ "## **Description**\r\n", "\r\n", "Strings are a sequence of characters which can be stored either as a constant or a different variable. Strings are considered as a datatype. Typically, programmers must enclose strings in quotation marks for the data to recognized as a string and not a number or variable name. String concatenation means adding strings together. Meaning concatenating two or more strings.\r\n", "\r\n", "> **Note**: In python, to concatenate two strings use the `+` character to add a variable to another variable" ] }, { "cell_type": "markdown", "metadata": { "id": "Xktrr3pkQ88I" }, "source": [ "## **Questions**\r\n", "\r\n", "\r\n", "\r\n", "### **1. Create a variable and assign it the phrase `Python Programming` by concatenating the strings `Python` and `Programming`**\r\n", "\r\n", "### **2. Create a variable and assign it the integer `20`**\r\n", "\r\n", "### **3. Create a variable and assign it the integer `19`**\r\n", "\r\n", "### **4. Create a variable and use the variables from steps 2 and 3 and string concatenation to assign it the string `2019`**\r\n" ] } ] }