
Feature Type Inference Capstone Tech Report
Tanveer Mittal

Halıcıoğlu Data Science Institute
La Jolla, California
tamittal@ucsd.edu

Andrew Shen
Halıcıoğlu Data Science Institute

La Jolla, California
anshen@ucsd.edu

1 INTRODUCTION
Automated Machine Learning(AutoML) has grown in popularity
recently as it has enabled scalable ML for the masses. Currently
the machine learning pipeline has a lot of manual steps such as
data preprocessing and model building. AutoML platforms and soft-
ware aim to automate the entire ML pipeline. Many such platforms
already exist such as Amazon Sagemaker, Google Cloud AutoML,
Salesforce Einstein andmore. As a result the different steps involved
in the AutoML pipeline are heavily researched in academia as well.

The first step AutoML software must take after loading in a
dataset is to identify the feature types (ie numeric, categorical,
datetime, ...) of individual columns in the input data. This feature
type inference information allows the software to understand the
data and preprocess it to allow machine learning algorithms to run
on it. Feature type inference is still being done manually by data
scientists which in most cases becomes impractical as dataset can
have hundreds or more features that require labeling. Previous tools
have also implemented automated Feature Type Inference using
rules-based prediction.

Project Sortinghat of the ADA lab at UCSD frames this task of
Feature Type Inference as a machine learning multiclass classifi-
cation problem. Machine learning models defined in the original
SortingHat feature type inference paper[4] use 3 sets of features as
input.

(1) The name of the given column
(2) 5 sample values from the data to be used as base features
(3) Descriptive numeric statistics computed from the entire

given column (Listed in Table 1)
The textual features such as the column name and the 5 sample

values are easy to access, however the descriptive statistics models
rely on a full iteration through every row and value in the data
which make preprocessing less scalable as the dataset size grows.
Our goal is to investigate 2 questions about feature type inference.

(1) Can we take the Random Forest Model from Project Sort-
inghat and investigate how adjusting the number of base
feature sample values or taking a subsection of the data for
descriptive statistic calculation affects the model?

(2) Can we experiment with and apply deep learning trans-
former models to feature type inference to improve accu-
racy and scalability further?

1.1 Previous Work
Project SortingHat produced the ML Data Prep Zoo which is a
collection of publicly available datasets. The zoo also includes all the
precomputed features defined above as labeled benchmark data for
feature type inference. This data plays a role in this space similiar
to ImageNet in computer vision allowing the benchmarking of
existing tools on this task. For our investigation, we have used the

Table 1: Set of Descriptive Statistics

Descriptive Statistics
% of nans
% of unique values
Mean and std of column values, word count, stopword
count, char count, whitespace count, and delimiter
count
Min and max value of the column
Regular expression check for the presence of url, email,
sequence of delimiters, and list on the 5 sample values
Pandas timestamp check on 5 sample values

Table 2: SortingHat Random Forest Model 9 Class Accuracy

Numeric 0.97
Categorical 0.97
Datetime 0.99
Sentence 0.99
URL 1.00
Embedded Number 0.99
List 1.00
Non-Generalizable 0.98
Context Specific 0.96

original data from the ML Data Prep Zoo; both the raw csv’s of data
as well as the benchmark labeled data to train and test our models
with.

The SortingHat paper also proposed and used a set of 9 class la-
bels; details of these labels can be found in Table 11 of the appendix.
We continue to use these 9 class labels for our models as labeled in
the benchmark dataset. The experiments observed in the original
SortingHat paper produced models that outperform the accuracy
of existing tools such as AWS’s AutoGluon, Google’s Tensorflow
Data Validation, the Pandas python library, and more. The single
best model produced by this paper was a random forest model that
uses the column name and descriptive statistics that yielded an
Accuracy of 0.9265.

2 METHODS
2.1 Random Forest Investigation
As mentioned above, Project SortingHat’s best performing model
was a Random Forest that achieved an accuracy of 0.9265 overall
and class wise accuracy shown in Table 2. This was generated
using 5 sample values from the data column as base features and
using the Table 1 set of descriptive statistics calculated using the
entire data column. To further investigate the performance of this



Tanveer Mittal and Andrew Shen

Table 3: Random Forest Accuracy Across all 9 Classes while Varying the Amount of Sample Values in the Base Features

Number of Sample Values in the Base Features 1 2 3 4 5 10
Feature Type
numeric 0.97 0.97 0.97 0.97 0.97 0.97
categorical 0.97 0.97 0.97 0.97 0.97 0.97
datetime 1.00 1.00 1.00 1.00 1.00 1.00
sentence 0.99 0.99 0.99 0.99 0.99 0.99
url 1.00 1.00 1.00 1.00 1.00 1.00
embedded-number 0.99 0.99 0.99 0.99 0.99 0.99
list 0.99 0.99 0.99 0.99 0.99 0.99
not-generalizable 0.98 0.98 0.98 0.98 0.98 0.98
context-specific 0.96 0.96 0.96 0.96 0.96 0.96

Table 4: Random Forest Overall Accuracy Using a Subset of the Data Column to Calculate Descriptive Statistics

Percentage of Data used to calculate descriptive statistics 90.00% 80.00% 70.00% 60.00% 50.00% 40.00% 30.00% 20.00% 10.00%
Overall Model Accuracy 0.902 0.900 0.900 0.893 0.894 0.899 0.891 0.892 0.886

random forest model and to answer the first question on feature
type inference we will be adjusting both the number of sample
values used as base features and the subset of data used to calculate
the descriptive statistics.

2.1.1 Adjusting Number of Sample Values Used in the Base
Feature Set. To investigate ways of improving model runtime and
accuracy, we will first experiment with adjusting the number of
sample values used as base features. The original Random Forest
Model was trained using 5 sample values, but for our experiment
we tested using 1,2,3,4,5, and 10 sample values as base features. As
expected, when using 5 sample values in the base feature set, our
model is exactly the same as the original SortingHat Random Forest
and produces the same accuracy values.

What is discovered in Table 3 is that the Random Forest accuracy
is not noticable affected by either an increase or decrease in the
number of sample values used in the base feature set. Between
using only 1 random sample from the data column as a base fea-
ture to using 10 random samples as base feature that accuracy did
not change more than 1%. For for metrics, a full 9 class Accuracy,
Precision, Recall, and F1-Score table is available in the appendix at
Table 12.

Additionally, increasing the number of sample values used as
base features did not have as much of an impact on the model
runtime as expected. As shown in Table 13 found in the appendix,
we measured the time it took to train and test the model across
all 1 though 5 and 10 base feature sample values over 3 iterations.
Between including only 1 sample value as a base feature compared
to including 10 samples as a base feature, there was a less than 1%
time increase between 1 and 10 sample models.

2.1.2 Adjusting Percentage of Data Column Used in the Cal-
culation of Descriptive Statistics. A time consuming step of the
feature type inference process is the calculation of descriptive sta-
tistics. As referenced in Table 1, all the descriptive statistics require
a complete iteration to calculate the values used in the ML model.
Our experiment involves taking subsets of data, sampled randomly

Figure 1: Benchmark Labeled Data Runtimes

without replacement, from the entire data column at 10% intervals
(ie 90%, 80%, ...). For example if a data column has 1,000 values
and we are taking a 50% subset, we would sample 500 values to
use in the calculation of our descriptive statistics. This will reduce
the number of value that we will have to iterate over, increasing
the calculation speed of the descriptive statistics. The downside is
the loss of information and inaccuracy in the descriptive statistics
caused by now using all available values in the data column. In this
experiment we are keeping the 5 sample values in the base feature
set as we have seen they do not have much of an effect on either
accuracy or runtime.

As seen in Table 4, there is a constant decrease in model accuracy
as we lower the proportion of the data we are using to calculate our
descriptive statistics with. For more detailed metrics, Table 5 shows
the class wise metrics across the different proportions we are taking
from the data column. From Table 5 we can see that Categorical sees
the largest decrease in accuracy as we take a smaller proportion
of the entire data set for descriptive statistic calculation, with not-
generalizable and context-specific feature types also affected. This
makes sense as these feature types require looking at much more



Feature Type Inference Capstone Tech Report

Table 5: Random Forest Accuracy, Precision, Recall, and F1-Score Across all 9 Classes Using a Subset of the Data Column to
Calculate Descriptive Statistics

Proportion of Data Column
Used to Calculate Descrip-
tive Statistics

10% 20% 30% 40% 50% 60% 70% 80% 90%

Feature Type Metric

numeric accuracy 0.97 0.97 0.97 0.97 0.96 0.96 0.97 0.97 0.97
precision 0.93 0.93 0.93 0.93 0.92 0.92 0.93 0.93 0.93
recall 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.98
f1-score 0.95 0.96 0.95 0.96 0.95 0.95 0.95 0.95 0.96

categorical accuracy 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.95
precision 0.83 0.84 0.84 0.87 0.86 0.85 0.86 0.86 0.86
recall 0.89 0.91 0.91 0.90 0.90 0.90 0.90 0.91 0.91
f1-score 0.86 0.87 0.87 0.88 0.88 0.88 0.88 0.88 0.89

datetime accuracy 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
precision 0.98 0.96 0.99 0.97 0.99 0.99 0.97 0.98 0.98
recall 0.98 0.96 0.96 0.98 0.97 0.97 0.96 0.96 0.96
f1-score 0.98 0.96 0.97 0.97 0.98 0.98 0.97 0.97 0.97

sentence accuracy 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
precision 0.89 0.87 0.87 0.88 0.87 0.88 0.90 0.89 0.91
recall 0.86 0.82 0.82 0.86 0.87 0.87 0.88 0.88 0.87
f1-score 0.88 0.85 0.85 0.87 0.87 0.87 0.89 0.88 0.89

url accuracy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
precision 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00
recall 0.81 0.91 0.97 0.91 0.94 0.94 0.94 0.94 0.94
f1-score 0.90 0.94 0.98 0.95 0.97 0.97 0.97 0.97 0.97

embedded-number accuracy 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
precision 0.89 0.92 0.91 0.95 0.91 0.90 0.92 0.92 0.92
recall 0.86 0.87 0.88 0.89 0.87 0.90 0.88 0.88 0.88
f1-score 0.87 0.89 0.89 0.92 0.89 0.90 0.90 0.90 0.90

list accuracy 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
precision 0.83 1.00 1.00 0.83 0.80 0.80 0.86 0.80 1.00
recall 0.28 0.21 0.21 0.26 0.21 0.21 0.32 0.21 0.32
f1-score 0.42 0.35 0.35 0.40 0.33 0.33 0.46 0.33 0.48

not-generalizable accuracy 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
precision 0.81 0.84 0.84 0.85 0.85 0.84 0.86 0.86 0.86
recall 0.75 0.79 0.78 0.81 0.80 0.77 0.80 0.80 0.79
f1-score 0.78 0.81 0.81 0.83 0.83 0.81 0.83 0.83 0.82

context-specific accuracy 0.96 0.96 0.95 0.96 0.96 0.96 0.96 0.96 0.96
precision 0.83 0.85 0.82 0.85 0.84 0.83 0.86 0.84 0.84
recall 0.70 0.69 0.67 0.68 0.68 0.69 0.71 0.72 0.72
f1-score 0.76 0.76 0.74 0.75 0.75 0.76 0.78 0.78 0.78

of the data compared to feature types such as URL or datetime.
Confusion matricies for the 10%, 50%, and 90% subsets can be found
in Table 14-16 in the appendix.

Although accuracy increases as we use more of the data column
for descriptive statistic calculation, so does the runtime. Figure 1
displays the change in runtime of the descriptive statistic calculation
as used for the benchmark labeled data test set. Though the training
set has more columns and features to calculate, the test and train
runtimes follow the same linear pattern as we adjust the proportion
of data we subset. In the calculation of the benchmark labeled data,
the descriptive statistic runtime is only affected by the number of

values in the data column that we are inferring the feature of. As
we adjust what percentage of the data column we subset for our
statistic calculations, there is a linear decrease in runtime. Using
Table 4, Table 5, and Figure 1, we can adjust how to best balance
optimizing runtime through only selecting a percentage of the
entire data column for the descriptive statistics and our accuracy
requirements. The runtimes of all three iterations can be found in
Table 17 in the appendix.



Tanveer Mittal and Andrew Shen

Table 6: Convolution filter ablation experiments. The convolution blocks are represented as a list of integers [𝑥1, 𝑥2, ..., 𝑥𝑛]
where 𝑥𝑖 represents a convolution block with a filter dimension of 𝑥𝑖 x 768. These experiments are run using BERT with a fixed
kernel size of 256. The changes in accuracies from removing single filters are compared to the full model using all 5 filters are
reported.

Convolution Filter Sizes [1, 2, 3, 4, 5] [2, 3, 4, 5] [1, 3, 4, 5] [1, 2, 4, 5] [1, 2, 3, 5] [1, 2, 3, 4]

Validation Accuracy 0.931 0.924 0.924 0.926 0.928 0.930
Testing Accuracy 0.930 0.928 0.931 0.929 0.934 0.932
Delta % Testing Accuracy 0.00% -0.15% +0.15% -0.05% +0.35% +0.25%

Table 7: Additional Convolution Filter Ablation Experiments. These experiments are run using BERT with a fixed kernel size
of 256. The change in accuracies from removing a single filter compared to the full model using the best 4 filters found in table
6 are reported.

Convolution Filter Sizes [1, 2, 3, 5] [1, 2, 3] [1, 2, 5] [1, 3, 5] [2, 3, 5]

Valid Accuracy 0.928 0.927 0.931 0.930 0.931
Test Accuracy 0.934 0.926 0.930 0.929 0.931
Delta % Testing Accuracy 0.00% -0.71% -0.35% -0.45% -0.25%

2.2 Transformer Models
In the hopes of creating more accurate and scalable models, we
applied deep learning transformer models to feature type inference.
We are using transformers to generate contextualized embeddings
for words present in the column name and sample values of a col-
umn. As transformers currently produce state of the art results
on natural language processing tasks, we hypothesise transformer
models will be able to perform well on feature type inference be-
cause of their ability to generate contexualized word embeddings.
This means that embeddings will be encoded with relevant infor-
mation from other words in the same sequence. We believe these
models will be able to better leverage the column names and sample
values in context to each other.

In this project we specifically experimented with the Bidirec-
tional Encoding and Representation Transformer(BERT)[1] model
pretrained by Google to generate embeddings.

To preprocess the column names and samples values we con-
catenated them and used separation([SEP]) tokens between them.
These single strings are then tokenized using the HuggingFace
transformers library. Our original model architecture can be seen
in Figure 2. BERT receives the text and then outputs a sequence of
embeddings of size 768.

We then use a convolution neural network architecture to pro-
cess BERT’s embeddings. This is inspired from a paper that uses
BERT with a CNN for offensive speech classification[3]. In this
original model, the sequence of embeddings is fed into 5 separate
convolution layers that are processed with pooling and activation
functions in parallel. The intuition behind this operation is that
the different convolution filter dimensions can analyze different
types of ngrams present in our data. Theoretically this model is able
analyze individual words, bigrams, trigams, and more. The output
of these operations are then concatenated and flattened. This con-
volution output is then concatenated with the descriptive statistics
and fed into a softmax dense layer to output a classification.

Figure 2: Diagram of transformer and full CNN architecture

2.3 Architecture Experiments
This architecture has components that can be adjusted so we de-
cided to run a series of experiments to identify the best combination
of convolution blocks and kernel size our CNN can use for this task.

We first decided to run an ablation experiment where we remove
individual convolution blocks and then observe the difference in
accuracy from our original model using all 5 convolution blocks.
From table 6, we observe that the best performing combination of
convolution blocks is [1, 2, 3, 5]. Once we identified this we also ran
an additional ablation shown in table 7 to see if we could increase
accuracy any further from removing certain blocks but we did not
observe any further improvements.

In addition to identifying the best architecture of convolution
blocks for our model, these experiments have been helpful in identi-
fying which filter dimensions perform best on our data. From table



Feature Type Inference Capstone Tech Report

Table 8: Accuracies of the BERT transformer model with varying kernel sizes for the CNN. All these models use the best 4
filters reported in Table 6.

Kernel Size 64 128 256 384 512

Valid Accuracy 0.923 0.929 0.931 0.929 0.930
Test Accuracy 0.928 0.930 0.934 0.930 0.933

Table 9: 9 class accuracies of our best model architecture using different feature sets. These experiments were run using the
best BERT CNN model architecture found in Tables 6-8. The models with bolded accuracies are the ones we have selected for
release.

Feature Set 𝑋𝑛𝑎𝑚𝑒 𝑋𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑋𝑛𝑎𝑚𝑒 , 𝑋𝑠𝑡𝑎𝑡𝑠 𝑋𝑠𝑎𝑚𝑝𝑙𝑒𝑠 , 𝑋𝑠𝑡𝑎𝑡𝑠 𝑋𝑛𝑎𝑚𝑒 , 𝑋𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑋𝑛𝑎𝑚𝑒 , 𝑋𝑠𝑎𝑚𝑝𝑙𝑒𝑠 , 𝑋𝑠𝑡𝑎𝑡𝑠

Validation Accuracy 0.815 0.866 0.837 0.878 0.925 0.928
Testing Accuracy 0.813 0.858 0.841 0.871 0.929 0.934

6, we could observe that removing filters 1 & 3 decreased model per-
formance where as every other filter’s removal increased accuracy.
This suggests that our model finds the most value from analyzing
individual words and trigrams. Alongside these experiments and a
grid search of kernel sizes we determine that our best architecture
documented in figure 3 uses the combination of blocks [1, 2, 3, 5]
and a kernel size of 256 for all convolution blocks. The accuracy,
precision, and recall of our best model’s predictions on individual
data types are documented in Table 11 located in the appendix.

Figure 3: Diagram of transformer and best CNN architecture

2.4 Feature Set Experiment
To analyze the importance of different feature sets, we decided to
run an ablation experiment for different combinations of feature
sets these models are trained on. We could not run an experiment
only using descriptive statistics as this would not use a transformer
model in our architecture, so every other combination’s results are
documented in Table 9

We can observe in these results that BERT is better at analyz-
ing the textual features than any of the models from the original
SortingHat paper[4]. The sample values are suggested here to be
the single most important feature for our model. This supports
our hypothesis by suggesting that BERT is effectively leveraging
sample values with the context of each other. Our best model from
this experiment is still the one using all of our features, however
unlike the results from original SortingHat paper, the accuracy
improvement of using the descriptive statistics is very small. In fact
our model that only uses column names and sample values still
outperforms the previous best random forest model; this also scales
better as it does not require a full pass through the data to generate
descriptive statistics.



Tanveer Mittal and Andrew Shen

3 CONCLUSION
From the experiments on the Random Forest model, we saw that
the addition/removal of sample values used as base features how
no significant impact on both the model accuracy and runtimes.
What did have a impact on the model was the use of data subsets
when calculating the descriptive statistics. As we took smaller and
smaller subsets from the data to calculate the descriptive statistics,
we saw runtime decrease linearly, but model accuracy drop as well
which was expected but good to verify and allows us to further
experiment with finding ways to balance the two in the future.

We can also see that transformer models are very effective at
Feature Type Inference. Our models now outperform all existing
tools and models benchmarked against the ML Data Prep Zoo. Fur-
thermore we can see there is great potential in applying more state
of the art natural language processing techniques to this task to
increase performance and rely less on descriptive statistics to pro-
duce scalable models. As a result, we decided to release 2 models;
our best model that uses descriptive statistics and our model that
does not use descriptive statistics. These models are now available
for easy use through the PyTorch Hub API to allow for easy inte-
gration of our models into AutoML platforms or other applications
of automated data preparation.

This project produced promising results but with the limited time
span of the . Further work in this area can involve experimenting
with more CNN architectures than the one we defined and trying
other state of the art language models which are trained on more
data such as RoBERTa[2], XLNet[5] or others.

REFERENCES
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.
(October 2018). https://arxiv.org/abs/1810.04805

[2] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. International Committee for
Computational Linguistics (July 2019). https://arxiv.org/abs/1907.11692

[3] Ali Safaya, Moutasem Abdullatif, and Deniz Yuret. 2020. KUISAIL at SemEval-
2020 Task 12: BERT-CNN for Offensive Speech Identification in Social Media.
International Committee for Computational Linguistics (2020). https://aclanthology.
org/2020.semeval-1.271.pdf

[4] Vraj Shah, Jonathan Lacanlale, Premanand Kumar, Kevin Yang, and Arun Kumar.
2021. Towards Benchmarking Feature Type Inference for AutoML Platforms.
ACM SIGMOD 2021 (June 2021). https://adalabucsd.github.io/papers/TR_2021_
SortingHat.pdf

[5] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and
Quoc V. Le. 2019. XLNet: Generalized Autoregressive Pretraining for Language
Understanding. (June 2019). https://arxiv.org/abs/1906.08237

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1907.11692
https://aclanthology.org/2020.semeval-1.271.pdf
https://aclanthology.org/2020.semeval-1.271.pdf
https://adalabucsd.github.io/papers/TR_2021_SortingHat.pdf
https://adalabucsd.github.io/papers/TR_2021_SortingHat.pdf
https://arxiv.org/abs/1906.08237


Feature Type Inference Capstone Tech Report

4 APPENDIX

Table 10: Label Vocabulary

Label Description

Numeric quantitative values that can used di-
rectly as Numeric features

Categorical nominal (un-ordered) and ordinal (or-
dered) qualitative values that can be
used directly as Categorical features

Datetime values that contain a date or timestamps

Sentence text from which numeric, categorical,
or semantic meaning can be extracted
from

URL text which follows the URL format

Embedded Number ’unclean’ data from which a numeric or
categorical value can be extracted from

List a list of values separated by a delimiter

Not-Generalizable values with no useful information or
unusable as a feature

Context-Specific any values that require human interven-
tion either to determine their feature
types



Tanveer Mittal and Andrew Shen

Table 11: Class specific Accuracy, Precision, and Recall on testing data of our best BERT CNN model.

Data Type numeric categorical datetime sentence url embedded-number list not-generalizable context-specific

Accuracy 0.983 0.972 1.0 0.986 0.999 0.997 0.994 0.968 0.967
Precision 0.959 0.935 1.0 0.849 0.969 0.989 0.960 0.848 0.870

Recall 0.996 0.943 1.0 0.859 0.969 0.949 0.842 0.856 0.762

Table 12: Random Forest Accuracy, Precision, Recall, and F1-Score Across all 9 Classes Using Different Amount of Sample
Values in the Base Features

Number of Sample Values
in the Base Features

1 2 3 4 5 10

Feature Type Metric

numeric accuracy 0.97 0.97 0.97 0.97 0.97 0.97
precision 0.94 0.94 0.94 0.94 0.94 0.93
recall 0.99 0.99 0.99 0.99 0.99 0.99
f1-score 0.96 0.96 0.96 0.96 0.96 0.96

categorical accuracy 0.97 0.97 0.97 0.97 0.97 0.97
precision 0.91 0.91 0.91 0.91 0.91 0.91
recall 0.95 0.95 0.95 0.95 0.95 0.95
f1-score 0.93 0.93 0.93 0.93 0.93 0.93

datetime accuracy 1.00 1.00 1.00 1.00 1.00 1.00
precision 0.99 0.99 0.99 0.99 0.99 0.99
recall 0.97 0.97 0.97 0.97 0.97 0.97
f1-score 0.98 0.98 0.98 0.98 0.98 0.98

sentence accuracy 0.99 0.99 0.99 0.99 0.99 0.99
precision 0.88 0.88 0.88 0.88 0.88 0.88
recall 0.89 0.89 0.89 0.89 0.89 0.90
f1-score 0.89 0.89 0.89 0.89 0.89 0.89

url accuracy 1.00 1.00 1.00 1.00 1.00 1.00
precision 1.00 1.00 1.00 1.00 1.00 1.00
recall 0.97 0.97 0.97 0.97 0.97 0.97
f1-score 0.98 0.98 0.98 0.98 0.98 0.98

embedded-number accuracy 0.99 0.99 0.99 0.99 0.99 0.99
precision 0.92 0.92 0.92 0.92 0.92 0.92
recall 0.92 0.92 0.92 0.92 0.92 0.93
f1-score 0.92 0.92 0.92 0.92 0.92 0.92

list accuracy 0.99 0.99 0.99 0.99 0.99 0.99
precision 1.00 1.00 1.00 1.00 1.00 1.00
recall 0.75 0.75 0.75 0.75 0.75 0.75
f1-score 0.86 0.86 0.86 0.86 0.86 0.86

not-generalizable accuracy 0.98 0.98 0.98 0.98 0.98 0.98
precision 0.95 0.95 0.95 0.95 0.95 0.94
recall 0.90 0.90 0.90 0.90 0.90 0.90
f1-score 0.92 0.92 0.92 0.92 0.92 0.92

context-specific accuracy 0.96 0.96 0.96 0.96 0.96 0.96
precision 0.86 0.86 0.86 0.86 0.86 0.86
recall 0.71 0.71 0.71 0.71 0.71 0.69
f1-score 0.78 0.78 0.78 0.78 0.78 0.77



Feature Type Inference Capstone Tech Report

Table 13: Random Forest Model Runtime (Seconds) with Varying Amounts of Sample Values Used in the Base Feature Set

Number of Sample Values in the Base Features 1 2 3 4 5 10
Iteration
1 526 524 524 524 525 529
2 525 525 524 525 523 530
3 525 525 525 524 525 530

Table 14: Confusion Matrix for Random Forest Model with Descriptive Statistics Calculated Using a 10% Subset of the Data
Column

numeric categorical datetime sentence url embedded-number list not-generalizable context-specific

numeric 691 2 0 0 0 0 0 6 8
categorical 15 407 0 5 0 4 0 18 7
datetime 0 1 128 0 0 2 0 0 0
sentence 0 8 0 74 0 0 0 2 2
url 0 1 1 0 26 0 1 3 0
embedded-number 0 9 1 0 0 70 0 0 1
list 0 4 0 1 0 3 5 1 4
not-generalizable 5 41 1 1 0 0 0 156 4
context-specific 30 17 0 2 0 0 0 6 130

Table 15: Confusion Matrix for Random Forest Model with Descriptive Statistics Calculated Using a 50% Subset of the Data
Column

numeric categorical datetime sentence url embedded-number list not-generalizable context-specific

numeric 695 3 1 0 0 0 0 2 6
categorical 18 410 0 6 0 1 0 16 5
datetime 1 2 137 0 0 0 0 0 1
sentence 0 5 0 78 0 1 0 4 2
url 0 0 0 0 30 0 1 1 0
embedded-number 0 8 1 0 0 71 0 0 2
list 0 4 0 3 0 4 4 1 3
not-generalizable 4 31 0 1 0 1 0 170 5
context-specific 38 14 0 2 0 0 0 6 125

Table 16: Confusion Matrix for Random Forest Model with Descriptive Statistics Calculated Using a 90% Subset of the Data
Column

numeric categorical datetime sentence url embedded-number list not-generalizable context-specific

numeric 695 2 0 0 0 0 0 2 8
categorical 15 417 0 3 0 0 0 15 6
datetime 1 3 136 0 0 1 0 0 0
sentence 0 5 0 78 0 0 0 5 2
url 0 1 0 0 30 0 0 1 0
embedded-number 0 7 1 0 0 72 0 0 2
list 0 3 0 2 0 4 6 1 3
not-generalizable 4 32 2 1 0 1 0 168 4
context-specific 32 13 0 2 0 0 0 4 134



Tanveer Mittal and Andrew Shen

Table 17: Runtime (Seconds) of Benchmark-Labeled-Data
Generation on the Test Set

Proportion of Data Column Used to Calculate Descriptive Statistics 90% 80% 70% 60% 50% 40% 30% 20% 10%
Iteration
1 261 247 241 237 230 222 215 209 207
2 257 247 241 235 229 222 216 211 205
3 257 251 243 236 231 222 217 212 203


	1 Introduction
	1.1 Previous Work

	2 Methods
	2.1 Random Forest Investigation
	2.2 Transformer Models
	2.3 Architecture Experiments
	2.4 Feature Set Experiment

	3 Conclusion
	References
	4 Appendix

