{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Large-scale simulations with tensor network simulator\n\nIn this example, we demonstrate simulation of MBQC involving 10k+ nodes.\n\nYou can also run this code on your browser with [mybinder.org](https://mybinder.org/) - click the badge below.\n\n<img src=\"https://mybinder.org/badge_logo.svg\" target=\"https://mybinder.org/v2/gh/TeamGraphix/graphix-examples/HEAD?labpath=qft_with_tn.ipynb\">\n\nFirstly, let us import relevant modules and define the circuit:\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n\nfrom graphix import Circuit\n\n\ndef cp(circuit, theta, control, target):\n circuit.rz(control, theta / 2)\n circuit.rz(target, theta / 2)\n circuit.cnot(control, target)\n circuit.rz(target, -1 * theta / 2)\n circuit.cnot(control, target)\n\n\ndef qft_rotations(circuit, n):\n circuit.h(n)\n for qubit in range(n + 1, circuit.width):\n cp(circuit, np.pi / 2 ** (qubit - n), qubit, n)\n\n\ndef swap_registers(circuit, n):\n for qubit in range(n // 2):\n circuit.swap(qubit, n - qubit - 1)\n return circuit\n\n\ndef qft(circuit, n):\n for i in range(n):\n qft_rotations(circuit, i)\n swap_registers(circuit, n)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will simulate 55-qubit QFT, which requires graph states with more than 10000 nodes.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "n = 55\nprint(\"{}-qubit QFT\".format(n))\ncircuit = Circuit(n)\n\nfor i in range(n):\n circuit.h(i)\nqft(circuit, n)\n\n# standardize pattern\npattern = circuit.transpile(opt=True).pattern\npattern.standardize()\npattern.shift_signals()\nnodes, edges = pattern.get_graph()\nprint(f\"Number of nodes: {len(nodes)}\")\nprint(f\"Number of edges: {len(edges)}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using efficient graph state simulator `graphix.GraphSim`, we can classically preprocess Pauli measurements.\nWe are currently improving the speed of this process by using rust-based graph manipulation backend.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "pattern.perform_pauli_measurements(use_rustworkx=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To specify TN backend of the simulation, simply provide as a keyword argument.\nhere we do a very basic check that one of the statevector amplitudes is what it is expected to be:\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import time # noqa: E402\n\nt1 = time.time()\ntn = pattern.simulate_pattern(backend=\"tensornetwork\")\nvalue = tn.get_basis_amplitude(0)\nt2 = time.time()\nprint(\"amplitude of |00...0> is \", value)\nprint(\"1/2^n (true answer) is\", 1 / 2**n)\nprint(\"approximate execution time in seconds: \", t2 - t1)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.13" } }, "nbformat": 4, "nbformat_minor": 0 }