$NOMOD51 NOLINES $NOCOND ;------------------------------------------------------------------------------ ; This file is part of the LX51 Banked Linker/Locater package ; Copyright (c) 1988 - 2002 Keil Elektronik GmbH and Keil Software, Inc. ; Version 0.02 (Code and Variable Banking for Mentor M8051EW based devices) ;------------------------------------------------------------------------------ ; ; This file implements code and variable banking for Mentor M8051EW based ; devices, which offer three memory extension registers MEX1, MEX2 and MEX3. ; *** Important Notes *** ; ; 1. Full support for Mentor M8051EW based devices requires the LX51 linker/ ; locater. This file does not work with the BL51 linker/locater. ; ; 2. The C51 Compiler must be invoked with the directive VARBANKING(1) ; in order to use this file. It is unimportant if you are using ; variable banking (far memory type) in your application. ; ; 3. This file contains also the CPU startup code ; ; 4. You need to use the C51 run-time library files C51M*.LIB. ; ;************************ Configuration Section ******************************* ?B_NBANKS EQU 4 ; Define maximum Number of Banks * ; ; following values are allowed: 2 .. 16 * ; * ?B_CB EQU 3 ; Define Memory Bank used for constants * ; ; following values are allowed: 0 .. 7 * ; ; The value 0xFF uses the current program code bank * ; ; as constant bank * ; * ?B_VAR_BANKING EQU 0 ; XDATA Variable Banking (far memory type support) * ; ; 0 XDATA Variable Banking no required * ; ; 1 XDATA Variable Banking uses this L51IBANK.A51 * ; ; module * ; Notes: ?B_VAR_BANKING uses the C51 'far' memory type to extent the space * ; for variables in RAM space of the M8051EW device. * ; * ;****************************************************************************** ;------------------------- CPU STARTUP CONFIGURATION -------------------------- ; ; User-defined Power-On Initialization of Memory ; ; With the following EQU statements the initialization of memory ; at processor reset can be defined: ; ; ; the absolute start-address of IDATA memory is always 0 IDATALEN EQU 80H ; the length of IDATA memory in bytes. ; XDATASTART EQU 0H ; the absolute start-address of XDATA memory XDATALEN EQU 0H ; the length of XDATA memory in bytes. ; PDATASTART EQU 0H ; the absolute start-address of PDATA memory PDATALEN EQU 0H ; the length of PDATA memory in bytes. ; ; Notes: The IDATA space overlaps physically the DATA and BIT areas of the ; 8051 CPU. At minimum the memory space occupied from the C51 ; run-time routines must be set to zero. ;------------------------------------------------------------------------------ ; ; Reentrant Stack Initilization ; ; The following EQU statements define the stack pointer for reentrant ; functions and initialized it: ; ; Stack Space for reentrant functions in the SMALL model. IBPSTACK EQU 0 ; set to 1 if small reentrant is used. IBPSTACKTOP EQU 0FFH+1 ; set top of stack to highest location+1. ; ; Stack Space for reentrant functions in the LARGE model. XBPSTACK EQU 0 ; set to 1 if large reentrant is used. XBPSTACKTOP EQU 0FFFFH+1; set top of stack to highest location+1. ; ; Stack Space for reentrant functions in the COMPACT model. PBPSTACK EQU 0 ; set to 1 if compact reentrant is used. PBPSTACKTOP EQU 0FFFFH+1; set top of stack to highest location+1. ; ;------------------------------------------------------------------------------ ; ; Page Definition for Using the Compact Model with 64 KByte xdata RAM ; ; The following EQU statements define the xdata page used for pdata ; variables. The EQU PPAGE must conform with the PPAGE control used ; in the linker invocation. ; PPAGEENABLE EQU 0 ; set to 1 if pdata object are used. ; PPAGE EQU 0 ; define PPAGE number. ; PPAGE_SFR DATA 0A0H ; SFR that supplies uppermost address byte ; (most 8051 variants use P2 as uppermost address byte) ; ;------------------------------------------------------------------------------ NAME ?BANK?SWITCHING ;****************************************************************************** ; * ; THEORY OF OPERATION * ; ------------------- * ; The section below describes the code generated by LX51. LX51 generates for * ; each function that is located in a code memory bank and called from the * ; common area or a different code bank and entry into the INTRABANK CALL * ; TABLE. The INTRABANK CALL TABLE is located in the SEGMENT ?BANK?SELECT and * ; listed in the Linker MAP file. The entries in that TABLE have the following * ; format: * ; * ; ?FCT?1: MOV MEX1,#n ; Load bank number of target FCT * ; LJMP FCT ; Jump to Target Code * ; * ; Instead of directly calling the function FCT, the Linker changes the entry * ; to ?FCT?1. This entry selects the bank where the function FCT is located * ; and jumps to that function. * ;****************************************************************************** ; Standard SFR Symbols ACC DATA 0E0H B DATA 0F0H SP DATA 81H DPL DATA 82H DPH DATA 83H ; Definitions for Mentor Memory Extension Hardware MEX1 DATA 94H MEX2 DATA 95H MEX3 DATA 96H MEXSP DATA 97H ?B_MODE EQU 8 ; 8 for Mentor EW8051 integrated MEX Banking ?B_RST_BANK EQU 0 ; active code bank after CPU reset ?B_IB EQU 0 ; use Bank 0 for Interrupt Functions ?B_CURRENTBANK EQU MEX1 ; MEX1.4 .. 7 hold current code bank ?B_FACTOR EQU 4 ; ?B_CURRENTBANK shift factor ?B_MASK EQU 0F0H ; valid bits in ?B_CURRENTBANK ?B_MEX1 EQU MEX1 ; address of next bank register PUBLIC ?B_NBANKS, ?B_MODE PUBLIC ?B_CURRENTBANK PUBLIC ?B_FACTOR, ?B_RST_BANK PUBLIC ?B_IB, ?B_CB, ?B_MEX1 ?C_C51STARTUP SEGMENT CODE ?STACK SEGMENT IDATA RSEG ?STACK DS 1 EXTRN CODE (?C_START) PUBLIC ?C_STARTUP CSEG AT 0 ?C_STARTUP: LJMP STARTUP1 RSEG ?C_C51STARTUP STARTUP1: IF IDATALEN <> 0 MOV R0,#IDATALEN - 1 CLR A IDATALOOP: MOV @R0,A DJNZ R0,IDATALOOP ENDIF IF XDATALEN <> 0 MOV DPTR,#XDATASTART MOV R7,#LOW (XDATALEN) IF (LOW (XDATALEN)) <> 0 MOV R6,#(HIGH (XDATALEN)) +1 ELSE MOV R6,#HIGH (XDATALEN) ENDIF CLR A XDATALOOP: MOVX @DPTR,A INC DPTR DJNZ R7,XDATALOOP DJNZ R6,XDATALOOP ENDIF IF PPAGEENABLE <> 0 MOV PPAGE_SFR,#PPAGE ENDIF IF PDATALEN <> 0 MOV R0,#LOW (PDATASTART) MOV R7,#LOW (PDATALEN) CLR A PDATALOOP: MOVX @R0,A INC R0 DJNZ R7,PDATALOOP ENDIF IF IBPSTACK <> 0 EXTRN DATA (?C_IBP) MOV ?C_IBP,#LOW IBPSTACKTOP ENDIF IF XBPSTACK <> 0 EXTRN DATA (?C_XBP) MOV ?C_XBP,#HIGH XBPSTACKTOP MOV ?C_XBP+1,#LOW XBPSTACKTOP ENDIF IF PBPSTACK <> 0 EXTRN DATA (?C_PBP) MOV ?C_PBP,#LOW PBPSTACKTOP ENDIF MOV SP,#?STACK-1 ; Configure Memory Extension Registers MEX2VAL SET 0 IF ?B_CB <> 0xFF MEX2VAL SET ((?B_CB AND 7) SHL 4) OR 80H ENDIF MEX2VAL SET MEX2VAL OR ?B_IB MOV MEX2,#MEX2VAL MOV MEXSP,#7FH ; set to bottom of stack LJMP ?C_START IF ?B_VAR_BANKING <> 0 ;----- XDATA Variable Banking ;****************************************************************************** ; * ; THEORY OF OPERATION * ; ------------------- * ; This section describes how the extended LX51 linker/locater manages the * ; extended address spaces that are addressed with the new C51 memory types * ; 'far' and 'far const'. The C51 Compiler uses 3 byte pointer generic * ; pointer to access these memory areas. 'far' variables are placed in the * ; memory class HDATA and 'far const' variables get the memory class 'HCONST'. * ; The LX51 linker/locater allows you to locate these memory classes in the * ; logical 16 MBYTE CODE or 16 MBYTE XDATA spaces. * ; * ; The memory access itself is performed via eight different subroutines that * ; can be configured in this assembler module. These routines are: * ; ?C?CLDXPTR, ?C?CSTXPTR ; load/store BYTE (char) in extended memory * ; ?C?ILDXPTR, ?C?ISTXPTR ; load/store WORD (int) in extended memory * ; ?C?PLDXPTR, ?C?PSTXPTR ; load/store 3-BYTE PTR in extended memory * ; ?C?LLDXPTR, ?C?LSTXPTR ; load/store DWORD (long) in extended memory * ; * ; Each function gets as a parameter the memory address with 3 BYTE POINTER * ; representation in the CPU registers R1/R2/R3. The register R3 holds the * ; memory type. The C51 compiler uses the following memory types: * ; * ; R3 Value | Memory Type | Memory Class | Address Range * ; -----------------------+--------------+-------------------------- * ; 00 | data/idata | DATA/IDATA | I:0x00 .. I:0xFF * ; 01 | xdata | XDATA | X:0x0000 .. X:0xFFFF * ; 02..7F | far | HDATA | X:0x010000 .. X:0x7E0000 * ; 80..FD | far const | HCONST | C:0x800000 .. C:0xFD0000 (see note) * ; FE | pdata | XDATA | one 256-byte page in XDATA memory * ; FF | code | CODE | C:0x0000 .. C:0xFFFF * ; * ; Note: the far const memory area is mapped into the banked memory areas. * ; * ; The R3 values 00, 01, FE and FF are already handled within the C51 run-time * ; library. Only the values 02..FE are passed to the XPTR access functions * ; described below. The AX51 macro assembler provides the MBYTE operator * ; that calculates the R3 value that needs to be passed to the XPTR access * ; function. AX51 Assembler example for using XPTR access functions: * ; MOV R1,#LOW (variable) ; gives LSB address byte of variable * ; MOV R1,#HIGH (variable) ; gives MSB address byte of variable * ; MOV R1,#MBYTE (variable) ; gives memory type byte of variable * ; CALL ?C?CLDXPTR ; load BYTE variable into A * ;****************************************************************************** ?C?XPAGE1SFR EQU MEX3 ?C?XPAGE1RST EQU 0 PUBLIC ?C?XPAGE1SFR, ?C?XPAGE1RST PUBLIC ?C?CLDXPTR, ?C?CSTXPTR, ?C?ILDXPTR, ?C?ISTXPTR PUBLIC ?C?PLDXPTR, ?C?PSTXPTR, ?C?LLDXPTR, ?C?LSTXPTR ?C?LIB_CODE SEGMENT CODE RSEG ?C?LIB_CODE LOAD_BANK MACRO LOCAL lab MOV DPL,R1 MOV DPH,R2 MOV ?C?XPAGE1SFR,R3 ANL ?C?XPAGE1SFR,#07FH CJNE R3,#80H,lab lab: ENDM B DATA 0F0H ; SFR Address DPL DATA 082H DPH DATA 083H ACC DATA 0E0H ; CLDXPTR: Load BYTE in A via Address given in R1/R2/R3 ?C?CLDXPTR: LOAD_BANK JNC CLDCODE DEC ?C?XPAGE1SFR MOVX A,@DPTR MOV ?C?XPAGE1SFR,#?C?XPAGE1RST ; Reset Page Register RET CLDCODE: CLR A MOVC A,@A+DPTR MOV ?C?XPAGE1SFR,#?C?XPAGE1RST ; Reset Page Register RET ; CSTXPTR: Store BYTE in A via Address given in R1/R2/R3 ?C?CSTXPTR: LOAD_BANK JNC CSTCODE DEC ?C?XPAGE1SFR MOVX @DPTR,A CSTCODE: MOV ?C?XPAGE1SFR,#?C?XPAGE1RST ; Reset Page Register RET ; ILDXPTR: Load WORD in A(LSB)/B(HSB) via Address given in R1/R2/R3 ?C?ILDXPTR: LOAD_BANK JNC ILDCODE DEC ?C?XPAGE1SFR MOVX A,@DPTR MOV B,A INC DPTR MOVX A,@DPTR MOV ?C?XPAGE1SFR,#?C?XPAGE1RST ; Reset Page Register RET ILDCODE: CLR A MOVC A,@A+DPTR MOV B,A MOV A,#1 MOVC A,@A+DPTR MOV ?C?XPAGE1SFR,#?C?XPAGE1RST ; Reset Page Register RET ; ISTXPTR: Store WORD in A(HSB)/B(LSB) via Address given in R1/R2/R3 ?C?ISTXPTR: LOAD_BANK JNC ISTCODE DEC ?C?XPAGE1SFR MOVX @DPTR,A INC DPTR MOV A,B MOVX @DPTR,A ISTCODE: MOV ?C?XPAGE1SFR,#?C?XPAGE1RST ; Reset Page Register RET ; PLDXPTR: Load PTR in R1/R2/R3 via Address given in R1/R2/R3 ?C?PLDXPTR: LOAD_BANK JNC PLDCODE DEC ?C?XPAGE1SFR MOVX A,@DPTR MOV R3,A INC DPTR MOVX A,@DPTR MOV R2,A INC DPTR MOVX A,@DPTR MOV R1,A MOV ?C?XPAGE1SFR,#?C?XPAGE1RST ; Reset Page Register RET PLDCODE: CLR A MOVC A,@A+DPTR MOV R3,A MOV A,#1 MOVC A,@A+DPTR MOV R2,A MOV A,#2 MOVC A,@A+DPTR MOV R1,A MOV ?C?XPAGE1SFR,#?C?XPAGE1RST ; Reset Page Register RET ; PSTXPTR: Store PTR in R0/A/B via Address given in R1/R2/R3 ?C?PSTXPTR: LOAD_BANK JNC PSTCODE DEC ?C?XPAGE1SFR XCH A,B MOVX @DPTR,A INC DPTR XCH A,B MOVX @DPTR,A INC DPTR MOV A,R0 MOVX @DPTR,A PSTCODE: MOV ?C?XPAGE1SFR,#?C?XPAGE1RST ; Reset Page Register RET ; LLDXPTR: Load DWORD in R4/R5/R6/R7 via Address given in R1/R2/R3 ?C?LLDXPTR: LOAD_BANK JNC LLDCODE DEC ?C?XPAGE1SFR MOVX A,@DPTR MOV R4,A INC DPTR MOVX A,@DPTR MOV R5,A INC DPTR MOVX A,@DPTR MOV R6,A INC DPTR MOVX A,@DPTR MOV R7,A MOV ?C?XPAGE1SFR,#?C?XPAGE1RST ; Reset Page Register RET LLDCODE: CLR A MOVC A,@A+DPTR MOV R4,A MOV A,#1 MOVC A,@A+DPTR MOV R5,A MOV A,#2 MOVC A,@A+DPTR MOV R6,A MOV A,#3 MOVC A,@A+DPTR MOV R7,A MOV ?C?XPAGE1SFR,#?C?XPAGE1RST ; Reset Page Register RET ; LSTXPTR: Store DWORD in R4/R5/R6/R7 via Address given in R1/R2/R3 ?C?LSTXPTR: LOAD_BANK JNC LSTCODE DEC ?C?XPAGE1SFR MOV A,R4 MOVX @DPTR,A INC DPTR MOV A,R5 MOVX @DPTR,A INC DPTR MOV A,R6 MOVX @DPTR,A INC DPTR MOV A,R7 MOVX @DPTR,A LSTCODE: MOV ?C?XPAGE1SFR,#?C?XPAGE1RST ; Reset Page Register RET ENDIF ; IF ?B_VAR_BANKING <> 0 ----- XDATA Variable Banking END