$NOMOD51 ;------------------------------------------------------------------------------ ; This file is part of the RTX-51 TINY Real-Time Operating System Package ; Copyright KEIL ELEKTRONIK GmbH and Keil Software, Inc. 1991-2002 ; Version 2.01 ;------------------------------------------------------------------------------ ; CONF_TNY.A51: This code allows the configuration of the ; RTX-51 TINY Real-Time Operating System ; ; Copy this file to your project folder and add the copy to your uVision2 ; project. You can customize several parameters of RTX51 Tiny within this ; configuration file. ; ; If you use command line tools, translate this file with: ; ; Ax51 CONF_TNY.A51 ; ; If you use command line tools, link the modified CONF_TNY.OBJ file to ; your application with: ; ; Lx51 , CONF_TNY.OBJ ; ;------------------------------------------------------------------------------ ; ; RTX-51 TINY Hardware-Timer ; ========================== ; ; With the following EQU statements the initialization of the RTX-51 TINY ; Hardware-Timer can be defined (RTX-51 TINY uses the 8051 Timer 0 for ; controlling RTX-51 software timers). ; ; Define the register bank used for the timer interrupt. INT_REGBANK EQU 1 ; default is Registerbank 1 ; ; Define Hardware-Timer tick time in 8051 machine cycles. INT_CLOCK EQU 20000 ; default is 10000 cycles ; ; Define Round-Robin Timeout in Hardware-Timer ticks. TIMESHARING EQU 0 ; default is 5 Hardware-Timer ticks. ; ; 0 disables Round-Robin Task Switching ; ; Long User Interrupt Routines: set to 1 if your application contains ; user interrupt functions that may take longer than a hardware timer ; interval for execution. LONG_USR_INTR EQU 0 ; 0 user interrupts execute fast. ; ; 1 user interrupts take long execution times. ; ; ;------------------------------------------------------------------------------ ; ; USER CODE FOR 8051 HARDWARE TIMER INTERRUPT ; =========================================== ; ; The following macro defines the code executed on a hardware timer interrupt. ; ; Define instructions executed on a hardware timer interrupt. HW_TIMER_CODE MACRO ; Empty Macro by default RETI ENDM ; ; ;------------------------------------------------------------------------------ ; ; CODE BANKING SUPPORT ; ==================== ; ; The following EQU statement controls the code banking support for RTX51 TINY. ; ; Enable or disable code banking support CODE_BANKING EQU 1 ; 0 (default) application uses no code banking ; ; 1 application uses code banking ; ;------------------------------------------------------------------------------ ; ; RTX-51 TINY Stack Space ; ======================= ; ; The following EQU statements defines the size of the internal RAM used ; for stack area and the minimum free space on the stack. A macro defines ; the code executed when there is there is not enough free stack on the ; CPU stack. ; ; Define the highest RAM address used for CPU stack RAMTOP EQU 0FFH ; default is address (256-1) ; FREE_STACK EQU 20 ; default is 20 bytes free space on stack ; ; the value 0 disables stack checking ; STACK_ERROR MACRO CLR EA ; disable interrupts SJMP $ ; endless loop if stack space is exhausted ENDM ; ; ;------------------------------------------------------------------------------ ; ; 8051 CPU IDLE CODE ; ================== ; ; Many 8051 devices provide an IDLE MODE that reduces power consumption and ; EMC. The following macro defines the code executed when there is no ; ready task in the system. The code must set the CPU into an IDLE MODE ; that stops instruction execution until an 8051 hardware interrupt occurs. ; ; Disable or Enable CPU_IDLE CODE CPU_IDLE_CODE EQU 1 ; 0 CPU_IDLE MACRO is not inserted ; 1 CPU_IDLE MACRO is executed PCON DATA 087H ; Power Control SFR on most 8051 devices ; Stop CPU execution until hardware interrupt; executed when there is no ; active task in the system. CPU_IDLE MACRO ORL PCON,#1 ; set 8051 CPU to IDLE ENDM ; ; ;------------------------------------------------------------------------------ ;----------------- !!! End of User Configuration Part !!! ------------------ ;----------------- !!! Do not modify code sections below !!! ------------------ ;------------------------------------------------------------------------------ ; SFR Symbols PSW DATA 0D0H ACC DATA 0E0H B DATA 0F0H SP DATA 81H DPL DATA 82H DPH DATA 83H TCON DATA 88H TMOD DATA 89H TL0 DATA 8AH TL1 DATA 8BH TH0 DATA 8CH TH1 DATA 8DH IE DATA 0A8H ; TCON TF1 BIT 8FH TR1 BIT 8EH TF0 BIT 8DH TR0 BIT 8CH IE1 BIT 8BH IT1 BIT 8AH IE0 BIT 89H IT0 BIT 88H ; IE EA BIT 0AFH ES BIT 0ACH ET1 BIT 0ABH EX1 BIT 0AAH ET0 BIT 0A9H EX0 BIT 0A8H ; Check Configuration Values NAME ?RTX51_TINY_KERNAL PUBLIC ?RTX_CURRENTTASK PUBLIC ?RTX_RAMTOP PUBLIC os_switch_task PUBLIC ?RTX?SET_ISR EXTRN NUMBER (?RTX_MAXTASKN) ; max Task Number ?RTX_RAMTOP EQU RAMTOP ?RTX_CLOCK EQU -INT_CLOCK ?RTX_REGISTERBANK EQU INT_REGBANK * 8 DSEG AT ?RTX_REGISTERBANK DS 2 ; temporary space ?RTX_SAVEACC: DS 1 saveacc EQU R2 ; for access in interrupt service routine ?RTX_SAVEPSW: DS 1 savepsw EQU R3 ; for access in interrupt service routine ?RTX_CURRENTTASK: DS 1 currenttask EQU R4 ; for access in interrupt service routine IF (TIMESHARING <> 0) ?RTX_ROBINTIME: DS 1 robintime EQU R5 ; for access in interrupt service routine ENDIF IF (CODE_BANKING <> 0) EXTRN DATA (?B_CURRENTBANK) EXTRN CODE (?B_RESTORE_BANK) ENDIF ;------------------------------------------------ ; Table of Task Entry Pointers ;------------------------------------------------ PUBLIC ?RTX_TASKENTRY ?RTX?TASKENT?S SEGMENT CODE RSEG ?RTX?TASKENT?S ?RTX_TASKENTRY: DS 2 ;------------------------------------------------ ; Table of Stack Pointers for each task ;------------------------------------------------ PUBLIC ?RTX_TASKSP ?RTX?TASKSP?S SEGMENT IDATA RSEG ?RTX?TASKSP?S ?RTX_TASKSP: DS 1 ;------------------------------------------------ ; Table of Task Timer/State Pointers ;------------------------------------------------ PUBLIC ?RTX_TASKSTATUS ?RTX?TASKSTATE?S SEGMENT IDATA RSEG ?RTX?TASKSTATE?S ?RTX_TASKSTATUS: TimerVal: DS 1 ; Task Timer (Software Timer for each task) TaskState: DS 1 ; Task Status (state of each Task) ; Definitions for Bits in Task State ; TaskState.0 = Wait for Signal ; TaskState.1 = Wait for TimeOut ; TaskState.2 = Signal Flag ; TaskState.3 = TimeOut Flag ; TaskState.4 = Task Ready (Wait for Running) ; TaskState.5 = Task Active (enabled with os_create) ; TaskState.6 = Round Robin Time Out ; TaskState.7 = Run Flag ; byte mask definitions K_SIG EQU 1 K_TMO EQU 2 SIG_EVENT EQU 4 TMO_EVENT EQU 8 K_READY EQU 16 K_ACTIVE EQU 32 K_ROBIN EQU 64 K_IVL EQU 128 ; not a task state bit; only used in os_wait RDY_EVENT EQU 128 ; READY status flag K_RDY EQU 128 ; bit position definitions B_WAITSIG EQU 0 B_WAITTIM EQU 1 B_SIGNAL EQU 2 B_TIMEOUT EQU 3 B_READY EQU 4 B_ACTIVE EQU 5 B_ROBIN EQU 6 B_IVL EQU 7 ; not a task state bit; only used in os_wait B_RDY EQU 7 IF (TIMESHARING OR CPU_IDLE_CODE) ?RTX?BITS SEGMENT BIT RSEG ?RTX?BITS ENDIF IF (TIMESHARING) ?RTX_TS_DELAY: DBIT 1 ; Status bit set when task switch in progress ENDIF IF (CPU_IDLE_CODE) ?RTX_ISR_SIG: DBIT 1 ; Status bit set when interrupt or os_set_signal ENDIF CSEG AT 0BH JMP TIMERINT ?RTX?CODE SEGMENT CODE RSEG ?RTX?CODE USING 0 ; Registerbank 0 for following code IF (FREE_STACK <> 0) ?RTX_STACKERROR: STACK_ERROR ; User defined Stack Error Code ENDIF HW_TIMER: HW_TIMER_CODE TIMERINT: IF (LONG_USR_INTR) PUSH ACC MOV A,PSW ANL A,#018H XRL A,#?RTX_REGISTERBANK JNZ CONT_TIMINT ; avoid recursive timer interrupt POP ACC RETI ; Return from Recursive Timer Interrupt CONT_TIMINT: POP ACC ENDIF CALL HW_TIMER ; Enable Interrupts again. MOV ?RTX_SAVEPSW,PSW MOV PSW,#?RTX_REGISTERBANK MOV saveacc,A ; Update 8051 Interrupt Timer CLR TR0 MOV A,TL0 ADD A,#LOW (?RTX_CLOCK + 7) MOV TL0,A MOV A,TH0 ADDC A,#HIGH (?RTX_CLOCK + 7) MOV TH0,A SETB TR0 IF (FREE_STACK <> 0) ; Check if enough free stack is available MOV A,currenttask ADD A,#?RTX?TASKSP?S+1 MOV R0,A MOV A,@R0 CJNE currenttask,#?RTX_MAXTASKN,checkstack MOV A,#RAMTOP checkstack: CLR C SUBB A,SP CJNE A,#FREE_STACK,$+3 JC ?RTX_STACKERROR ENDIF ; Update & Check Task Timers MOV R1,#?RTX_MAXTASKN+1 MOV R0,#?RTX?TASKSTATE?S TIMERLOOP: DEC @R0 ; Decrement timer MOV A,@R0 INC R0 ; advance to TaskState JNZ NoTimeout CLR EA MOV A,@R0 JNB ACC.B_WAITTIM,NoWaitTimeout ORL A,#(K_READY+TMO_EVENT) MOV @R0,A NoWaitTimeout: SETB EA NoTimeout: INC R0 ; advance to TaskTimer DJNZ R1,TIMERLOOP MOV A,saveacc MOV PSW,savepsw USING 0 ; Registerbank 0 for following code IF (TIMESHARING == 0) ; Round Robin Task Switching not required. System Interrupt ends here ?RTX?SET_ISR: IF (CPU_IDLE_CODE) SETB ?RTX_ISR_SIG ENDIF RET ENDIF IF (TIMESHARING) ; Round Robin Task Switching required. Check if task generates timeout ; Check for Round Robin Timeout on the current task JNB ?RTX_TS_DELAY,CheckRobinTime NoRobinTimeout: ?RTX?SET_ISR: IF (CPU_IDLE_CODE) SETB ?RTX_ISR_SIG ENDIF RET CheckRobinTime: DJNZ ?RTX_ROBINTIME,NoRobinTimeout ?RTX_TASKSWITCHING: PUSH ACC PUSH PSW PUSH B PUSH DPH PUSH DPL PUSH AR0 PUSH AR1 PUSH AR2 PUSH AR3 PUSH AR4 PUSH AR5 PUSH AR6 PUSH AR7 IF (CODE_BANKING <> 0) PUSH ?B_CURRENTBANK ENDIF MOV A,?RTX_CURRENTTASK RL A ADD A,#?RTX?TASKSTATE?S+1 MOV R0,A MOV A,#K_ROBIN CLR EA ORL A,@R0 MOV @R0,A SETB EA IF (CODE_BANKING <> 0) SJMP os_switch_task1 ENDIF ENDIF ;------------------------------------------------ ; Perform a Task-Switch ; void os_switch_task (void) ; uchar i; ; uchar limit; ;---- Variable 'current' assigned to Register 'R6' ---- ;---- Variable 'next' assigned to Register 'R7' ---- ;---- Variable 'i' assigned to Register 'R0' ---- ;---- Variable 'limit' assigned to Register 'R5' ---- ; ;------------------------------------------------ os_switch_task: IF (CODE_BANKING <> 0) PUSH ?B_CURRENTBANK ENDIF os_switch_task1: ; next = current; IF (TIMESHARING <> 0) SETB ?RTX_TS_DELAY ; Delay Task Switching ENDIF MOV A,?RTX_CURRENTTASK MOV R7,A ; while (1) { RL A ADD A,#?RTX?TASKSTATE?S+1 MOV R0,A ?C0001: ; if (++next == MAXTASKN+1) next = 0; INC R7 INC R0 INC R0 IF (CPU_IDLE_CODE) MOV A,R7 CJNE A,?RTX_CURRENTTASK,NoIDLE JBC ?RTX_ISR_SIG,NoIDLE CPU_IDLE ; CPU sleep NoIDLE: ENDIF CJNE R7,#?RTX_MAXTASKN+1,?C0003 MOV R7,#0 MOV R0,#?RTX?TASKSTATE?S+1 ?C0003: ; if (STATE[next].st & K_READY) break; MOV A,@R0 JNB ACC.B_READY,?C0001 ; } ; PUBLIC ?RTX_NEXTID PUBLIC ?RTX_NEXTTASK ?RTX_NEXTID EQU AR7 ?RTX_NEXTTASK: NOP ; for Debugging ; while (current < next) { ?C0005: MOV A,?RTX_CURRENTTASK CLR C SUBB A,R7 JNC ?C0011 ; current++; INC ?RTX_CURRENTTASK ; i = STKP[current]; MOV A,#?RTX?TASKSP?S ADD A,?RTX_CURRENTTASK MOV R0,A MOV A,@R0 MOV R5,A ; STKP[current] = SP; MOV @R0,SP ; if (current == MAXTASKN) limit = RAMTOP; INC R0 MOV A,@R0 MOV R6,?RTX_CURRENTTASK CJNE R6,#?RTX_MAXTASKN,?C0007 MOV A,#RAMTOP ?C0007: XCH A,R5 MOV R0,A ; else limit = STKP[current+1]; ; ; while (i != limit) { ?C0009: MOV A,R0 XRL A,R5 JZ ?C0005 ; SP++; ; i++; ; STACK[SP] = STACK[i]; INC R0 MOV A,@R0 PUSH ACC SJMP ?C0009 ; } ; } ?C0011: ; ; while (current > next) { MOV A,?RTX_CURRENTTASK SETB C SUBB A,R7 JC ?C0012 MOV A,?RTX_CURRENTTASK ADD A,#?RTX?TASKSP?S+1 MOV R0,A MOV A,@R0 ; if (current == (MAXTASKN)) i = RAMTOP; ; else i = STKP[current+1]; MOV R6,?RTX_CURRENTTASK CJNE R6,#?RTX_MAXTASKN,?C0013 MOV A,#RAMTOP ?C0013: MOV R5,A ; limit = STKP[current]; DEC R0 MOV A,@R0 XCH A,R5 MOV R0,A ; ; while (SP != limit) { ?C0015: MOV A,SP XRL A,R5 JZ ?C0016 ; STACK[i] = STACK[SP]; ; i--; ; SP--; POP ACC MOV @R0,A DEC R0 SJMP ?C0015 ?C0016: ; } ; STKP[current] = i; MOV A,?RTX_CURRENTTASK ADD A,#?RTX?TASKSP?S XCH A,R0 MOV @R0,A ; current--; DEC ?RTX_CURRENTTASK SJMP ?C0011 ?C0012: ; } ; RoundRobinTime = ?RTX_TIMESHARING IF (TIMESHARING) MOV ?RTX_ROBINTIME,#TIMESHARING ENDIF ; if (STATE[current].st & K_ROBIN) goto RobinOn; MOV A,?RTX_CURRENTTASK RL A ADD A,#?RTX?TASKSTATE?S+1 MOV R0,A MOV R7,#SIG_EVENT CLR EA MOV A,@R0 IF (TIMESHARING) JBC ACC.B_ROBIN,RobinOn ENDIF ; if ((STATE[current].st & K_SIG) && (STATE[current].st & SIG_EVENT) ; goto SignalOn; JNB ACC.B_WAITSIG,SignalOff JBC ACC.B_SIGNAL,SignalOn SignalOff: ; if ((STATE[current].st & K_TMO) && (STATE[current].st & TMO_EVENT) ; goto TimeOutOn; MOV R7,#0 ; No Event JNB ACC.B_WAITTIM,NoEvent JNB ACC.B_TIMEOUT,NoEvent TimeOutOn: MOV R7,#TMO_EVENT ANL A,#0F4H SignalOn: NoEvent: CLR ACC.B_RDY ; Clear RDY bit XCH A,@R0 SETB EA ANL A,#K_RDY ORL AR7,A IF (TIMESHARING <> 0) IF (CODE_BANKING) POP ACC CALL ?B_RESTORE_BANK ENDIF CLR ?RTX_TS_DELAY RET ELSE IF (CODE_BANKING) POP ACC JMP ?B_RESTORE_BANK ENDIF RET ENDIF ;------------------------------------------------ IF (TIMESHARING <> 0) RobinOn: MOV @R0,A SETB EA IF (CODE_BANKING) POP ACC CALL ?B_RESTORE_BANK ENDIF POP AR7 POP AR6 POP AR5 POP AR4 POP AR3 POP AR2 POP AR1 POP AR0 POP DPL POP DPH POP B POP PSW POP ACC CLR ?RTX_TS_DELAY RET ; Restart Task ENDIF ; } ; } ;------------------------------------------------ ; Start RTX-51 Tiny Kernel ;------------------------------------------------ EXTRN CODE (?C_STARTUP) PUBLIC main main: MOV R0,#?RTX?TASKSP?S MOV @R0,SP MOV A,#?RTX_MAXTASKN JZ main2 MOV R7,A main1: INC R0 MOV @R0,#RAMTOP DJNZ R7,main1 main2: MOV R7,#?RTX_MAXTASKN+1 CLR A MOV R0,#?RTX?TASKSTATE?S main1x: MOV @R0,A INC R0 MOV @R0,A INC R0 DJNZ R7,main1x MOV R0,#?RTX?TASKSTATE?S+1 MOV @R0,#K_ACTIVE+K_READY MOV DPTR,#?RTX?TASKENT?S MOV A,#1 MOVC A,@A+DPTR PUSH ACC CLR A MOVC A,@A+DPTR PUSH ACC IF (TIMESHARING <> 0) MOV ?RTX_ROBINTIME,#TIMESHARING ENDIF ORL TMOD,#01H ; Timer 0 Mode 1 MOV TL0,#LOW (?RTX_CLOCK) MOV TH0,#HIGH (?RTX_CLOCK) SETB TR0 SETB EA SETB ET0 RET ; Start Task 0 ;------------------------------------------------ PUBLIC ?RTX_TASKIDX ?RTX_TASKIDX: DB ?RTX_MAXTASKN ; for Debugging END