return(function(...)local e,I,Y=table,string,bit local J,M,L,o,a,O,X,_,n,l,G=I.byte,I.char,I.sub,e.concat,e.insert,math.ldexp,getfenv and getfenv()or _ENV,setmetatable,select,unpack or e.unpack,tonumber;local Z=(function(Z)local I,a,H,K,J,l,G=1,function(H)local I=""for K=1,#H,1 do I=I..M(J(H,K)-(22))end return G(I,36)end,"","",{},256,{}for I=0,l-1 do G[I]=M(I)end;local function Y()local H=a(L(Z,I,I))I=I+1;local K=a(L(Z,I,I+H-1))I=I+H;return K end;H=M(Y())J[1]=H;while I<#Z do local I=Y()if G[I]then K=G[I]else K=H..L(H,1,1)end;G[l]=H..L(K,1,1)J[#J+1],H,l=K,K,l+1 end;return e.concat(J)end)("HJGHIjHIkHIkHIjHKFHMLHIkHLWHMHHMHHLoHLnHJmHJbHJbHLmHL`HMGHJaHLbHLXHMHHLWHMIHL]HMIHLnHLdHLmHL^HLZHLYHMHHLdHNFHJaHMoHL\\HJbHLcHLdHLXHMFHLXHLcHNKHLnHMpHLZHJbHK^HL]HLnHNYHLXHL`HLYHJbHL\\HL`HLXHNfHIjHIaHMWHL[HLZHL`HLcHLnHMHHLmHNjHLbHIjHIoHMWHLbHL`HL\\HLdHIjHInHMWHK[HMZHLoHKfHLdHMHHIjHIbHMWHK_HLXHL]HMaHLmHLhHJaHL[HMIHL`HIjHJZHMWHOFHLcHMpHLnHJbHLLHLWHLdHOYHK`HNeHL`HLbHMmHOmHOoHIjHJYHWHHLcHWJHLYHWLHLGHL`HMFHLdHWYHLYHW[HW]HOnHOpHLJHMWHMYHM[HM]HM_HMaHMcHMeHMgHMiHMkHMmHMoHNFHNHHMHHNJHLZHNLHLgHLLHLdHLgHMHHMIHLmHLdHLcHJbHLOHLXHOJHLZHMHHKJHKJHJdHLaHLZHLmHLOHM`HLdHLaHWLHWOHOFHWLHNhHNjHXjHXlHLXHXnHXpHW^HOpHKoHXGHO_HXJHM`HMbHMdHMfHMhHMjHMlHMnHMpHNGHNIHNKHWMHXcHLFHKaHK_HKkHJbHLFHLZHL]HNoHLgHJdHOHHMIHLaHLaHYLHYNHJbHYWHOGHNgHNiHNfHLYHLZHZWHLnHL\\HMkHMHHLcHLXHLdHJbHNGHOHHYaHO[HMWHK^HLoHMHHY^HWeH[KHMLHLLHLZHLbHLbHL[HLdHLnHIjHJXHMWHMlHMZHLWHXgHOFHNYHX\\HMfHLhHIjHJWH[dHObHMgH[hHNZHYoHXcHOcHIhHMWHKeHYIHL^HLdHKbHWOHL^HLOHL]HLZHLgHMLHIjHJIHMWHLGHLWHLZHMGH[[H[]H[_HKeHMaHOYHK\\HLYHKZHLdHLhHL]HNjHOGHIkHIlHNlHMWHK]HLZHL^HL[HLXHLoHLoHOKH]NHMLHZhH]YH][HK_HZiHLoHIiH[YHIkHKbHKeHLnHLoHLdHXhHIlHMWHMWHK\\HKcHIjHIdHMWHLJHLaHL[HLhHLGH]mH]oH^FHMLHKlH^IHO\\HMLH^NHLhHK`HLZHNNHIjHIcH^LHLdHNoHL^H[lHIjHImHMWH]jHNoHLZHLoH^fH^LH^aH]dH_GHIjHJ[H[dH^YHLcHKaHZiHOHHK`HMIHL[H[OHLoH]ZHMmH]pH^[H\\aHJNHMWHLXHLnH^XH]nH_YH_[HMHHKdHL^H[OHWiHOdHMWHXZHLYHLdH`FH[WH[aHNmHMLH_iHLMHLYHNoHOFHXhHIjH_gHMLHYIHLXHMeHWlHL[HLHHLmH_GHMmH[OH[`H`IHMLHL`HMZHL`H\\\\HKdHLYHLXHL\\H[aHJLHMWHLmHL]HLgHL`HLnH[eHNYHM^HJbHKMHKKHJpHKKHKNHJpHKJHKOHKXHJpHJoHKMHa`HJpHIjHaNHMLHaWHaYHa[HObHa]HM_Ha`HaaHKNHaaHKOHacHJpHKWHKLHaiHanHaOHaXHaZHa\\HLcHa^Ha`HKJHajHKOHJoHacHKKHKLHJoHKJHKKHJoHIjHJGHb^HbGHbaHa^HblHKNHcLHJpHKXHbhHakHJpHb\\HcFHapHb_HbHH[OHbbHM_HbgHKWHKKHKJHKLHbNHKWHcWHKWHKNHbpHcGHb`HbIHc`HJbHJoHKLHKWHakHbjHJpHKNHKLHKOHcLHckHc[HIkHbFHcnHc_Ha^HKOHKWHdLHcKHceHacHJoHKXHKWHb]Hc\\HcHHcoHbcHcXHceHJoHKOHafHbkHKXHKOHKMHdhHdZHc]HcIHbKHbnHdpHKLHKJHJpHa`HKMHdpHccHeKHd[Hc^HbJHa_HbjHahHcdHbnHJoHdeHJoHe_HaoHeLHdjHd]HbKHcfHdoHKMHKXHacHa`HKWHKJHdfHclHdiHd\\HecHbgHabHKXHKLHahHJoHbNHdGHeJHIgH^oH[hHNGHLKH]JH\\gHIjHIpHMWHLLHMfH[_H`nHIkHLJHKgHJmHJgHLFHLdHMGHOJHNGH^mH\\NHZiHNGHLmHW`HMWHMFHKMHJaHKKHJgHJdHJgHWYHNNHJgHL]HLhHJgHXbHLgHZJHZLH]_HIkH]WH[OHLaH^WH[jHfkHMWHLFH`dHMYH[nH\\dH\\fHMGHKbHZmHX_Hh\\HLmHN\\Hg\\HfdHMLH[eHOYHMHH`pHL`HZXHOZH^_HIkHKnHKnH]JHXcHIjHhcHMXHZiHLOHLaHMIHLYH`NHMpHhLHMLHLoHOJHNFHgFH`LHMGHL^H]YHLZHLnHXfHhkHMWHLHHL[HL`HLhHMmH`WHhMHiMHLGHMmHNXH\\XH_IHMLHOgHLbHMYH]^HOeHjIH]XHL`H`gHihHijHg\\H^KHMLHigHiiHMmHKfHMIHLXH[bHhMHLdH_aHLXHL^H`pHXhHLGHMHHYIHWmHiGHMWHLKHNiHMHH\\OHLmH\\ZHLXHL[HLcH]hHgLHL\\HXnH`mH[oHMLHLMHYmH\\oHLoHMIHMHHioHLmHjFHOZHj]H]iHLWHL`HMaH`FHMmHOMH\\NHjXHL[H^JHMWHK`H`MHkkHaJHL^H[aHkiHK[HLdHjXHKhHWiHi\\HhlHlYHjXH]^H`XHIkHLMHLoHLcHjkH_LHLOHkpHMLHKfHOXHOZHJOHMWHleHlgHNGH\\ZHklHaGHg[HliHjHHIkHKaH[hHLOHOaHLYHlIHllHNHHMmH`pHYIHIjH\\MHMLHmXHlZHmZHNHHl\\HX\\HiXHmWH]ZHLYHkWHflHMLHK\\HNGHaLHgpHKeHihHLnHLWH]ZHjKHOcHlcHKfHXnHKaHmnHNNHkWH^nHMLHKdHaFH\\\\H]hHncHhgH\\\\H[aHjNHmWHaZHjiHngHaGHljHONHMLHK[HiJHmlHKbHklHOkHm]HIkHoIHLZHLOHmjHi\\HkiHLbHiMHkYHk[HmcHfmHMGH_iHMHHJgHLZHLaHJgHKeHjkHlkHIkHKeHXlHOZHoGHIkHWYHNjHgXHnbHWcHLLHhiHomHXXHg\\HhlHLJH_iHOoHL[H[aHMKHMLH]GHkhH^oHlMHW\\HNoHOLHkiHKdHWcH]FHLhHpNHL]HkFH]`Hk[H\\^HoYHJdH]mHm\\HhlHKbHXgHZoHMHH[aHnaHIkIGFKH^kHlHHnkHLMHK\\HJgHioHMZHOKH[aH^gHhdH\\FIGFeHpKHIkHLHHlGHObHmlHKYHaZHiWHpGHjmHiMHobHMLHK^HLYHKbH_bHNFHo[HOcIGFMHMpH`LH`FHIjHIeHpdHmKHknHLmHpjHn_HIjHIfHMWIGGfHK_HYMHMHHKfH`iHMIHLoH\\^HLgHgpHm[Hm`HjnHh`HoOIGGfH\\iH[^HOZHnkHaIH[OHokHkNHm[H]hHKgHYMHL`H_^HOcHpGHglHOcHlpHnbHNFHLXHojHNiHL[HJgIGHKHMaIGHMH]hH[[HLZH__H][HIjHKaHlJHL`HLOH[`HJgHW\\H`LIGIHHYIHLnHJgH`LHWiHLmHJgHLaIGHoHghHgjHNhHXkHLYHLbHJgHMgHLdHJgHLnHXkHL[HL[HL^H\\[HLOIGIbHLdIGIdHJgHL`H]\\HlZHLmHJaHmOHoLIGJJHL]HnpHomHhgIGJHHmlH]lHMbHm\\IGH[HkcHLZHLHHMmHLaH`MHOcHJHIGGjIGJlHJgIGJnHLmIGJpH`FIGFbIGJIHL[HJdH\\ZH`MHljHKWIGKIHjnHNhH[OHjjIGJJHgjHWJIGI[IGIpIGI\\Hm_IGI_IGIeIGJHHkNIGJKIGJMIGIfHYIHJgHLhHLZHMIHJaH_dH^FHKcH^IHlXIGJ\\HMHHL]HlZHOcIGGaHpLHLcHhNHnXHpnIGHHHmOHLGHXfHNXHMFHmbIGFZHKZIGKnHkoIGFgHIkH_kH^kHLaHjiIGFkH]WHokIGJJH]hH]WIGHnIGMMHJFHMWHKfHNWIGI[IGLIHMIIGIbHLZIGIfHlGHJgIGFKHjXHMHHOlHi]HLZHLLHXfHLYHOgHL\\HMfHIjIGHjHhFIGMaIGMkHLmHLYIGFbH_XHJgIGMnIGMpHK_HifHXgHl]IGFXIGLHIGLJIGIfH`iHL\\HghHNOIGImIGJGHNoHMGHXhHJgHWJHMGIGNLHMGHWOIGNLIGIkHOKIGJGHkkHLmHLoIGIoIGMlIGIaIGNnHkNIGJFH]lHi[H[OIGImIGJ^IGLoHK[HMIHNhHZhHNYHgpHKdIGJlHKhHLnHjjH]mHgFIGOeHjnHJgIGOgIGOiHOZHemHk_IGJFHMgH_iIGIoIGMaIGHdHjnIGIgHLmIGNbIGOhHXgHMGHLnIGJ^IGGiHj^HoMHLhIGOGHKgHW[HW\\Hg\\HnFIGF[IGWaHgFHj_Hj[IGGfH`_HpiIGJlIGFmHLmHoNHlcIGOlIGMaIGXGHoNHLZHMWHKjHLKHKdHLFHK]HK\\HK]HKfHKpHgkHLWIGWKHNhHgjHZhHofHMGHYIIGJNHMpIGJYIGJJHJgIGKXHikHJaHIaHfhIGXmH`pHnIH[NIGWLIGJYIGJlIGKaHjiHlGHgjHLoIGWaHJgIGNnHNHIGJYIGXnIGLmIGIeIGYJHnpIGIaHNjHJgHMaIGImHLdIGJ^HpiHWcHLGH]ZHNNHg\\H[cHnbIGXFIGWaHKgHoeHNeHjGIGNGIGXKIGKKIGY\\IGZLHOHIGZNHLdIGLMHMWHJkH^IHp`HpHHNjIGZ_HMLHJ[IGZbIGIXHLgIGZfHIkHKWH^IIGLoHZOHiMHZoIGImHIjHJpHO]H\\gIGMbIGYcIGYaIGJJHMmHJgHkkIGIaIGOmIGYdH\\\\IGLFIGYcIGKJIGY[IGXHHgjIGOmHOIH`dIGWfIGJ^HJ\\H\\dIGKXIGK[H\\\\HgLHicH__IGGZHgpHl`HL[HK^IGIpIGHNIGNGH\\oIGZ\\HNFHJgIG\\JHJgIG\\LHWOIGHNHWaHnGHWeHhgHNFH^OIG[ZHlZIGHpHXnIG\\^IGW]HoOH\\oHNXHNbHhjHIjHJhHMWHJ_HKeHKhHJ`HgkH[\\IGHYIGIoIGXbIG[\\IGMaHLbIGMaHNjIG\\nHOhH[_IGYlH[LIGGOHpeH`_HnkIG\\mH_iHKhHZ^IGKFHhXIG\\aIG]^HhjIGOnIG]jIGG_HJdHO]HWhIGJFHL`HJgIG\\nHp]HJgH]JIGYXIGHMIG]WH`pIG^WHLYIG]nH[_IG^WIGIaHMpIGJ^HpZH_iIG]_HOZIGLoIG\\WIG\\cHjGIGZcHi^HoOHLGHL^HXgHNHHjbHjdIGFZIGXGHmkIGFZHW\\HXOHjdHpGHK]HlnHgFIG]gHLnHKaHkcHjnHm\\HlcIGHhIG__HMZIGGHH\\dHLXHLeHOZIGWhHLMIGZLHL\\HKJHmOHLHHibHMfH[WIGZlHHoHKGIGZlHK\\HHHIG]lHnlH\\\\HLbIGGpHmoHKbIGILHYIHKKIGFkIG`^HNoHLmIG`aHhlHLaIGNaHLFHKfHKaIGGhHMWH_ZHLmIGZFHLGIG_iHLdHLHHLXHLgH^iIG`XIGHXH[_HIaIG_]IG^gHgpIGHhIG`cIG``IGZfHHoHLZH^IIG_cH\\KIG^pHjXH`_HpGH\\OHi\\HpGHKhHLYIGO`IGHJIG\\iHOXH_ZHkOHgFIGHhHLKHMaIGJ[HkWIGLoIGF`IG`^IGNKHkoHiHIGbXIGI^HLFH[iHMkHomIG_mHaKIGZlHI[HKGIG`XIGaYIG]oIG_eIG_aHIjHKLIG]HHKeHK^HLFHgeHK^HKaHK\\HK_HKhIG\\\\HK]HK_HKlIG]LIGbjIGXkIG[fIG]NIG^`IG]]IG^fH]IH]ZIGMgIGJ^HiHH[[HMIIGJLIGalHhiH[_HkWIGW_HIkH]dH\\\\IG_]IGcYHm\\IG[kHjOIG[_IGbhIG^`IGdFHfWIGFlIGN[HX\\IGIaHkZHNXIGNeIGKhHMjIG_fHLYIGW^H^GIG^^H_iIGdFIGaGIG_jHIjIGdHHIkIGdKIGJFIGdFIGFbIGaHHjeHMLH^cHXXIGdFHKMIGGWHjiHljHlcHkaHkcHKaHLdHOWHm\\HiHIGeOHMHHmJIGYjHkWHiHIGGfHplIGaJH\\\\IGLnH_hIGdcHLnHplIGdpIGdjIGeiIG^gHJgHplH]IHmoHIjIGLMHKlHomH^cH^eIGFZIGaOHOZIGclHLGHLhHiNIGfWHjmHolHkiHokHOHHLJIGHdH__HnKHaZHofIGfcIGHeHIjHLLIGGjHL[HMGHiiIGIaIG_OIGY`IGIgHOHIG^MIGfdIGXgIGNoIGgKIGHeHOKHJaIG]WIGWKHXgHLpHjcHXgIGIaIGM^IGYMIGOYHNjHofIGL[HYHHXgIGN^IGM_HMFIGgLIGJ^IGL^HiIHoYHhfHlnHMgH^dIG`bH\\lIG_[HlcHhnHWlHOYIGKcHlHHk]HoWIGO`HNeHLZHNYHZOHXnIGXGHnYIGGjHWcIGZLHNXIGZFHoOHjbHLYIGaGH[_Hi\\IGgnIGhjIGdnIGhmHofHKdHaKHIjHK]HocHoeHogHoiIGIgHNGIGJGIGOWIG\\YHNiHL\\HJcIGY]IGKnIGIoHOkIGYMIGFOHopIGKOIGM^IGIeHMjIG[XHofHjnIGfoIG`pIG[\\HWOIG[WH[_IGJ]IGOkIGheH`iHlfH\\gIG_bIGMZHiMIGiIHL\\IGhbHmOIGjYIGZYHLmHOcIGFZIGfcHOnH`mHpGHl`HmpHfmIGI`HLZHIjHJgIGGjHaKIGj^HofIGggIG]WIGJFHo^IGNLHNbIGiGIGJYHaKIG]aIGL_IGdMHiHIGGoHhiHJgHK]IGJ\\H[`IGKGIGMZHMaHL]IGkGIGJOHklIGk_IGMdHjZHW]HomHKeHiMHL^IGG`IGdbIG\\XHofIGOoIGJZHOZHKZH^oH]ZIG[_IGWJIG]YHJgH[`IGOpIGkdHNhIGOKHaKHOYHZoHjkH^OIGi_IGJWIGY_HLXHoiIGKhHOWH[HIGJYIGghIGXfHogIGFKHXhIGccH\\NH_^HL[Hm[HmfIGIYH_NIGmGIGXmIGIGHmaIGIeIGmKHljHJ^IGmNIG\\eHOiHmgIGkdIGI]IGHLIGLGIGY^IGNLIGgaHXkIG[_HMfIGkOHIkIGH\\HLXHn]H]JIGOdIGHlHJgIGmoIGfHHJaIGIXIGIZIGg`IGN_HiMIGciIGWIIGMaIGL[HghHn^IGNiHgiIGIfHnMHnOHhOIGFXIGJ^HlcH]WIGYoH\\gIGNkIGJjH]OIGMaIGnhHMGIGnjHIjHKdIGMZIGM\\IGnNIGM_HZhIGNfIGniIGjNIGN`HX_IGJYHndIGIlHLbIGi_IG_OIGO[IGInIG[cHOJHXhIGi_HNeHLcIGJGIGMaIG^cIGLeHXeHZhIGIdHIjIGKHHm^HMHH`hH`jIGj_HLhIGe_HW\\HLcIGaGHLbH`fHomHXbHOXIGGLIGemIGMHHaJHNGHK_HiMHW\\IGkoIG\\aIGp]HMfIGJFIGp`IGYjIGIOIGfmIGNgIGoJIGYMH\\fHkOIGgiIGIeHOnIGYjIG^]HNNIGpeHNGIGlbIGYhH^iHlZHMlIGY]IGgNIGgaIGfoHNIHoOHKgIGLJHhjHpNH_HHlcIHF`HMiIG^`IHFcHIjHKcHMWIHF`IGNlIGIaIG^LHicHkfHNWIGLGHNjIGlFIG\\eIGXkHXZHnhHMHIGodIGYfHoiIGXbIGFdIGd\\HWOIGNbHMHHodH\\XIGmFHMLH]WIGFmIGikIGGJHm\\IGgnIGMOIHGfH[_HofIHGhHIjHKNHjfIGdZIGKgIGjFHZ\\IGNmIHF[IGN_IGgGIG^LIGY[IGikIGNjIGjLH]mIGofIGXkIGM^IGO]HMWIGchHhjHLGHK_HgpH\\eIGlfHofIGcnHljHKbIHHaHWlHhjIGipIG^KIGc`H[lIGYMHXXIGOHIHHhH^jHLOIGgYHXXHiLIGHpIGlfHJgHMkIGOGIGWJIG`pIGMdHikIGoiIGgnIGHbHOHH`iHLhHJdHKfHNoIGJbHlHIGZHHIkHWNHXlHLcIGKLHN\\HLYIGfWHppIHInIGXbIHI_IHJGHiWIGnKH[ZIGc\\IGI[IGL[IHG`H]nIGNLIGMHHh`HMHIGFJIHIaIGNLIGoeIGgZIG`pIHJcHh`IGoiHkiIGXhHYJIGJhHjGHmdH]iHXfHXgHNFHoLHOYHMaIGdhH\\NH]JHooIHJaHkMHkOHK^HLaIGGWHb`IG`bHlnIHKMIGWhHMoIG`dHoOIGWJH\\\\H`LHa[IGZlHIkH^IIGFZIGhmHLbHMgIGZlHJgH^^HMWH_GHaGH^lIGLoHLgHKnHohHYNIGFoIGLoHLhIHLWHZ^H[eHmOHXgH\\XHX[Hj\\HfeHibHnNHNiHg\\IGgnHLJHNOIGHpIGFNIHLfHkkHXlHIjHKKIGoHHWiIGpmIG^LIG_FIHLoIHLhIHFZIGY_IHI\\IGNeHWiHkNHJjIGIaH]lIGJ\\HJgHkZHNNIGLLHZ^IHMeGYHKkH^IIGLMHKfHgpIGe]IGalIGGgH_OHMLH_kHklIGjYH^cIGc`HLdIGdFIGZfGWHLJHKcHIlIHMeIHMeHIFIG`MHKKIHN^IHN_HHnIGbfIGZcIGjYIHJKIHNGIGGeIGJlIHNdHiHIHNfHJgIGjYH\\^HOcHLFIGK_HX_H`pIGYXIGKdIGkMHaLIGoYIGkdH`LIGkfIGgJIHGFIGLhIGmdIGgNIGpoIG[HIGInIGKhIGi]IGXnH]GIG^]IGJGH]mHklIHMaH^dIGYkIGj\\HWcHK_HhiIGaMIHImIHNkIGj]IGfFIGmpIGclIHM_HmKHaKIGIZH]HIGmpIGjeIGILIGeaH\\dIHOfHLmIGkZHNXIGMgIGp[IHNkIHW^H^lIGoGHpLHLNHZmIGmaHMaIHW_HgjHNKIGFKHLnIHOHIGXkIGkFIHWKIGIeHOIHL`HLNIGKFHYIIHWlHjXHL^H_^IHWpIGd`IGZfHKcHLjIGabIHW[IGJ\\H_kH`_IG\\`IGLpIHW\\IGKKH`iIHXLH`NIG^`IHXbHkWHKnIGhdIHWgIGgJIGkFIGKhIHXHIG^[HofIG][IHHIIGGpHjKIGY]HlGIHFoHmoIGM`IGWXHjXIHOeIHM`H\\GH\\gHOKIGi_IGOOIGJLHogH`LIGYMIGKcIHXXHihHNGIGJ^IGFZH]WIHY\\HlHIGahIGfgIGmMIGeFHZWIGOWIHNfIGjYIGdMH\\cHMLHJ_HK`IGcHIGcJIG]KIGNMIHM`IGj]IGdMHJ]IG`nIG_`IGcZIGWMH`NIGgkIGiYIHWFHaKIHNnIHYfIHOhIHNKIGJ^H`aIGcmH]XHLOIHZMHaKIGdMIGdiIHHjIHZ^IHOgIHZ`IHZdHm\\IGhZIGeGHMlIGeIIHFmIHGiHlJIGLJIH[]IH[YHKMHleIGpcIHInIGLJIGJLH]dIGImH`hH[`HilIHJYIGcfHLWIHMnH`_IH[FIH[JHL\\IGdeIGdoIHOpIHXfIGdmIGdfIGZ^H_eHKgIHNXH^[HHHHL]H^IHpGHKdH[_IGHIHhlHmXIGoeHiWIGWhIG`^HOiHOpIGFZIGb^HL]H]IIGG[HhMHjiHMYHkoIGHgHMpH[mHhlIGLlIG[XIGHNIGFZHWYIGJHH`_IHKFH_pH`GHjkHLoH\\gHkoIGclIGHbHmLHNWIH]aIH]cHg\\HlcIH][IH[IIHFWIGG_HnkHioH[_IGKOIH]mHIjHJlH\\dIH]oHofHNhIGJHIGgbIH^NIG[`IGl[HaZIGIZHLcIGJ^IH]^IHZgHjkHgeIH^]HIjIGm\\HnbIH^bIGiYIGKhIH^WIGJNHMlIH^HHNGIGofIGYgIGKhHLcIGjLIGnjIGdaHMLIH]fIH^iIGJFIH^JIG^HIH_MHlZIH_OIH^\\IH^XIH^nIGKFIGNiIH_GIGjFIH_IH_GIH_KHgpH]WHK[HNYHNNIGGOHKgH``IGnlHJgIG`^IHWYIGoOIH_iHWcHNHIGblIHMIIGM]IGN_IGoLHMoIH`GIGNlIHZmIGKhIGXbIH`JHLYIHM]IGJYIHIGH`lIG\\kIGWhHNNHjZIH[gIH_iIGLZH\\_HKhHLgIGY[HmoIH]dHO]HMfIGHHIGOnIH`mIGoeHkoHJ_IHHaIHaJHmoIGIaIHG[IGHHIGI[IGkFHZhHLYHJdIH]WIGjHIGkhHj`Hh`IGneIHaFIH`jHLgIH\\YHgFIH`iIHaHIH\\YIGZlHJpH^IIGNGIHIdHOIHLZHgjIH\\cIGHpIHGlHObH[aHJcIHFlIGk_IHIfIHFoIGXmIGKhHMkIGnXIGMdIGFnIGN]IH_bIGkHHlnIHZpHMWIHa`IG[YIG^pIGW[IGIaHokIGWXHmOHoXIH[IIGY[HL\\HoOIHbpIGNMIGpZIG]GIHNFIHcGIG[ZHiJIGYMIGWWIGNbHNoIGN]HohIGJGIG_FHgMIG\\kIGhZIHbjIHcaIHbpIGYoH[jHg\\HnkIHcJHKdHkZHiMHMHIHX\\GKH^IIGiLHnbIHcmIG\\YIHc^H[OHOYIGYfIGXgIGiaH\\fHoYIGY`IHOYIHGHHLmIGi_IGlmIHLaHX_HOYIH`oIGofIG^\\HicH]mIGIeIGXbIHYOIGgkIGjcIG\\kIGgnHWgIG_FIGlfHjiIGJFIH^GHLaHIjHKiIGlLIGeLIGgZIGIaIGd^IG_aIHMWIGNLIGKhIGXoIGIeH]]HniIGgiIHI[IGOKIGOmIHGJIG\\cHMHIG\\eIGKXHghIG\\iIGgiIGodIHYZIHe]IGYbIGJ^IGhZIGGfIGLaHMYIGGoIGLJIGHGH\\_IGWkIGkiIGIeIGfMH[aHiHHNHIGnXH]WH]bH_HIHKFHZoIHWoHhjIHf_H]ZH_HIGNGHnMHkdH_XH_ZHibHMHIGjbHMIIH\\ZH^[HIcIHX_HhdH_XIGFHHOHHgFIHXlIGnHH_nIHOkHLcIGe]HgpIHM_HXhIHg\\IH^FIGNNIHg\\HhlHK]IGO`HMmIGMIIGLoHooHaJHnNIG]eHifHihH\\XIHO]HkoIHZWHIkIGalHg[IHY^IGNiIHdlIHgFIG\\fHXgHJaIHhYIH_nIHgKH_lHngHOJIGd^HLdH_LIHFdIHFlH_iH`KIG]kIGWhHhgIG\\pIGFZIHGJH`kIHgOH_XHlKIGhHHkWHpiHMZIHh_HkcHOZHIiHfmHLHIHNeIGNNIHhpH\\fHkWIHKFIHgWIHWHIGfHHiHIHg^HLcIHWNIGfGHkWIGLMHLLIH[gIHiaIHfmHOHIHhbIHhnH_lIHNMH_eHK]H^IIGcdIHJZHIaIHXlIHiWH_lIGnHIH[YHIjHJbIGbnIGbpIGcGIGcIIGcKIGcMIGcOIGcXIH[YIGYMHjnH\\jIHeIIGNNIHijHX]IG`mIGdIIHcFIHinIHjOIHImIH[NIHgWIGdMIGfYIHflIH[YIHaiIH\\OIHjMIH\\XIGdoHkiIHWgHL\\H]\\IH]jHgpHKYIGO`IGOKIG`GIGNhIHciIHKOH^iHLcIHK\\Hp[HgMHoOIGXbHLoHWOIGncIG\\IH][IG\\ZHNOHnXHnKHK^HLJIGpKHkoHnkIGboHLJIH_pIG]dHLmIHNNHLIIH\\]H^[HKmIHKmHMWH]aIHfgIGMJH]XIHlaHhlIHicIGmpIGLMHK]IH[gIHffIHknIHi^HkWIGZcH^aHIjIGZcHnLH[mIGFZH^aIHWNIGfIH\\NHgFIHmHIGepH]GIHidHoOHL^H^aIHiaIG`XH]jH\\mIGJFIHmWIHXlIGZlHLXIGLWHg^IHm]H_XIHh[HgGH^iH]XIHIHIHmcIHmjHlcIGFcHp[IG\\oHfpHlcH^aHKnHhfIHiZHnKIG\\eIHiYIGhIHhlHNjHLaIHkWIHfaIGdbIHFLIGJFIHk\\IHkXHgpIHn]IHn_IHmLIGLMHK[IGbgHLYHoiIHndIGOKIHlmIGFkIG`hH]nIGdgIHlLIG_GIG_jIGFbH^iIHeKHJJH\\NIHoLIH`NHXfIHabHj[HJgIGJLIGGcHg[IGmkIHoHHLdIG_jIHniHMWHJ^IH[gH\\lIHoIIGJFIHoFIGWhHnLH]^IHKFH^NHOKHjmIHKIIHKpHLWIGZfGHHHGIHjGHMWIGfoHL[HiKHmnH`eHOLIHMpHIkIHpHIGImIHbKIGfWIH]_IGM\\IH[gIHpbHLbHLKIHG[H^iHoeIG`XIHfcIGnXHkHIHp[IHopIG[IIGWhIHpiH\\bH\\NIHp]IG^bIG\\MIG^bIGNLIHGNHmLIHH`H^`IHp]IHbKHoOIIFIIGInIIF`HK^HfmIHFWIH]bIGj_IGlWIGldIGicH_aIHacIGJYIHYZIGYJHWWH[NIGlWIHpiIGkGIGNbHJ_IGg\\IGg^IGI[IIFbIGYMIGn[HK^HK]HJ`IH^`HMWIHpiIHIeHNHIHpLIHojIHp]IGFbHOIIIGbIHLFH^[HLNHHgH^IIHcMIGmlHLcIHXpHofHhZIGMdIH]jIHIXIGkdIIGJH_iIGJ^IHImIHpiIHbKIHpkIGpfH]ZIHgNIHgaH`MHNdHL[HLLHLhIGOjIG_KIHfXIGNFIIFNIGOGIHbKHJgIIHZIHFMIHpnIGWhH_]IGIMIHmkIH`lH]YHMIHNNIGcnHjXIGWlIHaLIHgnIHacIHM^IH^NIGNiIG\\^IGJFHodIGXmHK]HK^HLLIGNcIGn`IGpaIHaeIHNFIGJ\\IHo`IG\\pIH^FIGLJHmoIIINHhbH\\dIIIlIGofIIInH]hHLGIIJFHK\\IH_mIGLoIIJJIG[GHJgIIJLHIjHKJIHHmIHhKIGKhIIJLIGiOIGkdHN\\IIJWIGOmIIFmHOlHJgHJ_IGoLHeaHbaHJ`HgpHeIHdLHbmHKOHb[HKOIHWaIIJFIGZ[IG^kHOZIHdoIIJFHJgIIKKIGZ]IHgOIIJFHLJIGILIHgfIHNeIIKOIIK\\HOnHOYHgpIGWlIGFbIIJFHIjHJmIGbnIHZ]IGYHIGHpIIJeIHd[IIKOIHc^IGihIHo_H\\fIHeHIHjbIGjFIGNnIGILIGOXHipIGkjIGZcHKhHLGIHiOIGclIHK\\HLaIHcdHNHHKdIGXHH\\gIH[oHoWHhOHnWHMYIHf[IGIXHOHHMmIHJJIG_cIHJZIGOnIIL[HIjHJfIILkIIJ]IILpIGkFIGMcH[`IGOKIHFWIHdcIGndHoOIIInIILZIHiOHlcIIInIIMFIHiOIH[FIGfWIHo]IG[YIIMOIHGcIHhIIIL[IHoNIHG\\HLbIILjHmeH\\_IIMkIGo_H[aIGgnIIJeHMmIGOgHLoH_ZIGaLIGFfHMWHKJHKgIHgXIINOHmlIINNHk\\HMWIINJHLmIINLIIN^HLnHKKIIJMHMWIINfIIN[H`mIH\\fH\\_H[`IINfIGaNH\\KIIJXIHnmHYIIGYWHiWIINIIHfXIINLIG_ZIHdNIHHfIIHHIIOOH`mIGWhIIOZH[aIHImIINaIINLIIKXHiNHOZIHi\\IIHHIIObHjGIGLoIIOgIGfXIIN`IIOMH]lHLKHlZIH]bIGnkIHNFIIHHIIOoIGJZHiWIGFZIIWJIIWFHoOHK^IGIdHOJHNNHlWIGMZHObIIWNHiWIGclIG\\JHMgIINFIGFjIGNGIIO`H]lIIWbHLWHKaHklHnjHO]IG\\gIIWcIIWkIGHNHlcIIWiIIXFH[aIIWfIIOmHLoIIWiIGHhIHajIIWoHLWHgkH\\KIG\\IIIXYIIXWIGWhIHfpIIKMH^LHp\\IHY]IG]iIGKNIGFXIG`XIIWgHLoHLLHkmHikIGIJIIXmIG\\NIIOlIHacIINLIH_iHjKIILhIIXhIGooIGF[IIXMIIL^IIL`HLYIILbH`iIGW\\IGelIIL^HJdIIYYIHNlIILcIIY]HkiIG^jIGZ]H[aIGhZIHefIGZ]IINcIINmH[aIH[FIIYjIIOcIIYlIINOIINoIIYiIG\\bIIYkH]lIIO]IIHgH`YIIZKIIZFH]lIIOjIHmkIIYpH\\XIINLIIXlHaGIIXnIGdiIIZ]HLdIIYIIILgIGncH[aIGMYIIZWIG\\XIIZ^H]lIIYXIHc`IILaIIYcIGFYIGMZIHIjHjXIHjiHIkIHIiHZWIHY]IGFcIINGIHJKIIMOIGpYHL\\IGa]IH]kIIFfHOXIH_pIG`_IHLdH[ZHlZII[]II[cII[ZH]lII[\\HWYH[HIH[gH\\eIG[MII[\\IGKaH`mHkiII[kHjkIIMnHIkII[[IGXbIHKhIH[nIH[gHOgIHYgIHIoII\\WHa[HoOII\\\\HLOIHKiIIYnIHaFIIYKIGncIIWdIGImIIO^HXGIIZgHnXIIZ[IH[FIIYJIGnbHnXIIKWIGZMIIOcIGelII\\oIIYLIIZ[IGFZIGLfHZ^IGaKIGFkIGJGHXeHOGII[LIHdjII\\pHMYIG__HLcIG_OIG`XII]KII\\fII]aII]cIIWaII\\kII]`IIIJIG_OIGZlHKGH^IIGdiII]^IIYLIIZ`HWeIG[cHNHHL^H[mIHImHooIGXmII^IIGJhIHKIII^MIIFMHoHII]jHkJIGKnII^YII^KHiNH[mHemII^GIGncHK^HkcHmnHLdII^bIGkfII^dIHZIHIkII^iIHehHNjIGJFII^mII^[II^eII\\dII]_HMHII_GII^kII_KII^LH[mHWGII^^II\\eII]FII_XII_III[bIHKeIGgnIGGfII[^IGeeIGIZHg\\II^FII^_II_aH`LII[^II^]II_FHZ^IIY`IIZpIGNLIIY[IG[MII[XIGFjHkiHoMH\\gIHaiIGXJIIYcIGdnIGdgIH[FIIZoIG_GIIYZIIYcIHamH_eHKFH^IHnkII`WHMGIGb^HZoIGb`IGebII`[II`jHLXIGb`IHp`II`_IHJ^II`KII`iIGb_HLnIGZfHHHHLmH^IIGhZIIM]IG\\\\H[NHaKIG_iIHXZIH[gHmGHjkH\\oHg[IHdlII[LIIaaIGiYIIacHipII[KHLoIG[LHMGIGiOHYpIIMaIG\\\\HL]IHXiIGN]IGHFHmHIGYkIGMdIG_`IHI]IG]XIG[ZHhOIG[YIGXdIG^WIHkXH`iHWiIHI`IGKMIIOIIGZ]IHYcIGXbIG^`IGOFIHG]IGJFIIMOHJgH[_Ha[IHFOH]lHWKIGM\\IGLLG]G`IIcJIIcJHG\\IGbfIHKFIG[nHLOIIaiHkfII[KIGgnIIcWIIOGIIadII[KHLfIIamIIaoIGY_IIaZHN`IIbIIGIaIGg_IIWFIGofIGOmIHKdIGLGIHo`IGYjIHYYIGofIHf]HhjIGofH^NHW[IGIaHJ_IGmbIGKkIHFOHaGHWOIGIaHKMHKLHKLIGlcHMHHL^HJ`HIaHgLHNKIHdcHn_IGYMH[_IG^JIGNjIGHcIGHeIIMhIIYfIIOcIIMaIHJKIGmWIGHMIIM]IGp[IIeHIGLGIIeJIGLoHm[II[^IIaNHLFH^IIGclIIeLIGIeII_oHl_HiJIIeNIG[LIHdZIIeJHlXHiJIIeXH^[HKcIGaaIG\\IIHcXII_oIGLoIGfiIG\\GIIMGHkiIIepIGlGIIMGHlcIIfIIIehIGLNHL`IHl[HMWGWHKhIIfXHMLHKcHL[II`fH^LIGgLII_cHmbHkiIHbMHMHIIeJIIM_IHbaIIeFHnkIIffIIfNHMWHGLHLdIIf\\HMLHLOIIgGHHHIIf_IHJKIIffIIfcHpYIGMZHjkIIebHllIH^cIIeeIIgXHmIII[cIGZlHKeIIgGHKcHLWIIgGHIkHJnIHgJII[MIH^cII_oIHImIGGfIIcfIGKFHOgIILlIGI^IGpXIIHcIG_kIH[aIH`fHoOIIddHXfHNbH`HIIflHOJHNhHOkIGj[IIYeHLnIHHbIGcjIHJKII[^HKgIGf[HOXIGMIHhlIGGNIGWnIHlnIGIXH_HIIWMHfiHMGHgpHh\\HOHHX_IIOZHmlIIfIHoOIGjbHNYIGmXHomHlmHgWIGFZHKhHkZII[mIHNjIH^ZIIi]HoaIIM_HjZIGOnIIi^HieIHdIH]IHmkIGgnII_GHWJHYIIHclIIijHo\\IGlLIH[HHfnIIKcIHccHkkIGZFHWLIIipHZpII]IIGgnIHgjHLcIHKXHOHIHKZHkWIIYNHN`HNbIGl`HLYHKnII[^IGbXIHLaH[OHiWIGdiIIjgHYIIIjiH[WIIXfIG]kHhlIIhaH`_IGZcHLGHLOH[mII`^HNaHNcHNeIIjfHh]HL\\IIkLH[mIHp`HKbIHFWHOHIIH`H_ZHZoH[`II[oIGNlIGp[HLHHXfH_aIGJFIGk]IGijHOpIIJNIIkMIGHHHKaHljIHXdIIJjHdkHbKHahHKWHdfHeZHamIIlFH]HH\\_HKgHm\\IIlKHeMIIlMHa_IIlOIIlXHdLIGLeIIlGH\\_HKeHOcIIl`HeoHecHfIHbYIIleIG`aIIl[IGHHHK_IHeKIIllHfYHcpIIloIIlWHfMHf`IIlgIIl\\HgmIIlkHcmHebIImNIIldHccIId]IImZIGHHIH[fIImLIIm_HbcIImaHbeHboHkiHK]II\\fIIk]IHKNHfXIImhHbKHceHKNHdIHdNIInFHenIImMHbcIInJHdIHKXIG_pIGdiIIlLHepHa_IInYHKMHKJHeJIIn]IIlaIIn_IInbHcfHaaHekIInNIIn^IIlnIInaHfIIInlIInfIInnHcfHdIHKKHeJIHKFIGaJHLYIGJNIGWdHLhIIYLHg]IInGHeNHJbHafIId\\HfMHKXHKMHckIImgIIo]IIo_HdNHe^IG`aIIoeIIlbIIogIIoaHKXIIodIIm^IIofHeIHdHHbmIId\\IIo[IInOIInHIIo^IIpHHfMHcjIIKHIIokIIn_IIogHKOHKOHcNHboHiHH^cIGNKIGOGII[NIIiFII_]IIpMIIo]HKMHdIHd_HbYHKLHbjHWFIIpFIIlbIIpkHe]Hd`HdIHcjIJFFIIo\\IJFHIIplIJFKHfNIG`aIIphIInmIImNIJFXHbYHbZIG_pIJF\\IIoGIJF^IJFJIJF`HcYIJFNIIpiIJFWIJFfHcjHe_IH^FIGFiIGNeIGLfIIl_IJFGIIn_HKNHKJIInKHdMHKKIIp^IIpLIJF]Ha^IJGKIJGMHeYIIocIJGXIJFdIJGZIJGLHcjHf^Ha`IJG_IIlmHcpIJG[HKWHbWIIpoIG_pIIp[HecIJGiHcOHbNHamIJGnIJGhIJGbHdMIJGKHKXIIFaH`^IGnHIGjcIJGfIInWIIlNHbXHdfIIpkIJHZIIpNHfIIJH]HKKIIn[IJH`IIpjHfJHadHdfIJHeIJHIIImiIJHcHceIJHfIJFHIJHhHcNHbnIIojIJGIIIlnIJIGHdfHeIII[LHKhH[_IGeZHofIIpcHaJIG[IIJHlIJH\\HdOHe^HeJIJI_IIlcIJGOHKNHdpIJG^IJIdIJHbIJIaIJGLIIopIJFOIIngHfJIJIlIImcIJIjIJJFIJIgIIpJIJHpIJIpIJIfHdpHeiIGMNHjgIGokHOZIJIdIIncHJoHcNHcOHKMIJHHIJIKHcpIJJ^IJIHHdIIJJcIJIoHecIJJfIJHjHKJHdgIJJ]HKMIJJ_HcOHd`IJIJIJJjIJJeIJKFHcNHeIHKKIJJoIJJdHa^IJJlIId]HJpHKLHmOHgLHOGIGXbHLaIIm]IJKKHa^HbZIIocIInKHbhIJJiIJFjIIn_IJKgHcLHchIJGKIJJMHecIJKnIInKHdLIJK^IJIdIJLIHchHajIJLGHcpIJLNIJK]IJIcIJKYHM_IJLZHacHmlIGY[HXlH[aHpGHhaHOcIGLoIIjWII^LIIXbIG\\aIIjcHLdIJLiIIOcIHX\\HKpIIgfHLGIIgGGWHL\\IIe[H[LHkcIJLmIJLoHjGIGf`H\\WII^lHaKHOZHlcHkKH\\XHgkIJM]IGa[IJM]IHcgIGhhIGHgIJM]IGZlHJ_IIgfHJoH^IIHiMHMLH[gIHm_IIk[HWgHXeIGIHH[WIGelIIiHIGK`IGFbH`pHXfIIa_IHdoIJNXIJNKHMpHfnHi\\IGfYIJN\\IHXZIJMbHi\\IHOpIJNbIIjjHLYIGHbHWeH^lIH\\JIJNgH[WIIKWHNHHNbIHW`IGLMHJlIHWaIIlhHLgIHlJIHLiIG[lIIm[IHlOHNeIGWfII[nIJOLHKgIH_JIGjNIHJKIIkdH^bHjkHOJII[KIHKFIJObHgeH^dIHeGHkoHKhIGGbIHFIIILGH\\^HLcIG[eIGMaHkkIIb`IG^LII\\GIJOeIGHpIHJfIIcmIGIeIG`hIGoXIGKhH_GIJNhIHeXIHmmHMcII^pIJWFHLhIJWMIIH`IH_dIGjMIIkhIJM_IJM[HooIHkcIHWaHkZIG\\iHj_IIkbIGknIG_YHLdIG_gHMLH\\OHkNHmlIHIiIHK_IGfYIH^ZII[lIHggII[KHJeIH^MIH^oIH^\\Hg[IIH`IH^[IJOpH^dIGMhIGgnIJX[IJWNIIgOIGp[IJWeHjXII_oIIi`IJX`IJXoHfmIGYiII^ZII_[IHJKIHLkHh`IJNoHLJHg`HeJIIOiHLZH[`IGbKIGJZIGOdHWcIG`IHWKHJmIGZlHKLH^IHHMIHohIH^dIH^XIH^GIGKFH[WHIaHJ^IHNlIH_\\IH]mIJYnIJNpIH]gIHZhIH_WIH^]IJZHIGdkIG]pIIXgIJZNIGenIG]oIHlmIJZYIG^_IGdlIHjaHJ_IGkFHkZIHNKIHYfH^OIIdbIJYoIIdoHofIG\\[IG\\]HikIJZHII]eII_`II^jII_bII[^IJZnIHcXH^XII[aIHJfIJMfHkoIHImIG__HLbIGMHIINOHJbIHlJHM]HIjHGWIGdbHZoIGhgIG^OIIdOIGmXIGIaHZhIIanHXgIHHHIIGKIH^nIHMJIGJYIJKcIG[YH[hIGJLIGOGIId\\HKLHJlHIaIGZXIGXMHgjHnNIGLJIGppIJ[hIIIcIHIXIG\\eIJ[ZIGNiIHJfIHJmIGJNIIFkHgjIG`\\HLcIHjJIHeFIGYLIJ\\XH_^IGofIGn[HkZIGghIJW]IIa]IG_jIH_FIGNLIJ[eHlHIHLjHikIJYOIJYXHJaHeJHJKIH_oHi^IGIfIGL\\HidIGYfIHe\\IIbXIGIdHNbHMpIGZlHJcH^IHG\\IHKOIGaLIIJGIHbaIGIaIG_FHaZIGXbIGNeIILGHOWHOYIHe[IGKiIIMlIHHZH_GIHH\\IH`[IGjFIHe^IHFZIGOWIG[ZHWhIGOGIGMOIGnnIGnjIHYfHIaIGKLIGggIGOaIJMaIJ\\kIGppIGn[HLnIIYLIGm^H\\FHMmHIaHooIJ]kIHhLIJ\\mH_nIGI\\IGh^IGNeIHGJHNeIII]IGgNIHMYIGInIHdYIH^mIHcGIJYLIJ]NIGXkIJYWHJaIG_pHKfIJYhIGfaIGfhIGgLIJZHIJ\\NIGZZII]HIJMaIJ[NHLmIJZHIGMOIH`IIH_kIHNlIH`bHgjIH`FHkOIGjNH[aHJ`IH_oHNhHLNIGLGHMjIJ[YIGaKH[`HJbIIcoHW\\IJ]`IHeWIG^MIJ_`IJGHHMLIJYMIJ]dIGNLIJ_bHgbHJ_HKbHLMHLFHLFHKhHK]HLLIIJlHGaIJYhIGhpIGhlHX\\IHNlHaKIJZHIJaOIGi[IGiHIGjnIGhbIJZHIHZjHL\\IHNnIJaaIHXfIHWGH]GIJaeIHM`IHWcIGMgIJaiIHOgIGpGIIbIIJ^\\IHXlIJamIGIeIH[XIGd_IIJgIHZZIHj\\IG]KIJZHIHjoIH\\WIH[YIJbHIHjNIJbKIHaiIGbmIJXLIJ`_IGofIJ[eIG^ZIJWXIGM`HofIJ`bIGOGIGmeIHOhHZoIGMHH`_IJ]ZH[ZIIbXIGWZH][IGXgHaZIHMaIJHWIGn_HglHgnHKkIIKhHMWHKlIGN_HjjIGNLIJ`[IGYgHL\\IJ\\WIILWIHXIIGMaIIdiIIb`HicH[]IGk_H`OHJgHJiHghHMIIGInHXgIIFhIIMZIGhZIG`^HLoHgjIG]gIGiYII\\ZHljHJjHmFIGFaIGWKHZjIIkXHLYIGi_H]ZIH\\lIGicHNhHggIGn_HNNHNWHNYIGJ^IJX^HMLIIaZHOgIJd`HgjIGWKIG^LIGggIGXjHoiHXkHXmHXoHKJIIF]IGLpIJFpIIMmIGFkH`[H`]HkWIH[FIJeYHNpIIckIHHJIJ\\iIHjhHpGHlKIGamIGFkHgNII^LHLWII[LIHlmIJedHMIH[MIH`KHiHIHlmIGhKIIKcIHImIJenIGNLIHlmHgeHNHHMIIGp[IJNNIGoXHh_HhaIG`XHhGIHeGHjjIJNhIGaGH^eHpGIGGlIJKcIGelIJf]IGMHIJf_IJNoIJfaIGHZIHFlHLHIIJLIJO_IIkhIGZcHf]IJOJIGZcHagIJOJHpGIJ\\JIJgLHMWIInbHKXIJgOHMLHfIIJ\\KHomHe]IJgYHomHceIJg]HkiHKgIJfnIGFbIGKcHpcIGeFIJfNHghIGmpHnkIJelIHoFHlcIHfJHkdIJKbIGHfIGnlIGF`IHJKIJelIHObIHWOIGfHIHKFIGfWIJgpIH^MHMHIJdlHOjH[mIG\\OIGpOHYIII^lIHG^HLdII`MII\\hIG`XIGFcHK\\IJhbHXgH\\oHNNIIN\\HkiIGFcH\\OHkOHkoHhlIJcNHZKIJcWIIMcHZIIJiMHJbHgHHJdIJaHHLKHLFHK\\HLLHKhIHmkIG__HkNHLcIG`^IHnmH`dHioHiOIGjOHnbH]\\H^OH[[HpnIHmkH]dHOFIGXKIJeZIJifIGMHHLbHIkHHiIGL^HJNHIdH_dIGLMHJNHHYH]LHIkIJMoHIkIJj\\IJj_HMMHMWHJgHHgIJjcIHiMHoGIHeMHpGHMLIJjXHIlHflIGWhHIkGfHIkHONHONHnFHGlIJjcIJjlHLKHIlIGLMIJMoHL`IJkXIJj^IHiMIJjbIHiMIJj`IJjbHMKIGZcIJjfIJjdHMKIJjjHIkIJkFIJjaIJjYH^nIGFZIJkGIJkiIJkpHnaIJkMHMKIJkFIJkWIJj`IJkZHIlIHiMH]pIJk^IJj]HMKIJkaIJj]HONIJkdIJjgIJkJIJkIHMLIHeMIJknIJkkHIlHO\\HhlIJkoIJkmHIkH^_IJkMHONIJknIJkWIGZcIJlMHMKIJlWIJjaIJl\\IJjcIJjmIJj]HflIJl^IJkpHflHONIJjnHO\\IGLoHIkIJkMHflIJlhIJkWHpGIJlMHONIJmIIJjbHflIJl[HIkH^nIJmWIJljIJmZIJjYH^gHkiIJm^IJmjHIkIJm]IJkWIGWhIJMoHK\\IJjoIJj^H]pHJgHKFIJnOH]pHNmIJnYHIlH^nH]pHOeIJjbHO\\HiHHImHHoIJlkHIkIGbmH]pH]pHIoHGMHMWIJnjIJmJIJnhIHKFHKLHK`IJk\\IGGaIGGiHKLIIcaH]pH[oIHImIJnIHMWH\\MIJb_H^gH_gIJoMHMLH^gHlpH_OIJo]HIkIG[kHWaIJoeHWGIGKHIJoeH\\cIGMYIJoeHcFIJodIJoaHIkHaNIJpFIJoZHJMHIkIHoXIJoIHIlH^gIJ]ZIGW_GWHIkIJnFHIkHk]H^gIGjlH^KIJoeIG]GIGclIJp\\H^[IJp_HIkIJX^IJnFHkiIJo\\HMLH^KHJkHIkH[cIJb_H^KIH^LIKFGIJpnHIkHJiIKFFIJniIKFLIJdWIKFGIJoJH^KIHaMIKFGHIeHIlH^KIJ`XIKFKIJpfIHZbIKFcH^KIGm\\IKFfHIkIHbWIKFiIG^HIKFiIGnKIKFiIHjXIKFiIKFbIJp^IJpGIIMIH^KIGjlIJpfH]pIJb_HIKHIkHnkHONIJpOHOeHKMHIkIIJ[IKG\\HIkIHMHIGK^IKGaHKXHIkIHHFIKGaHKOIKFOHIkHLYIKF`IKGYIJjcIJjbHNmIJneHIGHIkHNmHKjIJj^HMLIJnmIGXWIJj^IKHOHMLHYcH]pIKHFHIkIHKFIJjbHOeHJoH^FIKGXHiHHMWIKGXIHKFIJlWHHnHIkIGgnHMLHJWGJIKH^HIkIG[KIKHlHOeH\\MIJj`HIkHfdHiHH`aH\\MIIKiIJjmHMLIGGaHJnHMWH`aIGGiHKHHMWHImHMIIKGIIJnkIKHMHIYHMWIKHeHHJHIkIGGiIGhZIJo[HMWIKIKHfdIHKFIKGMH\\MHOeHKIHIkIKGMIGGaHOeHMOIKGMIGGiHOeHKGIKJLIKHmIKHpIHFkIKGMH[cH[oIGoGIKGMH_gHOeIGIWIKGMHlpH_gIHHlIJjnIG[kHKgH^FIKGmHlpIG[kIHiMIJn^H_OHOeIJOmIJn^IG[kH[oHKeHMLIKGXIHXdIJp`IJnZHWGHlpHK[IKJLIKK\\HIkHWGIJ_eHJWHIJHIkHWaIJ_eHWGIJn^IKK]HIkHKYIKK`HIlHWGHWGHK\\IJp^IKKfHWaIKLHIKKjIKKaHlpIGNYIKKkIKKbHpHIKLIIKKgHIkIGlKIKLMIKKpHIkHlpIIFeIKLXHWGHLHIKL[HWaIGiLIKL_IKKlIHNpIKLdIGLpIKKoIKLFIHInIKLgHIkHLIIKLYIKLXHlpHXFIKLmHLKIKMGHLMIKMJIKLNHIkHKlIKLoIKLYIHeMIKKeIKL\\HKkIKMYIKL`HlpIKLlIKKaHWGHYcIKLmHKpIKMGIKHLII_]IKGXIIphHflIJkeIGKHH^KIHXnIJjnIGMYHKmIKI]IJjYHcFHL_H^FIHjXIGKHHcFIHiMHk]HWGIKNMIGKHIKGMIKNHHhmIJjaHMLIGMYHL`IKI]HMLHcFHL]H_eIKN[IJjcIKN^HIkIKNhIKNaHMLIKNcHLcIKNeHIkIGMYHL^IKNiHIkHcFHLdIKNYHIkIKNnIKN]HMLHWGIKOOIKOHIKO\\IJpfIKOKH`aIGMYHLaIKOWHcFIJjMH^[IKO]IKGIIKLYIKOhIKObIKNcIKNJIKNfHMXIKOiHIkHLXIKJoHIlIKOmIKM`HWGHLWIKOcIKIbIKOcIJlOIJlaHIkIKIgIJpGHMWIKWaIKHMHMLIKWdIJknIKWdIJjlIIMIIHhHHMLIJn^IGMYH_gIKJnIKWnIKOMHIkHLNIKKoIGMYIGMYHLOIKXKIKXHHL[IKXOIGMYHL\\IKJLIJjgIKXLIKGlIJmjIKIcHaNIJmHIKIfHMWIKWlHcFIGMYHaNH]pIKW\\IGMYIJmeIJjdIKW`HMWIKImIKWgH^FIKWdIHhHIJn^HcFH[oIGXOIJkeHcFHcFHLYIKX`HIkIJpLHflIJmIIKXoHMLIGdiIKY_IKXHHMWIKYWIKY[IJj^IKYKIKLYIKNMIKYOIKOXIGF[IJleIJpLHLpIKWNHcFIJpLIKKHGjIJpHIKYlHLmIKOLIHoXHLnH_eIJboIJlaIJb_IJ]ZHMHIKIkIKFWHIkIJ]ZIKIcHMFIKZ_IJ]ZHMGHIkH\\`IKW\\IGjlIJn`IJmLIKWdIKYaIKWdIGLMIKM`IJ]ZHLhIKJ\\IKYlHaNIJ]ZIKH\\IJj]HaNHLeIJjeIJnZHaNHaNIIcaIKW\\IJpLHO\\IKY^IKYGIKWcHMWIKYaIK[WHaNIKW^IKGMHaNHcFIKZMH`aIHoXHLkIKZXHMWHMKIKZ[HIkIKZ]IJo`IKZ`HIkIKIcHLlIKZdHIkIKZfHLiH^FIK[KIJj^H`aHaNHLjH_eIJpLH^FIJn^IHoXIGGaIJp[IJkeIHoXIHoXIKYYIKZiIJoZH]pHnFIK[aIKWfHMWIJoYIKWdIK\\aIK\\pIGZgIKYHHMWHemIKYlIHoXIGjlIJnXIJnZIHoXIKN_IKX\\IJpMIK]^GXIJleIGjlIKK_IHl_HIlIK]WIJjcIJkeIJ]ZIHoXIKNJIJjYIG]GGNIKWNIJ]ZIG]GIKKHIJjgIGjlIK]jIJleIJX^GOIKWNIGjlIJX^IKKHIJaMIG]GIK^JH`aIIMIG[H_eIG]GIIMIIKKHHMLIJX^IKWpIK[IIJX^IJX^IKK_IKGMIK^gII[MIK[IIIMIIJ]ZIK[kHMLIH^LG\\H_eIKFNH\\aIKZ_IKFNIKIcGYIJniIJoJIKFNIKZfGZIK_WHIlIKFNIK\\IHMLHImHIlIIMIIKFNIJnXHMLIK^nHdZIKOLIH^LGHIK_IIK[pIK_LIK\\LHIkGIIK_nIK__IJb_IK_YHIkGFIKNjHIkIK_cIJj^IJnfIJofIKILIJk\\IJnlIJnnHMLHIgIJk\\IKHYIKLaIJk\\IJkeIIMIIG[kIKJkIJjYIH^LGGIKWNIIMIIH^LIJMoIHeMIJppIIZjIJlbHIkIH^LIIMIHMWIHeMIKFNIKYaHcFIJppIK_dIKYZIKGKIKHXIK]JIJnHIK[bIKJ]IKa^IK`YIKa`IGLMHJgIKZJIJppIK^oIKOLIKFNGLH_eIJdWIKHNIKZ_IJdWIKIcGMIKanIK\\HIKZ^IJb_IJdWIKZfIKHoIKW\\IHaMHNmIK[`HMWIKaJIKa\\IKZpIKKfIJdWIK[HIHaMIKYlIJppIJdWIK]YHIlIJppIK^eIJn^IJppIJppIKMfIKbeHIkIJppGKIKKoIKbiHIkGgIKKXIKaHH_eIKGXIK_JIKIaIKIcIJdWHOeIKIeIKYbIKcMIKbNIKILIJnWIKa\\IKc[IKIcIJ`XH\\MIKcYIKWdIKalIKKoIHZbIKYMIK]]IHZbIHZbIKYYHIkIHeMIHbWIJ`XIKYdHIkIHZbIHbWIKXjIKHIIG[kHJoIJk\\IKHNIK`]HIkIKdNH_dIHeMIHZbIKdFIKaGIGm\\IKYaHLMHIlIHZbIKW^IKW\\IHZbIGGaH]pIGFgIKWdIKYFHMWIJm]IKZmIK]LHMLIJkFIK\\oIKYbIKb`IKa\\HlcIKYbIKacIJnZIGm\\H\\MGhIK]]IGm\\IGm\\IKcmIHeMIG^HIHZbIKdGIGm\\IG^HH_dIIMIIH^gIJjeIKZJIHbWIKagH`aIGnKGeH_eIHjXIKamIJb_IHjXIKIcIJkHIKfFIKbHIK\\JIHjXIKZfGkIKYZIGbmIGGiIK\\mIKeKIKdpHIkIKefIKYbIHKFIKYbIKe`IKa\\IKcfIKM`IHjXIK[HIJb_IK_aIHbWIHjXIK_eIKFjIK\\KGlIKOLIGnKGiIKenIKIaIKZ_IKfGHIkIKZJIKfJIKZ]G_IKgJHIkG`HIkG]IK_\\IHjXG^HIkGcIKg]HIkGdIK]^IJpOIKfMHIkGaIK`MIKfjIK`WIKIcIHbWH[oIKbXIKa_IKa\\IKJGIJnZIG^HIKbgIKhIHIkIG^HIKKnIJn^IG^HIG^HGbIKKoIGnKIKhKHIlIGnKIGnKIKhOIJnZIKh_IGdjIKYZIKGFIJk]IKa\\IHbWIKa`IH_YIKJLIKgMIK\\KIK^pIKG_HIkHGLH_eIHMHIK_KIJb_IHMHIKIcIJnnIKiKIK\\WHIkHGJIKZ_IHMHIK__IJmjHIlIGbmIHMHIKflIGbmIKejHMLIIJ[HGKIKiHIK_mIKiOIKIcIKifIKiOIKZfIJ[`IKiOIKi\\IKGmIKi_IK]gIJjgIKG^IGbmHGXIKYZIHMHH_gIKgpIKa]IKa\\IJkFIK_aIKG^IKi`IK[IIKG^IKicIKGbHIkHGNH_eIGK^IKeFIKZ_IGK^IKIcHGOIKjgIKiWGoIKjkIK`HIJoJIGK^GpIKFOIKW\\IKGfHlpIKcdIKgIIKHmIKKfIGK^IK[HIKGfIKYlIKG^IGK^IK[MHIkIKG^GmIK[XHIlIKG^IKG^GnIJleIIJ[HGHH^FHJKIKkbIJjhIJoFIIJ[HGFH^FIJk[IIJ[IJmIIKM`IKG^HGIIKhpIJpOIKG^HGGHIkHGcIKkmHIkIKk`IKWmIJnZIIJ[IIJ[IKkeIJjnIHMHHGdIKkiHIlIIJ[IJk`IJp^IJdWIIJ[IKlKIKG^H`aIHMHHGbIJjeHMLIHMHIHMHIKl`HMLIGK^IHoXIKIYHIkIKGfIIYNH`aIHHFIKmLIKOLIKGjIIYNIINhHIkIKGjIKO^IKhpIJaMIKjNIKmFHIkIKloIKl\\HIlIKmGHIkIKl`IJjYIGK^HGhIKNNHIlIKGfHGeIKmpIHHFIKmoIJjmIJjYIKGjIKnHIK]dIHMHIKm`IKL[IIJ[HGgIKjaIJjbIHMHHG[IJjeIKg\\IKmjIJ]iH`aIKmKIKOWIKGfIKmZIKmXIK]^H^[IHMHIHHFIKmaIIJ[HGfIKjaIJpOIIJ[HGYIKgeIJoJIIJ[IKkGIJoMIKoLIK_oHGZIJoFIKn_IKnaIKjaIHMHIKndIKmJHIkHG`IKngIKoaIKOWIHHFIKobIKnlIKGgIKNoIKidHIkHG_IKoGIKbFIIJ[HG]IKFOIKlmHIkHHHIKlpIKo]HIkHG^IK[IIKmjHHIIKOnIIJ[IKpNIHMHIJb_IIJ[HHFIKpGIKmeIKl[IKpOIKjaIKmIIGZmHIkHHGIKigIKlgIJjbIGK^IJYgIKWmIKOKIGK^IGK^IKpeIKGfIKIjIKmMIKmYIKjdIKoiIKmaIHMHHHLIKpfHk]IHMHIKlKIIJ[HMWIGK^IKkYIK[IIHHFIKj`IKHbIKlXH^[IG[KIKjfIJpOIG[KIKIcHHKIK_\\IG[KIKZfHGkILFlIKfKIKKoIIKiH_OIJkMIKM`IG[KIKkGIIKiIKW\\ILGHIJj^Hp`IKWdILF\\IKa\\IKjeIKa\\ILF_ILGKHIkIK[HIKIXIK_aIHHFIG[KIKflILFaIK_hH`aIKHbHGiH_eILFfIKZZHMLILFiHIkHGjIKZ_ILFmHIkHGoILHIHIkIKoNILFpIKipHIlILGeIJmLIHeMIGK^IHHFIKWmIKZJILGhIKfoILGjHIkHGpILGmHMWHO\\IJb_ILHFHGmILHMIKZ]IJokILGpIKgYIKg`ILFpIKg_IJokIJoJIG[KIKgdIJpNILIJILHNIKZ^ILGOIK`YIKkLIKokIKkNIKIFILGaHIkIKIXIKGmILHZIK`nIKmNIKoiIKmhIHHFIIJ[HGnIK]]IHHFIHHFIK\\jIKIcIKHbHWaILIZIKjXIKYlIHHFIKHbIKedILIeH^FIIFeIKGjIKHbIK_`IKIcIG[KHWGH]pILGYHMWIKGjIKa`ILG[IKYbILJWILGGIKhpHH_IK]]IIKiIIKiILImHIkIKI`IGKHIKfZIKYbILG]IKYbILH^IKa\\ILJ_IKa\\ILJcIKYbILJaHcFIIKiIKI`IKbdILGWHH`ILJgILI_IKX_IKW\\IKI`H\\cILJ\\IKa\\ILKGILJoIKf\\ILGnIKIFHIlILKOIKYgHMLIIKiIGbmHH]IKOLIKI`HH^H_eIKJKIKepHMLIKJKIKIcHHcIKZ_IKJKIKZ]HHdILLNHIkHHaHIkHHbILLYHHWIKGkILKkHIkIKJKIKflIIKiIKejIJjYIKI`HHXH^FIJ`XILLHIJjdIJb_ILLKHIkHHNILLYIKZfHHOILLYIKi\\ILLaILLcH^FILJhIKOWIKI\\HH[IKOWIKI`HH\\IKpKIKI`IKI`IKkeHMWILKWIKGpIJjYIKJKIJj]IJmMHIkHMOIKI`ILJXHIkIKJ[IGMYIKjWIKWhHMWIKIXHMLHKbHIlHMOIKJ[HkGHIlIKI\\HMLILIcIIKiILNOIGGMIIggILN\\ILMgIKI`ILMYIKmhIKJKIG[kHHZIKKoIKJKIKJKIKWoIJjYHMOILGnIJjbIKJ[ILMjIKYZIHFkHcFILMoIKf\\ILNZIJlkHIlIKJ[IHFkH^[ILNnIKIKIKI\\ILNnIKGMIKI`IJ]ZIJngILMaIJjcIKflILO[ILGiHMLHMOHHpH_eILNLILLmHMLIKJ[IKIcHHmIKZ_IKJ[IKZfIKHjIJpOIKJ[IKi\\HcFIKI`IKJ[IJnXIJjgILOaHIHIJleHMOHIIIKHcILMlHMWIKG[IJoJILOjHIkHIFIKcIIHFkIGZcIJjnIGoGIJjgIKnLHIlIGIWHHhIKmpIHHlILNdHMWHWGIHFkIHHlIJoWIKKfIKJ[IKHIIHFkHKLILM\\ILWGHIkIKIjIJb_ILOnHIkHHeH^FILWJILKjILJkIK\\KILO]HMLIKI`IK[gILXcIK\\KHHfH^FHMOIKiJILOcIK_oHHkIKZ_HMOIKZfHHlIKYZIKJ[IKXiIKZlIKOWIKhhIKXpIKKfHMOHHiILW[IKYlIKI`HMOILWLILX`IJ]ZILXhHIkIKGXILXjILLmIJoJHMOIKIcHHjIK_\\ILXpHIkHI[ILYHIKYfIKjWIKbZIKeMILYNILMhIJjNILYYIK_aILY[ILX_IKI`IGjlIKhoHMOHI\\ILOfIKihILOiIK_oIKIgILXYIKiWHIZILOmILGFIKi]ILX^ILO`IKJ\\ILZWHIkHI_ILZZILXkILW[IKIcHI`ILZbIKZfHI]ILZbIKi\\ILZKILW[ILZfILZOIKOLHMOHI^ILZkILOhILZmHIkHILILZpHIkHIMIL[HIKZ^HIkIK_[ILZeIK[IIKI`IKbgILXfIKI`IKXJILOZILX`IKXNIL[kIKI`IKXXIKGMIKJKIL[gILLbIL\\IIL[jILLJIL\\IIL[mIL\\LIKJKIKKfHMWHMOILYcIKW\\IKJ[IHoXIJnlIKa\\ILYcIKYbILNnIKYbILMpIL\\LILMgIHFkIK[WIKmhIHFkIHFkIK[\\IKIcIGoGIK[LILYKIK_`IKf\\IKdaHIlIHFkIK[gIJjgIHFkH[oIKGXIJjnIGIWHIWIKWNIHFkIGIWIK^GIHKlIL]_ILJjIKJgIKa[IKYbIKdlIL]GIKa`IKZnHMWILOgIKi]IL]\\ILX_IKJ_ILObHmWHIkHIXH_eIHHlILLIH]iIK_oHINIKZ_IHHlIKZfHIOIL^NILGFIKW\\IKJnIG]GILJFIGdiHJWIKOhIHHlIK[HIKJnHMWILXFIL]mILZgIKOLIGIWIKWeILNHIK_mH`aIKJnIKdOHk]IHHlIKIcIKJnIL^nIJj_H_dIL_FIKiWIL^dIH_MIJpgIL^aIKbHIL_OIL]_ILXGIK[IIL]nIKhoIGIWIHmMH^FIL^IIJlaIL_JHIoIL_LIL^lIL_HIKOLIKJnHIpIL_hIL^KIKZfIL_[IL_[IKL[IHHlIKZ]IKJnIL^[IJpiIKc^IKYbILOgIKM`IL^bHIkIL^dHcFIL^fIKXjIKIcIHFkIIMIILJFIKf`IIFeIGoGIHWeIJoFIGIWIL\\iIKKoIGIWIGIWIL\\mIL^KIJppIKjWIL`fIKYbILOMHMLIKk`IL]]ILX_IL]bIKhoIL`KIGZfIJOmIKamH`aIKKWHInIL_nIJOmIKIcIKKWILaZIJnIILa]IKiWIKKWH\\NIJpgIJdjIKbHIKKWIKW\\IKKWIH^LILJFIGhZHJWHLIHIlIJOmIK[HILaeHmeIHhIILaLIKNeIKXFILbKIGIWIL\\KIL]pIGIWIKXNH`aIHHlIJjYH^[IL`kIL^KIKGMIHHlIL[MH`aIJOmHIaIGZfILbJIJmnHIlIJ_eHIbIL_LIKKfIKKWIKIcIJ_eIJjnIJ_eIK`_ILI\\IKKWIKZfIJ_eIK`NIK^lH^FIKM`IKKWIKZ]IJ_eIKW\\IJ_eIKaXH_dIKdkIKXpH^KIKKWIK[HILcOIL^lIKKWIKH\\IL^lHIhH_dIL_JIKF_H^[IHHlIHHlIL`KIL^lHHoHIiIKIeIK`aILdJIKk]IHHlILclILWhIJOmHIfIGLMIKfoILdFILbLIJjnIJOmHJWIGLMIKGmIHHlIJOmIJMoIKGXIL_OHO\\ILd`IKFFILcmIJj]IKKWIKn`IKmhIKKWIKKWIKndIJjYIJ_eIKogIJleIKK_ILeLIJjnIKLHILeLIKGlHIlIKKWIKLHIJMoH[cIKJnIJOmILa`IL_mIJOmHJNILcmIJXLIK`bH^[ILe`HonIKOLIJOmHJ[ILefILekHJ\\IGZfILejILa`ILahHJYILeoIKKWILFIH^FILfHILelIKKbILcmIJjYIKKWIKmZIKFOILfWILdkHJHILfZILe[IKnkHMLILe_ILbLILa`IJjYIJOmHJIIGLMIIMIILciH^FILffILeaIJj_IKHjIJOmIKcfHIiIKHjIKKWIKeJILc^HIkIJ`XIL\\_IKYbILbJIKYbILaXIKa\\IL_dIKYbIL_OIKW\\IKK_IHZbILKaIKYbILcgILgZIKf\\IGFZIJn^IKLHIKKOIJmjIJngIKLHHIaIHmMIK`\\HMWILhFILhHHMLHIhIL_bIHeMIKLHIK]cIKKoIKKnILgmHldHIlILe]IKYgIJnZILglHIkIKYNIJjgIKLHIKLHILJjIGlKIGm\\ILJFILhXIKLZIKLHIGlKIKflIKLHIG]GIKhoIGlKHJFIGZfIGNYILaYIGeFIKOXIL_nIGNYIKIcHK`IKOLILiYHJLILiOIKiWILiYHlJILagIGcmIKbHILiYIKW\\ILiYIKdJIKW_IKdoIKabIKf\\ILggIKWdILbJIKM`IGNYIK[HILi_HcFIKLHIGNYILY]ILhpHIkILO]IKdbILh^IKk]IKLHILdXIJleIKKnILcoHMLILMIILheIKKmIK_fILjaH^[IIFeIGlKIGlKIKbYILibH^FIJjnILiYHJMILfbIGiLHJJH_dIKW\\IIFeIKecIL]FIKOnIKhGIKcNIGFlHIkIGnKILJFILi_IKYZIKMIIKfkIKXdIKhFIKW\\IHNpIJnpH^_IKWdILiKIKa\\IL]eII_FIKf\\IKeGHMWIKMIIKa`IKLfIKa`IKLHILMkHLGIKk^IK`WIKa\\ILkdIKYbIKKnIKa`ILkfILjgIKa\\IKHlIKWdIHNpILMkIGflIKlGILkJILlLIKa\\ILlOIJn^IKMXH_OILJfIJkeIKMXIKMXILJjIKMOIKj]IJMoIKWdIHdHIKa\\ILlFIKdGIKMXIKMOIKH\\IJjYIKMXIKkjHMWILMIILlcHldIK]]ILlgILK]IKIcIKMOIKk\\ILkJILlnIKYbIGflILmFHIkILmHIKKoIKMXIKciILlfILmWILliILIdILJFILmaIK`MILmGIK\\\\IJj]IKMXIKpbILlbILmWIKmlHIlHXFIKkhHMWIKkjIKMXIKpjIJj]HXFIKkoHWHILnLIKhgIKM`IKMXIKlKHXFIJjnIKMMILboILmWIKlOILncILnZIKlZIKkaHXFHXFILnKIKMOIKlcILnOILn^IKlgHJWIJdWHXFIKlKIKMXH`aIKMOIKmgIK[IIKMOIKMOIKpeIKMbIKniH^\\HIkHJhILeoIHeMILo^HIkIKHLILoaH^[IKMOIKHLIKmaHXFIJaMIKMOILoOIKmfIKkaILoZIKmkIJleIKMbHJeILfbIKM\\IKniIJjYIHeMHJfILfbIKHLILf]IKGmILoiIKNoIKKfHXFIKn\\ILonIJj]IKMOILdpIKJLIKg\\ILpGIKo_HIkILo]IKOWILpMIKOWILocH_eIKMOIHeMILokHIkIKoFILonIJjYIKMOIKmZIKM`HXFIKoJIKMOILcWIMFYILZGHXFIKkGIMFKHIlIKMOHJkILnfHXFILm[IJoFILpdIKo\\ILphIKOLIKMbILeOILo_IMFlIKcnIKodILohIMFoIMFHIKomIMFYIIMIILmdILI\\HXFIKpFILpbILmcIKpIILpFIMGXIKpNIJn^ILpGIKpXIMFOIKpMIMGXIMFZIKWeIMG`IKp_IMGWIKMOILnHIJnZILpGILnKIKMbIKphILoGIKMOILnYILpjHIkIKpmIKJLIKOKIKMbIKMbIKpeIKM\\ILfNH`aILpoH^[IKMbIMFGIKOnIKMOILFWIKMbHk]IKMOILnbH^FIKMbIKM\\IKWmIKaGILiFIKOLHYcHJlIGZfIKMkILaYIJjYIKNMHJiILnfIKMkIKIcIKNMIJjnIKNMHJjIMIHIKiWIKNMILcWIMIXILZGIKMkIKZ]IKNMIKW\\IKNMIHHFILgYILkcIKf\\ILkfIGZ_IKWdILmmIKM`IKMkIK[HIMIXHcFIHeMIKMkILmIHIlHYcHJ_ILd\\IMFoIG]GHYcIJjnHYcHJ`ILdcHIlIHeMHYcIL]^IKHLIHeMILKnIJjnIKMkHJ]IGLMIKGXIMIZHMKIJjnIHXnILjpILI\\IKNMIKZ]IK]kHIlIHXnHJ^ILnfIKNMILL[IHXnIKW\\IHXnIKGjILJFILlnHJWIKOZIKNMIK[HIHXnIKHWIKNMIKflILofHIkILHbHMLIKMkHJcIGZfIMIZILdjHMLIHXnHJdIL_nIKNMIKIcIKWHIKNdIGLLIKa_IKNMIKZfIMKlIHXnILjmIKHmIGjlIMJjIKNdH`aIMJgIKXpHMLIKNMIKgZIMLGHIkHJbIMKiHIkIKg_IML[ILfNHk]IKNMIKgdIMKHIMKkIKdYIL`NIKWdILkYHJWIK\\_IMKWIKNdIMKZILX_IMK]ILWOH`aIKMkHKLIMKcILW\\IKOLIHXnHKMIML^IMLgIMLNIKG_IML^IMLFH^FIHXnIJkaIJjYIKNXHKKILfbIKNhHKWIGLMHWGIHXnIKNhILXHHIkIKNMIKHIIMJlIHXnIMLbIKOhIMLLIMKYHMLIKHLIMK[IK[IIMK]IKhoIKMkHKXIMMLIKjfIMMZHKNIMMXIMLMIMKfIKm_IMM\\IMLoIMN_ILcYIKKfIMNHILjbIHXnIKb\\IMMlILIOIMLfIKNdILGfIKXnIKWdHXFIKa`IKMbIKa`IMHfIJp^HL_HIlIMLnIMNIILoeIMNjIMK\\ILo`IL]oIKMkIKdNIHl\\IMMMIMMZHJpIMN]IHXnIJb_IMKpILHKIMM^ILiaIKNMIKkGIMKYIIMIIMOOIKL[IMNfILeZIMNKILH[IMHGIKHLILjhIMWIIKmpHYcIJYcILmMHIkHYcHXFIKMiIJjgHYcHYcILJjIKNMIIKiILgeIMIcIKa`IMWKIKYbILlpIK`MHYcIMNLIMJMIIggIGLMILMIIMWXIMWWIK]]IMW\\ILmZIMNjIKI\\IKjWIMWdIMIgH^FHcFIMWhIK\\\\IJjYHYcHKHIMWlIMWoIMWYIMWpIMWoIMW^ILX`IMXJIKf\\IMWfIKYlIMXOIMIpHYcHKIIMX[HYcH_OIMWZIMWoIMW]IKYZIKNMILMMILllIKHWIKa`ILmmIMXeIMOXILjbHYcILjdHIkIKMkIMIZIMKIILZHIMWaHMWIMHnIKa\\IMOFIKa\\IMIZIJn^IKNXHXFILleIJjgIKNXIKNXILJjIKNlILWKIJkpIKYbIMOHIKa\\IMYOIKa\\IMY_IKYbIMIZIKYbIMYaIKYlIKNXIKNlIKbdIKNXH_OILKZIJkeIMYiIMXGIKNlIHFkIMY]IKHZIKf\\IMYpIKYbIMOOIKNWHIkIMZWIK]]IKNXIG]GILHbIJjYIKNlIJnZIKHfHIkIKOOHMLILdjIJjYIKOKIG`MIMLJIM[GIK_oIKOeHMLIKOKILogIKOnIKOOIKZ]IM[XHIkIKOKIHl[Hk]IKOOIKgZIM[_IKOKHKdIL_nIKOOIKg_IKOeIM[KILfdIKM`IKOOIKgdIKOKILcWIM\\GILZGIKOOIKkGIKOKIKW\\IM[gIMLiH^LIM\\JILI^IM\\GIKGmIKNXIKOOILIcIKM\\IKNXHMWIKgZIKNXIGFZH`aIKNhHKaILeoIKNlILNIIKmMIKOOHKgILeoIKOKHKhILeoIKOZHKeILeoIKOhHKfIGZfIKNXIKOhIKbdIKNhIK^eIJjnIKNlHK[IMX[IKNhIKNhIKNlIM]ZIGdjIM]]IKOFIMZhIK]]IM]^IL^KIJjnIKOOHKYIMJWIKNhIM\\^IKKoIM]`IL`ZIJleIKOOIM]\\IMWOIKNlIKNlIKOOIM]iIM]bIM^JIM]eIKOOIJkeIM^KIM]hIM[mHKZIMJWIKNlIKOKIL]^IKOOIG]GILjNHIlIM]nILY]IM^cHIkIMMHIJjYIKOZHK_IMJbIHpaIMO_IJjYIJjMIJoJILI\\IKOhIKIcIJjMIJjnIJjMHK]ILnfIKOhIKZfIJjMIKM`IKOhIKHIIKNXIM_NILXWIKXpILWaIKOhIKZ]IKOkHMLIKOOIM]OIK[IIM^iILY`HpaIL^mH^`II_FIL_nIKOZIKIcIKOhH`aIKOhHLHIM`FIKiWIKOhIKW\\IKOhIGIWIKjWIKNhIKa`IGWhHJWILWaIKOZILYXIKOhH`JII\\MILX_IM_kH^FIKOZIK_KIM`JIKMHIM`MIM`HIKOLIKOhHLFIM`MIKZfIM`OIM`mIL_]ILcaHMWIKNlILI\\IM``IM^pIKYlIKOOIKOZIM^hIMOZILO]IKk`IM^gIM_jIMOZIKhoIKOZHLGIGZfIM`bIJjdH`aIJjMHLLIL_nIM_KHIkIM_MHMLIJjMIKdbIKa_IM_YIMamH^FIM_fIMbGIKbHIKOkHcFIM_hIKHMIIFeIKOOIM[HIJoFIKOKILNGIJjbIKOZIL`iIJjnIKOhHLJIMX[IKOZIKOZIM`IIJj]IKOhILNnIKW\\IJjMIL^oILkJIMb[IL\\dH^FHLfIHNYIMbIH^[IM\\IIKIKIKOOIM\\IHMWIMcOIKOLIKOZHJOILkFIM`mIJOmIMZaIM[`IMIdIKf\\IM`hIKJLHLlHIlIJjMILbeH`YILmcIGZfIKXJILiLHIkIKXNHKkIL_nIKXJIKIcILb\\IIgHIKM[IMdFIKiWIKXNHMWIMdNIMLWIKXIIKbHIKXNIKW\\IKXNILfnILJ]IM[YIKf\\IKf`IKWdIMafIMKNIMdYIK[HIMdWIMbIIKXJIKflIMcgIMK^IKOLIKWMHKiIMckIKgIH`aIKXNHKjIMdLIMdHIKOLIKXNIMc[IKa_IKXJIKZ]IMdIIMcnIM_aIKHmIM\\hIKXJIKgZIMeZIKXNHKoIMdLIKg_IMeaIMe\\IKOnIKXJIKgdIMd[IMeLIJ_eIMc_IMccIKf_IKf\\IMddIKKfIKXJIMdgIK`MIJjMIMdjIJoFIJjMIL`iIJn^IJjMIJjMIL`mIKWZIKK_IKjWIMdbIIG_H^FIKdbIJjMIK[gIJnZIJjMIKeXIK]]IMfYIMXGIKWMIKLHILJFIMafHhmIMcfIKWLILX_IMdlIM_lIMgFIM`iHMLIKXJHKpIL_nIKWMIKIcIKXJH`aIKXJHKmIMgOIKiWIKXJIKW\\IKXJIKKnILJFIL^jIJp^IGZkIKWMILYXIMclIMaoIMgFIMdkIKJ\\ILXbIMbIIKW^H`aIKWMIMJHH^[IMdlIKWMIMhFIMfoIMhIIMgkIK[IIMdlIKhoIKWMIMOLIM[FIMgiIMJeIJjYIKXNIJk[ILI\\IMdGIMe[IJjnIKXNHL]ILnfIKXJIKZfIMdNIIMIIMdhIJp^IKOZIMeXIMe[HOOIMdYIMglIGjlIMK_IMgFHL^IMeFIL]GIMeHIM[`IMeKIMhdIMdJIHXdHk]IMhpIMefIKgaIM[NIMe_IMiZIMe[IHgGIMi]IML_IMicIKXNIMFNIMgLIKgcIMihIHpaIMdLIMhjIMKfIMfpIMfMIKGMIJjMILY_H^FIKWMIMgKIMdYHLbIMg]IMgXIKOLIKXJIHpMIKa_IKWMIKZfIMg_IMjYILhnILkJIMIfIMdXIJp^HLaHIlIMggIMdYIMiGIKWMILcjIMbIILjZH`aIKWZILj]IMiGIJjMIKWZHXGIKWJIKmMIKWMILN`IMjZIKXnIMeMHIkILMfIKOLIKXXIMbkIKIcIKX[ILjJIKa]IKWdIHXdIMcFIKa`ILaFIKWdILkiIMgjIKa`IMkJILXfIKXXIKX[H^[IMjMIJmLIJMpIMgJIMjLIMlIIMgZHIkIMkOIMiWILWdHMLIKXXIMk[H`aIKX[IMk^IKX_ILiYILJnIMkcILgiIKf\\IKeoIKa\\IMlFIKYbIJkFILNIIKX[IKcmHMLIJkWIMgiILIcIKWMIMgiIJjaHIlHdYIKmhHcFIK]\\IJjnIJpLHLXIMJIIKYeIJpLIMmMIKXIIMJWIKZGIJmLIKGXIK]NIKYZIJpLIGiLIMIbIKdmIL]HIKf\\IK]NIKWdIGgnHJNILclIJpLHLOIMc\\IKYfIIFeIMc_IKdnIK[cIMmgIKI]IMmlHIkHL[IMmoIJpLIKLfIMc_IL]hIKWbILlWILkMIHoXIKMIIKjWIMnHIKY`ILkMIJ]ZIHNpILJFIHp`IK\\kILlFIMmdIMnbIKa`IMnaIKHkIKf\\IKZYIKW\\IG]GIGflIMn`IMmfILWhIJX^HL\\ILfbIIMIIKGmIK]FIJoZIJX^IIMIIJkeIJX^HcFIMZmIKblHLZIM^oIH^LIMiOIJjYIKFNHLoIL_LIGjlIH^LIKIcIKFNH`aIKFNIMijIKcJIKZ]IMolHMLIMonIMdXIH^LIKgZIMpGIKFMIKL\\IKa_IH^LIKg_IMolIMoeIMegIKM`IH^LIKgdIKFNIKW\\IKFNIKMXIMc_IMkiIKaaIKa\\IGLoHJWILXnIH^LIK[HIKcMIL`MIK`mIK_iHIkHLpIGZfIIMIHcFIH^LH`aIH^LIHlXH^[IKcMHflH`aIJdWIIaMIKa_IK_MHIkIJdWINFYIK\\HIGZfIHaMIGZ_H[cIKFNIJdWIHaMHJNIMJaIKaoINFbIL^kIMpHINF^HIkINFhHMLIJdWHMFILeoIHaMHMGIGZfINFfINFpIKYZILoKIM\\WIKjfIKHmIK_OIKFNIK[HIKcfILcWIKaXIK^\\IKZgINFHIJoZIIMIHnaIMoOIL_mIKHXIKdXHLYINGiIK`aHLnINGiIJjnIIMIIGZkIMWOIIMIH^gIIMIIJjnIMpkIMJIIIMIIK`lHk^IK_bILO_IJleINHGH_dIKbhIMnnIK\\fIJjgIKcFILJjIKFNILmdIMYHIMnkIMpgIKWNIKaWIJmLH[cINHKIKbmIJoFIIMIHLeILfbIJppIMcHINHIILcWIJppINH_IJp`IJleIH^LINHHILj^IKcJH^gIMocHcFINHXILY]INFIIM^jINIWHIkHLkIGLMIL^GIKcMIJjlIJdWIJkaIHZXHIkIMceIKmMIJ`XHLiIGZfIJdWILgXIKL[IKFNIKHIINF_IJjYIJdWIMLbIKKfIK_^INFoIJjnIJdWHLjILnfINF]IJdWIKW\\IJdWIKMbILJFIMphINJXILI^IKalIKGmIK`OIJk^IMp[IMhHHMLIKfoIJppHcFIMpZIK_]HIkGWIMJWINHkIL]^IH^LIJppIMJ^INJNHIkGXIM^oIKeJIMh^HIlIJ`XGNILnfIHaMIKZ]IJ`XIJpOIHaMILL[ILL]IKW\\IJ`XIKM\\IMoIIM`\\ILZGIHaMIK[HIKdFINFJINGOIMIpIH^LGOIMX[IH^LINI\\IJmjIKHIIH^LGmINGiIKdWHMWINLYINLIHIkINLKIMWOINLMIKcJINJ[ILGaIMJIIH^LIH^LIKalIKdbIMpoINL^INL`IKKoIKFNIK\\eIK]]IKFNIKFNILJjIHaMIHeMIMnYIKf\\IMnmIJkFIKpNIKFNIHaMIKIKINLNIMpMIH^LINIGIKmMIKFNINIJH^FINLgIMpNIKGMIKFNINIOINF`INLmHMWIJdWH^gING_INLhIK\\\\IK_FILnkIMHgIKcJIH^LIKpeIKFNILnNINMbIKklIMomHIkILn\\H^FIKaXIKmaIH^LIKlKIMpMIKFNG[IL_nIH^LIKlOINN^INNFIK[IINMGILpHINF`ILoFINNYIKklHk]IKFNIKlKINFKINGGILopINNGIJdWIJdWIKpeIHaMILodIJ`XIKmWHMLIHZbILodIGm\\IKm]INOFIGm\\IKmaIKFNIJaMINF_INOFILoXIKGMINOIINNhINIlIKnKIKOLIJ`XG\\ILeoIHZbINOhH`aIGm\\INOkH^[IJdWINO]IKOnIKFNIKn\\INOaINFoILpeINOdINFoILpiINOLIKOWIJ`XILodINOXIKakIKdHIKojIMpNIKoFINWMIJdWIMooIKFNIKoJING_ING_INWJILIOINWdHIkGYIL_nINJ_IKOLIJdWINWOINOFIJdWINWYIMFpINOiINXMH`aIHZbILeYINOFIKddINWkIKomINWiIMGdINFnIKpFINWmIKpJINOHINFoIMG\\INXJHIkIMG_INFnIKpNINX^IKZpINFnIKp_INWmILnHINXgINOKIKpgINW_IKpjINIlIMHIIKGMIHaMIHaMIKpeIJ`XIMHWINOWILfdIG]HINW`IKmaIJdWILFWIHaMHk]IJdWINN]H^FIHaMIKd^IKGMIHZbIK[jIJleIHbWINN`IM[FIKhkINFXIJjYIGnKGZILnfIG^HIKIcIKh\\INZGHIkGHINZJIKiWIHJXIIMIIHJXILZGIG^HIKZ]IGnKIJn^IGnKILGIIKL[IG^HIKkGIGnKIKW\\IGnKIKHLIMc_IMpmIKWdIKeJIKYbIKd^HJWIMOLIG^HIK[HINZ\\INW`ILkIINYiIKZLIKOLIHbWGIIGZfIKhkIJmZHMLIGnKGFIL_nINZKILkOIKZ_IG^HIKZfILHLHMWIN[JIKOnINZeIN[aILcWIN[gHJWIM^nINZ^IN[jINY[IG^HIKIKIHaMIKfbIN[MIMo^IN[OHIkGGIN[YILHgIKfpHIkGLIN[_IK_oIKh\\IN[\\IKOcIKa_IN[oINZMIKh^ILIFIMe]HIlIG^HIKgZIN\\^IN[aIIYNHk]IG^HIKg_IN\\jIGnKIMooIG^HIKgdINZZIN[pILI\\IN[iINZgINZLIMWoILJFIKcMIKM`IN[HIN[jIKGmIHZbIN\\GIKaGIJ`XIN\\JIJnZIHZbIKFNILIiIJkeIKckIMXGIHbWIMIoILkJIMpeIJm]HcFIKdIIKHMIIMIIKfbH[LIKf]IKfmILMkIG^HIMNLIMd_IN^JIKa`INZlHMWIKhiIKh[IMpNIMYgIN[aIGnKILJjIGbmIMNhIMYnINZmIKf\\IN^HIKWdIKf^IKWdIN^[IKcZIMXMIN[aIJnpINZaHIkIMZZIK]]IKhcIN^aHIkIKNXIMc_IN^gINY]IKhjIN^mIGnKIN^oIJjgIGnKIN\\LIJjnIGbmGMIM^oIKG^IModIKleHIkGJIMohILlGIKIcIIJ[H`aIIJ[IMi\\IJg[IKbHIN_jIKokIN_mILlGIKgZIN_pIKhpIML]IKa_IKG^IKg_IN_jIJjYIIJ[INJWILlGIKgdIIJ[IKW\\IIJ[IMMjILk]IMpfIKlIILI^ILF\\IKGmIGnKIKG^IJlXIML\\IKH^ILfbIGbmIMkGILMIIHjXIHjXIGbmIJkeIGbmIHjXIL]WIN`XHIkGKIMJWIGbmIKlfIK]]IGbmIGbmILJjIIJ[IMZiINHgIN`jINKmIKdGINaWIKYgIJjgIGbmIN_]INaLGgIM^oIKiIIJnHIJjnIGK^GhIN_gIKiLIKpfIKneIM[nIKmeIKZ]IGK^INbHIMooIHMHIKgZINbLIKo`IMi`IKOnIHMHIKg_INbLIKmmIMp\\IKKfIHMHIKgdIGK^IKW\\IGK^IKOOIL^^IKXpIHFkIHMHIK[HILJpIKjGIK^bILlGIN_]IKmeGeIGZfILG]H^nH`aIKGfGfIL_nIKjhILIdINcLHIkGkINcOIKbHIKGfINcYINc[IN\\fIGK^IKgZINc^HMLIKGfGlINc\\IKg_INcdILIdIMooIGK^IKgdIKGfIKkIIMc`ILJFIMldHJWILLiIKkWILIdIJgWIKpfIKflIKG^INYkIKpHGiINcIIM_nILIdGjINc\\IKIcILF_INdLIMdXIGK^IKZ]IKGfILgKILIdIMccHJWIJX^INdKINdaIKk[IK]gIKokIKG^IMJ^IKo`G_IGZfILF_IN[[IKoiG`IL_nIKGfIKZ]IHHFIKnjG]INeOIK_oIKGhINceILLZILL\\ILjbIMIaIKXpILLiIKGfILL_ILKcIIJ[IKGfIKflIIJ[INdXIKo`G^INeJINd\\IHHFGcINe\\IKIcILKcILKcIKOnINeWIKoiIKW\\IHHFIM_iILkbIKkMIKjYINMMIKf\\IK]IIKYbIKGMIKa\\ILf]IKWdIIGnINdjILIdIK[HINehILIdINboIHMHIIJ[INeGILIdGdIGZfILKGINeLIKGjGaIL_nIHHFIKZ]IKGjH`aIKGjGbINgKIK_oIKGjIJb_IHHFINKgILjbIMKKIKXpIKOZIHHFILL_ILKIIKjaINecIKGMIHMHINcFILIdHGLINgFIMeGHMLIKGjHGMINgYIKIcINgNINgoIMpOIKOnINgLIKm_IKm[IKg[IKXpIM\\hIHHFIKgZINhIINhNHGJINgYIKg_INh\\IKGjIMLbHMLIHHFIKgdIKGjIKW\\IKGjIJjMINJdINbiIKoiIK[HINgeIKnmINdoIKpfINgjIHHFHGKIGZfILKIINcKHMLIKHbHGWIL_nIKGjILInIKOLIKHbIN\\lINhJIKZ]IKHbILHcIKg\\IN\\fIKGjIKgZINi`INiNIML\\INiXIMigINifIMLhINhcINhNIKgdIKHbIKW\\IKHbIKWZINhkILI\\IKGjIK[HILJWIKGmIGK^IKnYIJjnIKGjHGXIMJIIKGfIKnXINg_H_eHcFIKGfINg`INjXHIkINjZHMWIKfoIKGfINjOINj^IGZ_INj`INhNILY]IKGfHcFIM^kHIlIKGjHGNINIfIMLhIKamHMWIG[KINIkILK\\IKaFH`aIKI\\ILM\\ILFeILN\\IMMkIKHbIKHIIG[KIJjnIG[KIN`ZIKHbIKZ]INkaIJjYIG[KHGOILnfIKHbILJYIKYZIG[KIMjlIJoZIKYbIMnmINfcHMWIIGnIKYbINakILKdIKa`IL\\eIKYfIKa`INfaHJWHMKIKHbIK[HILKfIKGfILJJIKZ_H^gIJomH^FIKGfINdaINhdH^[INhhIMiHIN^dHMWINdaIKWdIHp`ILKFIMoJINHiILMkIKHbIKXNIMc_INlnIMmeIKa`ILKGIJkeIG[KINdXIJjYIKI\\GoIM^oILNnINK]IKJKGpILnfIKI`IKIcILLHIIMIILLlILI\\IKI`IKZ]IKJKIKW\\IKJKIKXXIKjWINgeIKWdILJcINffIKI`IK[HINmhIG[KILXdIK[IIIKiIG[KINfnIKI`GmIGZfILLlINeLHMOGnIL_nILLOILZHH`aHMOHGHINnaIK_oHMOILLnINe`ILL]ILcWILY\\ILZGIKJKILL_ILXjILKNIL\\IIL`^ILK\\IKX[INbhILMkIKI\\IKYYINoMIMcdHIlIKI`INemILZHHGIIGZfILOgINeLIHFkHGFIL_nILW_IHFkH`aIHFkHGGINodIKiWILaHIL]_ILcYILZ\\IKZ]IHFkIKW\\IHFkIGXOIKjWILNGIKYbILNZINffIKJ[IK[HINolILX^INboIKJKIKI`INfnIKJ[HGcIHX\\IMO_HnbHIkHGdIL_nIHFkIKZ]IGoGH`aIGoGHGaINpeIK_oIGoGIJb_IHFkINg^ILcWIGoGIMNiIHFkILL_IHWeHcFIKJKIMZ`IJjmHIlIMm`IJn^HaNIK]\\IJkeIK[ZIKYmIJjnIHoXHGbIMJWHaNIHoXIJk`IKHjIJpLIIalILWhIHoXHGgILfbIJ]ZHGhIGLMINHmIK]^IJ]ZIOF`HIkHGeILflIK\\KH^[IOGFIHoXIOGHIJjYIHoXHGfIOGLIKZYIMoXH^gIOGWIJleIHoXHG[IM^oIOG]ILfeIJoZIOG`IKW\\IHoXIKYpINjIIJjaILclIHoXHG\\IMmoIHoXIKZMIMnjINlFIKa\\IMnZIMnnIKa`IK]IIGIFHIlIJ]ZHaNIKhoIG]GHGYIGZfIJdiIL_eILjbIOFbIKa_IJX^IKIcILYpILYpIKOnIJX^IKZ]INHLILjbHGZIL_nIJX^IKZfINGfIOHeHIkIKZWILJFIMFNILLiIJX^IK[HILYpIJ]ZIJX^IKflIOHYIL]oIG]GHG_IOH^INpaILcWHG`IOHnIK_oIOHfILiaIOHiILcWINHFHIkHG]ILnfIOHoILcWIKW\\IIMIIKZ]IMl`INmNIMn\\IOHNIMcaIKa`IHKFHJWHMOIOIMILcWILnOIL`MIOIYIKZKIMiKIG]GHG^IOI^IM[IIKOLIIMIHHHIOIbIOIGINGbIOFlH^[INHJILcWHk]IOIfINHLIJjYIIMIIMieIK^OILHpIOHkILcWHHIIOIbIKg_IOKHIIMIIMooIJX^IKgdIOKMHIkHHFIOIbIOHpIKaYIK_oIOGlIKM`IOJOIKaJHcFIOIWINadIK\\KHaNINkFIG]GHHGIM^oIOH_IM[JINHZHHLINIHIMHHIOFpIL`MIIMIIKbfIOJnILXWIOIkIOIcINH\\HIkHHKIOGLIL`oILfoIOLIINHoIOIhHGkIOLZIL^kH[cIMoZIOL^IOLLHGlIOLNIOK]IOIhHGiIOLaINFdIOL]IJppIOInHIkIKZcIOK`IGIWIOKbIKkiIOJYH^FILf]IK\\ZH^[IK[hILbNIKOLIJpLHGjIGZfIOF^IJpLIKGMIJpLIOF\\HMLIJpLIOFhIKOLIJ]ZHGoIMJWIJpLIJ]ZINJkHIlIGjlINFGINjfIK]^IOM_IK]aILHdIM^oIIGnINZFHIlIJX^HGmILnfIG]GIKIcIK^dIJjYIJX^HGnIONWIKiWIONZIONMIK\\LIOGLIOHgIKFOIG]GIOLdINFiIONaIHcoIOJhINFmIMOZIONgIK^cIOMFILeoIIMIHH_IGZfIONfIOJWHcFIHoXIL^]IK]]IHoXIJpLIMo_IGjlHH`IONJHMWIONLIJX^HH]IN_gIONXIL`MH`aIJX^INi]IMOZIKZ]IK^dIONoIKgWIKa_IG]GIKgZIOOiIL`MIMieHMLIG]GIKg_ION`IJX^IMFNIKOZIG]GIKgdIOH_IK]^IOONIKGMIOOWIMdmH`aIGjlHH^IOOIIOO]IKOLIJX^HHcIL_nIOObIOOoIJX^IOOkIKOnIG]GIOOhIOWbIMp\\IM\\hIOOmIOOcIONoIOOfIOWHIOXFIL`MIMooIOWNIL`MIMfoIOOMILX_IOW[IMgIINfaIMJeIOWGHIkHHdIL_nIGjlIKIcIG]GH`aIG]GHHaIOX`IKiWIG]GIMoFIKiWIMc_IMmhIOWaIL]gILZGIGjlILYXIHcMIOOLIKJ\\ILcmIOFXIOMWIK[YIKLYIKNhIOF]IKZKIIalIOGIHHbIOFcIK]^IJMoIIMIINf_IKL[HONIKJKIMmYIJjYIJpLHHMIMX[IJpLHONIOYeIK]eHIkHHWIOG\\H_eH[cIJpLIOG`IMmZIOYhIMWOIOYjIKYfIOGIHHXIOYpIOGNIKYfIOG`HJgIMceIJpLIOHZIOMfILLpIGZfINfaINeLIG]GHHOIOXgIOXbIKOLIG]GHH[IOXgIKZfINlKINlKIKOnIGjlIKZ]IOXiIOZhH\\`IKjWIMjdINkLIMjfIKJ\\IK[HINlKIONGIKflIOZ^IL]oIJ]ZHH\\IOZbIOI_IG]GHHYIOZgIMOZIOXdHIkHHZIOZlIMOZINlJIJpgIKKfIO[FIMOZIOXjIK[HILJFHpGHJWIKlcIGjlIO[WH^FIO[YIK[IIO[[IMgnIKZHILX_IOMaIM]dIOM`IKYfIK]`H`aILO\\IGZfIOMjINiFIOW[IMKlIGjlINmhIKGmIK]fIOMlIG]GINJmIMdmIK]iIO[dIK]lHIkHHpIGLMIOKdIMOZILY]IO\\nIK[kIO\\pHHmIOKlIL^mHLhINHZHHnIOJdIOIgILjbIOZKH^FIIMIHONIOKHIJppHIHINGdIOLJIOHhIKbHIOIFILcWIK[WIKjWIJjlIK\\oHJWIMXZIOMJIOJXIK^WIK[IIK^IIL]oIJX^HIIINGdIMjNIJppHIFIL_nIIMIIKIcIKbfHMLIJppIO]_IGZ`IJlaIO^]IKcJHIGIMX[IKcFIH^LIKM`IOIoINHoIKW\\INIIIKhgIKYbIO]nINf[HJWILYXIIMIIK[HIJppIKlpIK^aIK[IIK^ZILjMH^FIK^FINMoILcWIO\\lIOX]IHoXIOKYHHgIOW`IL`aIO_NIK]^IKhoIIMIHHhIM^oIO_KIMagIO]YIH^LHHeIL_nIJppIKIcINNpIKcJIO^`INMpHONIO`FIKFNHHfIGZfINMcIKFNHk]IJppIKZ]IH^LIKW\\IH^LIK[nIO\\FIKXpILZaIJppIK[HIMocIOX]IOL[IKGMIO_OIO_eHIkHHkIGZfIO_iIOX\\IKcJHHlIO_nIK_oIO`FIH^LIO`HIKcJIO`JIKahIJjNINLLIKcJIO`WIKKfIO`YIKcJIO`\\INImINGYIKW_IJp^IO`aILI^IO`dIMOZIO`fIO_]IL]oIIMIHHjIO`lINd\\IH^LHI[IOaFIO_pIMppIOaJIH^LIOaLINNOHI\\IOaOIH^LIOaXINHoIO`ZIKYZIH^LIK\\YIO`_ILI\\IO`bIKcJIKYlIG]GIOL[IJjnIG]GHIYIMX[IG]GHONIOXcION[HIkHIZH_dINdgIIMIIK\\_IMoXIOOJIMo[IJjgIO_OIM^eIO_YIMIpIIMIIO\\lIKfoIO_OIOJmINHZHI_IO]HIMOZIO_bIJkeIO`hIOLWHI`IO_hIO]XHIlIH^LHI]IOanINLcINMpIObFIJlaIO`KHIkHI^IO`NIOaWIKOnIOaZIO`[IOaoIJp[IO]mIMlbIKHmIMXZIOb\\IOacIOb_INiFIOWKIL]oIJppHILIOcnIMjNIKFNHIMINNaIK_oINNdIOaJIKFNHONIMpMIJdWHIJIMX[INNgIJdWIMp]IKbHIMp`IMokINKYIOa^IO\\GIKKfIMpkIMpNILeZIJX^IMpoINHMINjdINHOIMpnINIcHIKIOaOIG]GINI]ILcWILamIK]]IOKNIO_WILh\\IO_MINL^IOcMILcWIHoXINFKIK`hHIkHIWIOcZINI_IOeaIO_dINIcHIXIM^oIKcMIMJeIO]YIJdWHININWpIK_oINWmIOaJIJdWHONINWMIHaMIOfNINWGINFoINYbINFnIKZ]INJ`IKcOHIkIK]nIObZIOa`IMpNING^IO]`IMpNIKflIOebIKhoIH^LHIOINGMINd\\IJdWIOZWINF\\IOfWINXGIOLGIOf_IOf[IKOLIHaMIOgKINIZINOeINYbINJfIOfcINGWINL_IOeGIKXpIMXZING]INFoILjhIKFNINboIJppIOHGIOaMIMlGINOFIMjNINFcIJMoINYcIK_oINGFINGOIOaJIHaMHONIOhJIJ`XIOYoIMWOINYOILgWIKL[IJdWIKZ]IHaMIKc\\IK^^IOfhIKM`IKb^INGOIKbaINFoILY]IO\\dIONHHIiIJj`IO\\hIKJ\\IO\\jINFpIMJIIO\\nIObgHIlIG]GIO]GIKdGIK]pIOKfIO]LIJleIG]GHIjIJj`IMnNIOH_IO`nIIMIIO][IOHcIOLOIKGMIO]aILnkH`aIO]dIO]fINHoIOJkIO]iIOK^IK_HIOdJINlOIKXpIL[\\IO^GHMLIOKeINboIO^KIKhoIJX^HIoIKIKIOJWIMagIO^^ILW`IO^ZIK_oINIMIOjXHONIKk`INFLHIkIO^eH^[IO^gIKL[IO^jIOLoIO^\\INWnIO^nIKWiIOdKIJp^IO_HILI^IO_iIKJ\\IO_MIO`gIK]^IMgnIOcJIOJaIOhpH^[IOcOIOkLIO_`IOkNILcWIKflIOc^INGbHIpIOiZIKblIMjNIO_lIOcfIH^LIKGMIObGIOidINFnIO`MH^[IO`OIOcpIKbHIOdGIKcJIK_[IOhbIOaYIOabIK`MIOdWILY]IOk\\IOLLHImIOk_IO`mIMppIO`pIKa_IO_oIKcJIOkeIJlaIOj_INFnHHiIOcnIObLIOklIObOIOa\\IK_kIOhbIGZkIOdNIO_XINHoIOk[IOkIIOlkIMgpILjbIO_\\IMOZIO_^IOkLIOemIOkYIOc\\IOafIO`iHInIOlOIOakHIkIOf^IOklIOaoIOl]IOj^IOaMIOm[HMWIOkkIO`XIOkmIObWIK_pIOgcIOb[IOlHIOb^IOllIK]]IOlLINHZHIcIOmXIOkaHIkIOg[IOmdIOm]IO`IIOkgIMpNIOg[IOmbIOcoIOmdIOleIOaoIK`LIOhbIL[\\IOljIO[jIJppINboIOdYIKhoIJppHIdIOjNIO`dIO`nIK_dIOhGINMpIOdpINMeIOl^IOgNIOhXINNkINGNIOdmIMpFIKYZIKFNIK`jIOlFIKcJIMplIK`MIOeMIOKfIOhiIJjnIGjlHIaIOhlIOYmIGjlIOhoIOegIOiGIOiWIKGYIJj`IO]IIOWYIJjgIOiOIObaIKILIJj`IKGXIOi\\IOLWHIhIOhGIKKfIOHdIOIgIOLLHIeIJj`ILMIIOicIIMIIOKaIOijIOLpIKajIOhbIOJNILI^IOIOIOMLIKGMIOokIOX]HIfIOjNIOopINGbHJWIOnkIL`MIOJeILjbHJXIOjNIOpWIO]hIOHjIOK^IKbFIOp]IL`MIOINIOMKIOIXIK[IIO\\nIOJ\\IJjaIOpfINgnILcWHJOIOpjIOpJIOKYHJ[IOpoIJlaIOpXIONoIWFGIOIhIMLbIM\\hIJX^IKgZIOKYINibIO]hIOKLIOkLIOKOIMilIO]jIIMIIKHoIOlhIONaIWFLIO^HILX_IO\\nIMgnIOMkIO_ZIO\\kIGZfIOodIO[eHJ\\IOjNIOiMIOJZIHoXIWFXHJYIOonIOXNIJnhHJNIOmIHJZIWF^IOLOINGbHJHIWFbIO]bIWFFIO]]ILcWIN`GIWFjIWHHIIMIIN`LIWFnIWHLIM[nIOpIIWGGIOLWHJIIJMoIJjnIK`pIJj`IOLcINILIOK^IKboIWFJIOjFIK\\KIWFNIOpbIK]^IWFXHJGIWFZIMiOILjbHJLIWGlIOplILcWHJMIWGpIOJjIWFeIOpKINHZIWFhIONaIWFkIWFpIWGlIWFoINGbIWGFIOKXIOK^IKcHIWHeIOp_IWFMIWGOIWHjIOZiIKZ`IWHmINalILjbHJgIWIFIWHWHJhIWIJIWFdIL`MIWFfIOLLIMFNIWFiIOKGIOkLINimIJX^IWI[ILjbIMeOIO]hIWI^IOLpIKeYIWIaIWGMIOjGIOpaIWJ_IWGcIWIfHJeIWIhINiMILcWHJfIWIlIOKYHJkIWIoIWHGIOcWIOebIN\\fIWHKIOKYIWJMIMigIOKYIWJXIOiiIWJZIOIGIKemIOoNIO^GIO]IIWFNIOolIOocIOWXIOoeHJlIOo_IOiMIJk^IGK^IJX^HJiIOjNIGjlIOKeIOOdINF^IWFbIO^WHIkINWOIKg\\IKcFILpiIH^LIMFnIKFNIMFnIJdWINXYINHoINIjIKOnIOjfIJleIJppIWK_ILI\\IIMIIKG^IOjgINHoIJkHIWGKIO_IINHoIO_LILX_IO^KIMgnIOoaIO_ZIJX^IOmGIO^KIOWgINFpIWKfIWJ`IKJ\\IWJbIWKiHJ`IWGfIKbZINcKIHoXIJppHJ]IOpjIO^[IOL^IOjXHJ^IOjNIJppHONIJppHk]IWLWIOieINhWIKa_IIMIIKgZIO^cIJppHJcIWMWIMigIWMgIWHXILcWIKgdIWL^IJppIKfOIWFJIWLbIOjpIGjlIOmMIWMFIOW\\IONoHJdIWKkIWIiINHoHJaIWMjIOjhIWMbHJbIWM\\IO^bIWLOIKbHIOLKIKblIMi\\IM\\hIWMeIWMYINHoHKLIWMjIKg_IWMlIMooIIMIIWMoIKYZIJppIKfoIOoNIWNIIK`MIWNKIMXWIONaIOegIWLlIK^KIKk^IOogIKJ\\IWHhIK^HIWIeIJjnIJX^HKJIWMJIN\\XIWH^IKGbIOpHILcWIWN]IWMMIGZmIWMjIKZfIWMlIWObIOjcIWNaIWM`IWNcIKOLIOgkIMdXIWNhIWMlHKXIWNlIWNiIJppIWKKIKKfIWNpIO^kIOjhIKgGIOhbIKOZIWOKIWLdIKflIO^KIMiKIJX^HKNIWNXIMKeINHoHKOIWN\\IWWWIKdYIWOlIWWmIWWgIMWOIWM]IOihIWOMIKZ]IWNnIWWKILHpIWMlINimIIMIIWNmIWWIIMp\\ILjbIWOFIO^lIKgLIOmhIJp^ILbhIWWaIMHgIO_bIOW]IOkMIOMMIKZKIGjlIWXfHJpIOjNIOONH^[IOXWIKflIHoXIOZ_IWXfHJmIWXmIKIoIWOYHJnIWOgIOWfILjbIOWWIJp^IKdNIOWkIWGgIWK]IJk^IOX]IWKeH^[IWG]IOX]HKHIWIhIWY_ILcWIWKnIWJgHIkILpiIJppIM[hIKmMIH^LHKIIWH]INFnIOMNING`INWaIOJlIOLWHKFIOhGIOILILlGIOp`IWHhIWJ_IWYHIOX]HKGIWYfIOkLHKcIWJiIOflINonIWJFIOJWIKGmIOjHIJjaIWKcIKFMIWLoIWKhIONoHKdIWNXIWYgIJppIWYiIWKpIMppHKaIWZGIMpNILodIJdWIM[[IO^aIWLNIWWGIWXKIWLXH]iIWZOILcWIWL]IK\\bIOkZIO^JIKZKIOjKIL`ZIWZpIWXZHKhIWWlIOjpIOjpIWNbIW[[ILeZIWOMIWKbING`IWYKIWOMINGbHKeIWN`ILNWIMppIWYiINMcILpiIKFNHKfIW[LIJdWHK[IW[LIHaMHK\\IOngINGOIKmaIOdFINIcHKYIW[^IJppIKG^IOdOIOmlIOkHIWZ\\ILcWHKZIW\\LIKGpINMpHK_IOpjIOl[IOacIOacIOldIOb]IKGmIOdWIW\\FIKaWIWFZIOdWIWMbHK`IW\\aIW\\MINNOIWYiINNgILpiIJdWHK]IW\\^II_FIW[LIJ`XHLHIOjNIKFNIJ`XINN[IOdnIJleIKFNHLIIW[^IH^LIKG^IMpmIOoYIKflIJX^IW\\mIKbjIW]^IW]FIMpNHLGIOpjIMojIOeKINFnIWZdIH^LIOoJIOeLIKcJIW\\FIObLIWFbIOoYIOj`HLLIW]kIWYLINF`IWYiINOeINXLHLMIW]hHgGIW[LIHZbHLKIOjNIJdWINX[INNmIKbHINJMHIlINJbIWOgIKFNIKG^IKalINI^IOfmIKcIIOHgIWX^IKgWILYoIMdaILkMIMpKIOa^IM\\eIJjYIHaMHKlIJj`IKfoIOdeINGOIJjbIHaMILjZILYaIOh[IOJ`IJjnIHZbHKiIWH]IJjYIGm\\HKjIWH`IOh[IHZbIGm\\IW`MIMWWIJj`IKeeIOLbIW`\\IN^JIJpOIJ`XIKlOIIFeIW`_HKpIJMoINdgIGm\\IWFmIKFOIN]aIN^JIW`_HKmIJMoIKW\\IGm\\IKg_ILJFIOacH[cIWaFIW`^IJjYIHZbHKnIWaJIKIcIGm\\IKgaILJFIJkFIWaWINW`IWaYIKdcIN_KIW`lIKHjIGm\\IKgdHMWILJfIWaXINNkINJIH`aIW_lIW^kIOhNIOgYIN`kINIoIKOFIOjNIOhZIKd^IW`KIWGhINY[HKoIOjNILhiIOL\\IWanIW`_IW`OILWhIW`YIW`[IWb_IWaZIMZhIWOgIW`gINW`IW`_HL^IW`WHIlIGm\\HLcIWbdIWadIJleIWa[IWa]IN^JIKgiIWaaIWb^IWcGIW`jIWahIN^JIKhZIMoXIWbeIWafIWaIILMkIGm\\IKiGILJFIJknIMJHIWanHMWIW]lIO_ZIWbGINFOIJlaIOhJIW`HILeoIJ`XHL`IWbNINGOIWbWIKd^IWWiIW`NIW[LIWbcIWc[IWcOIWbfIWb[ILjhIWb]IWdNIW`]IK_\\IWbiIKMbIWcWILNWIWaiHIkIKdXIW`pIWdOIWafIWa\\IWc_IKiXIOa^IWabIW`dIWaeIHZbIWc^IKYZIGm\\IKifIWaNIWcNIWd\\IW`_HL_IWcJIGm\\IJ[`ILJFIOjpIWcdIWcGIWcfIOh[IMjmIWciINNkIWbIIWbFIWbKINXNIWcpH^[IWbOILLjIWOdINY[IWbaIKOLIWdMIOGfIWc\\IHZbIWdXILjbIWdZIWenIWdfIHZbHLdIWcXIGm\\IKjLIWd[IWaGIWbfIW`kIWdaIN^JIKjcIWfWIWdnHhmIWeNHIkIKjjIWcMIWf^IWcHIMMlIWfaIKjmIWeIIWfeIWeLIWfMILIOIWalIWdmIWaoIWchIKM[IWbHIW`FINIlIMjoHMLIWcoIWdFINYgIWehIW`LIWbZIWb\\IW`cIWeoIKcnIWbmIWemIWdeIWeKIWbfHLaIWbhHIkIKlOIHZbIWbkIWg_IHpaIWcFIWgbIWdgIWfaIKk`IWfdIWfIIWgmIHZbIWfZILgGIN^JILM`IWhGIWfXIWc]IWfaIKkhIWcbH^FIGGaIWceINFnINJIIK]MIOMWHMLHaNIKJjIKZNIMamIOjNIOFdIOgnIOYaIOGiHIkIKlKIKjWINf_IKWdIK]NIG^HIO\\nIWYbIKc^IWHiIOMbIK\\KIJ]ZIOYZIOX]HLbIWG`IMOZIKIKIOKFIONkH^FIWX^IKkoIOHIINfaIKYbINlKIWhpIOJJIK]]IH^LIJ]ZINkFIJdWHLWIWGfIKeJHONHJWIM\\hIHaMIKHIIMmYIWgMIWX[INGOINKcINXNIWiXIKa_IHaMIKcaIKYZIWbiIMc_IOWWIKWdILYpIKWdIO_iIKM`INKoIW`KIKGmIH^LINMYINMFIKhnIJleIHaMHLXIWGfIKd^INK]IHZbIWjlILI\\IJ`XIKIcIKe`IN^GIO[kIOh[IKZ]IHZbIKdfIKlWIJj^IK\\nILjhIKa`IWj]IO^aINlYIKf\\INfeIKKfIJ`XIK[HIKe`IKGmIWcgIWH]IOYLIK\\bIOYNHWGIM]XIOYfIKXIIOpNIKYfIGGiIOYlIHoXHLOIWkpIHoXIGGiIHoXIJjnIJ]ZHL[IWkpIJpYIK\\KIJkeIGjlHaNIOYZIObhHL\\IOo_IOKFIOMlIMoOIW_nIMOZIGGiIWJnILhbIOo_IK^`IJjcIK`XIONXILbnINGjHMWHMIIWlpIJjbIG]GIMGiIOiIIMOZILnKIJX^H]fIKaKILcWIJpeIW]OILcWIOMlIJX^HLZIOhGIKK_IG]GIKlOIWLmHLpIWNXIOkYIONnIL`MINYFIL`MIJX^IKpeIIMIHLmIWFZINYKILcWHLnIWGlIKlOIOKYHMHIW\\pH^[IOLdIOjpIONdIOjXH_eIOb]IJpfINNOHMIIW_LIWF[IHaMHMFIW_GHMGIWn`IWgWIWebHLgIW_GHLhIWnfIOh[IWebHLeIW_GHLfIWnlIJ`XIWebHLkIW_GHLlIWoGIWbJHLiIW_GHLjIWoMIWebGWIW_GGXIWoMIOnWINGNINNOGNIWn`IWHnINGOIWncIWbLGOIWoYINIlIWniIWbLG[IWoiINGOIWnoIWbLG\\IWonIHaMIWoJIWbLGYIWpHHIkIWoOIWbLGZIWpMIWo[IWbLGHIWo^INMpIWo`INFnGIIWocIWNYIWnbIW_GGFIWpMIWokINXNGGIWpMIWopINXNGLIWpMIWpJINXNGMIWpMIWpOINXNGJIWpYIW_GGKIWp]IOcoINWMIKFNGgIWGfIKcfINcKILi\\IWpdIWbLGhIWpgIW_GGeIWpkIW_GGfIWpoIW_GGkIXFHIW_GGlIXFLIWbLGiIXFOIOlcIXFXIKgLIWpbIWJfIXF_INXNG_IXFbIWbLG`IXFeIWbLG]IXFhIWbLG^IXFkIWbLGcIXFnINXNGdIXGFIMpNIXGHGaIXGJIWbJIWofINXNGbIXGOINXNHGLIXGYINXNHGMIXG\\INXNHGJIXG_INXNHGKIXGbH`aIJ`XHGWIXGeIWp_IMpNHGXIXGiIWebIXGkIXHWIKjbIXGnIXHaHGOIXHFIXHaGoIXHIIXHaGpIXHLIXHaGmIXHOIWjJGnIW`[INFgIW`KH[cIXGGIW]pHIkHGHIXF[IMeGIL_mIXGLIXHaHGIIXHcIWjJHGFIXHfIWjJHGGIXHiIJjYIJ`XHGcIXIGIWdGIWjjIWpNIWbmIJ`XHGdIXIfIWngIW_kINKIIXIjHIkHGaIXImIXIIIXFWIXILHGbIXIOIMiOIXIXIOMFIW_GHGgIXI\\IOh[HGhIXI_IOh[HGeIXIbINK^IMFIIXJIIWoHIXIoIXFIIJjnIJ`XHG[IXJdIXIhIWpZIJleIJ`XHG\\IXJkIKFOIXIKIL\\IIMpmIOgNHGYIWdFIW]LINFoIHiMIJ`XIJjlHK]ILcKIJjbIHbWINM^IJleIG^HINMaHIkILMIIHbWIHbWIH_YIKe^IW^^IMFoIGnKIN^HHcFIHbWILkWIJmjIKKWIW\\\\ILcKIJjiIKdXHK[IXK[IJj]IJdWIXK^IJjnIHaMHGZIWkpIOg]IKaGIHaMIMpmIKdbIWLNILY]IJdWILbeIXIcIKolIWGfIKfbINK]IGm\\HG_IWOgIHZbIWa^IWfGIWkLIHZbIKZ]IGm\\IWaKINpcILlHIKYbIJpeIMkhINf]IOinIOJIIKa`IMFNIKdNIHZbIK[HIKf^IW_MIW^YIN]dIWdFIXM]INXWIKoaIWg[IW]_HMLIHbWIWYiIXKdIWYkIKOLIG^HHG]IW[LIGnKHG^IW[LIHjXHHHIOjNIKgkIKmaIGm\\IKZ]IHbWIKW\\IHbWIJaMIKjWING_IKWdIGclHJWIMjWIGm\\IK[HIN^kIHaMIWb]IXMbIWYaINYfINFoIWghINY[HHIIXMdIW^YIXMgIKo\\IXMiILpiIXMlIXMnIKpMIXNFIKpIIXNIIN`jIXNKIKbHIXNNIKgmILopIXNYIKf\\IXN\\ILLiIXN_IN^KINIlIWb]INYNIL^hIXMbHHFIXNkIO`nIHbWHHGIOpjIGm\\IXOWIN^ZILiaIXNLIKfmIXNOHIkIKn\\IMc_IXMKIOXnINmHIJp^IHFkIXO]IXNaIN^JINboIJ`XIMiJIWelHIkHHLIXOKIWgYIKhMIMHHIOpjIHbWIKIcIKhJHMLIG^HHHJIXWbIKbHIXWeIXW`IWJIHIlIHbWIKgZIXWkIG^HHHKIXWiIKg_IXXFIWjKIHbWIKgdIKhJIJjYIG^HIWH\\ILWhIGnKHGkIW`[IXKeIN[aIKW\\IG^HIKmoIKjWINZnIXN[ILZGIHbWIK[HIH_YHcFIJ`XILigILkgIWaFIKWmIJjgIGm\\IXLbIN\\gIJm^IWGfINZ\\INK]IHjXHGiIWOgIGnKIKIcIKeoIWHMIWkLIGnKIKZ]IHjXIKW\\IHjXIKnHIKXjIKa\\IWidIXWJINZoIOjlIKfaIXMMIKL[IGnKIK[HIKeoIKGmIGm\\IGnKIOMlIGnKIXNeIMdmIHbWIXYoIJleIGnKHGjIWGfIMldINK]IGbmHGoIWOgIHjXIKjJIJoFIGbmIWYiINaZINOfILlGINYZIKhpIXZdIHMHILfNIJnoIKjaIKmaIHjXIKZ]IGbmIKW\\IGbmIKoFIKjWIN^iIO[jIKHmIKOZIKffIKZ_IXMfIN`jIKflIHbWIXWZIKekILHdIOjNIMldIWWiIGbmHGmIOpjIKgKIGbmH`aIGbmIMooIXZlIKFWIX[dIM[nIM\\hIHjXIKgZIX[cHMLIGbmIOOfIKg^IX[hIX[oINbIIN`jIKgdIX[cIJjYIGbmIXXYIJleIKG^HGnIW`[INaFILlGIXZoIWKmIOjjIHohIWk`INedIN`jIKfgH^FIKgkIX[WIXObIN\\_HH_IX[\\IW^lIX\\IHH`IX[aIK_oIJb_IX\\IIWZdIX[gIJb_IKGmIXNJIK]]IG^HIGjlINkFIHjXHH]IWGfIX]GIOMlIKG^IXJMILI\\IGbmIKZ]IKG^IKM`IGbmIKHIIK_JIKGmIG^HIGbmIHiMINZhIXMjH]pINfZHMLIXWIIWnZIKa\\IOacIWj^IKf\\IN^kIKWdIKhkIKYbIOH_IXY_HIkIKoJIOHIIMnmIX^FIXO^IKYbINZ\\INaHIKfmIKjLIN`^HIkIKoYIKjWIN[JIKWdIMldIKYlINacILY]IGbmIG^HIWfOIHeMIIJ[IN[JHcFIX^lINaYIMgmINHYIX]jIKHMIKGXIX]GILMkIKG^IKomINoXIX^dIKobIKjWIX_XIKWdIN_bIKjMIOIiIOa^IX]GINbeIMGaILJFIX_bINcpIKpJIX_iIJjeIM]LIHHFIMchIMLhHH^IOjNILGnINeLIIKiHHcIOpjILHFINpKINpKIKOnIG[KIKZ]IIKiH`aIIKiHHdIX`NIKiWILGNIKIcIIKiIKpXIOJFILI[ILG\\ILkhIKf\\INmMIKmeILI\\IG[KILGbH]`ILHYILI]IL]^IKGjIX]WIJleIG[KHHaIWGfILNGHnFIKGXIKI\\IGWhIJjnIKI`HHbIWbmINnpIWbmHMOHHXIWbmIKJ[HHNIWbmIHFkHHOIJj`HWGIKI\\IOFOIKM`IIKiIKHIIKI\\IJjnIKI\\IWIOIIKiIKZ]IXapHMLILMXIOpjIIKiIKIcIXbKILN\\HH\\IXbNIKiWIKI\\IKW\\IKI\\IKp_ILOGIKa`ILG]IXamILI^ILNOHcFIKGjIMW`IXaKIWXgIMdmIXaIILI]IW`JILGnIMIpIIKiHHYIOhGIKdNIX`OH^FIKGjINkNIKOLIIKiIXZHINigIXbhIXcOIO[fIOjNILNZINeLIKI`IWYiILM^IXMjH`aIKJKIMFnHMOIMFnIKJ[IWLLINpYIKOnIKI\\IKZ]IL[fILLgILjMIWOgIKI\\IKG^IXcoINoZIO]FIXa^INY\\H[cILOXIL\\IILK^INYIIXbaILG^ILZGIKI\\IK[HILMjIKGmIKHbIKI\\IWkhIOFYIWkkIM[OHJNHK^IOHXIXbkIOMcIKZKIOG]IKZYIO`nIGjlHHmIOpjIKZaIKJ\\IWXfINbZHk]IJ]ZIJaMIWXjIMHgHHnIWYKIGZlIJ]ZIGjlIO[XIK\\KIMjmIJ]ZIOmGIO[[IXdnINd\\IX]WIXeHIK_oIXeWIKJ\\HIIIXegIXeOIKOLIGjlIXeYIOkYIXe[IKJ\\IXe^IL\\pIO\\_IXdkIKYfIK\\[IOJXIMjNIGjlHIFIXegIKIcIXeiIGjlIXekIKa_IXeNIXeJIXeXIXeZIK[oIXe]IO\\LIXe_IOZ`IXebIXdmIOMKIXfWIOjaIXfZIXfaIXejIXelIXfoIXeoIXfcIWiIIXfeHMWIO\\bIXe`IXfLIXecIXfkIOjWIKJ\\HHgIXfnIXf\\HIkIXf^IKOnIXf`IXg]IXepIOlkIXfGIXgKIXdlIXfJIWJ_IXfiIXfNIWJ_IXflHHhIXg\\IXenIN\\eIXg`IXJGIXgGHIkIXgcIO[jIXgeIO[iIXggIO_ZIXeaIO\\aIXfjIXfOIXgYIXefIXf_IXehIXgpIXg_IXeMIXhHIXgbIXgIIOMKIXgfIKYfIXghIK\\KIXgjIOGMIXglIMagIJjYIGjlHHeIWOgIXeIIWXjIXhoHIkHHfIXiGIXhcIONHIXhKIIMIIWXnIOGfIXe\\IO[iIMm]IXfJIXdiIXhXH^[IXgWIXh[IXdpIXfmIXh^IXf[IXh`IXgFIXhdIXfFIXfdIXhNIXhhIXhWIXgOIXhZIXhmIXidHHkIXgoIWXfIXhaIWJ_IXemIWXfIXhKIOX]IXhMIXfIIXioIXhkIXedIXflHHlIXjJIMHgIXeLIXjMIXhIIXjWIO]JIXilIXjZIXgNIXj\\IXgXIXidHIHIXj`IXfpIXh^IXjNIXfbIXikIXgJIXimIXgMIXfhIXhYIXgkIXhlIXidHHiIXjnIGjlIXiLIXjpIXjdIXheIOJXIXhgIXkKIXfKIXjjIXicIXgpHIGIXkYIXg^IXiiIXgpIXjeIXiYIXk_IXkJIXfgIXkbIXkMIXhlIXkOIXgpHHjIXkgIXk[IXhGIXkFIKJ\\IXkkIONlIXi[IXjhIXkLIXiaIXjFIXlHHJNIK[HIGjlHI[IXkgIXjbIK\\KIXlNIXgHIXkHIXhfIXknIXhiIXi`IXffIXfNIKGXIXdoIJjaIXl`IM^jIXkgIXjLIXleIXk]IXlhIXkmIXlZIXkpIXl\\IXlnIXl^IXmGHI\\IXlKIXkiIXjOIXk^IWJ_IXk`IXkoIXgiIXlFIJboIXloIO]XIKJ\\IXkfIXifIXhIIXmJIXgaIXkjIXm`IWl[IXljIXj[IXmeIKcIIXlpHJNHfdIGjlHIYIXm]IXk\\IXijIXgdIXjgIXffIL\\pIOMXHWGIM`IIXmdIOMpIXibIXmgIM`iIXmGHIZIXlcIMdXIXmnIXm_IXmMIXmaIXnGIXjiIXnIIW`JIKZYIOMlIGjlHI_IXiMIXigIOo\\IXhJIW`aIXjfIMoXIXlYIK`MIXkKIJkeIO[[ILY`IXndILMcIOMmHIkHI`IXoKIKJ\\IK\\kILFWILJFIMNiIJ]ZILYXIKGMIXi]IOKfIO\\OINHYIO\\XIMIpIXllIMdmIXncIXhlIXoHHIkHI]IXodIXiIIXoaIXiWIXoWIXiZIXfHIXoZIXkoIJjYIXpHIKfoIXpJIXoGIONHHI^IXpOIXiOIXoOIXklH[cIXoYIKYlIXo[IXdfIKWZIOYXIWl^IOGaIL[[IOo_IWhhIL]^IXo]IXnJIL^mIXiJHIMIXpfIXoMHIJIXiMIKZfIGjlIK[FILZIIGooIXomIKbdIOF[IKWJIXppIOF_IOGYILYaIWbmIJ]ZHIWIYFIIK\\KIYFKIW[dIJleIJ]ZHIXIWGfIOX[IOoeHINIWkpIOONIG]GIJn^IG]GIG]GIKkGIKM`IO[mIOiHIG]GHIOIWOgIOXaIO[nIOZhIJYgIXohIX\\cIO\\JIXknIK]XIO\\NIYFoIXfKINgeINNGIXgYIHcMHp`Hk]IYG`IOZnINX_IKJ\\IO[GIKYZIG]GIKIjIYGdILI\\IYGfIOYHIKYfIYGhIXo\\IKZKINkFIK[LIGZcIL^GIOZcIOloIKOWIK^WHp`INGbINfLIOc[IJj^IYGZIOjaIMOZIJpOIO[mINeYIO\\pIHmFIYHWIK_oIO[HIMOZILFkIYHOIJp^IMg\\IYHXIXffIYH[IXdlIOKhIOZ`HIoIGZcIYGmIJjlIG]GHhlIWKiHIpIYHfILjbHImIYIeINHoHInIYIhINLMIYHfIMp[HIdIYImIW_YIKHJIYIpIHaMHIbIGZcHWGIO\\kIYHjIO[lIYHlIYG\\IJlkIYGpIYJOIYHKIOolHIgIYJZIKJ\\IOZhIOXjILFoIYIMIYHkIO\\KIXplIOYJIK]]IXooILh\\IXpFIYFpIXbkIXpaIXfjIWlOIKH^IG^mHIlIO\\bIYFnIJpLINKWIXdjHIeIGZcIKGXIYGIHJNILHLIJpdIYGpIMHgIYJ\\IOX]INl[IWnOIONlIXfeIOOoIG]GHJXIYK]IYJ`IYGgIO\\YIKZKILXhIXfKIYFWILMkIGjlIJkMIYIMIYJgIYGhIMmZHJNIYIpIK\\dIGZcILMIIHoXHflIKmLH[cH]pIOZHIYJmHJOIGZcIYJoIHiMIJboIHeMIL\\pIKdGIXkaIXp_IKLaIYL`IKYfHMKIJboIKYpIYLeIXn\\IXioHJ[IYI^IYLkIXlGIYJlIXfKHJ\\IYMHIJpLIYLlIOMKIJj[IMHgIYKOIXkIH_dIYFaIYJmHJYIYLjIO\\XIOGXIXdjHJZIGZcIYM^IYKFIYM`IXnbIJjdIYMcIJ]ZHJHIYMfIXinIXpGHIkHJIIYMaIYMkIKKoIJ]ZIKWYIXp]IXfJIYLhHJFIYNIIYLbIYNKIKLYIMkJIYMgIYLhHMJIYMjIYMWIYJkINH[HIkILZYHMLIGLMILGlIK_KH\\aIGLoHiaIGI^HYMHomIJ^IIJM^IIW]HkdHipIHeHHIiHlcIJk_IKWeIJkbIMlGIJkeIJkcIKXnIHeMIKY]H^FIJlHIMYnIMllIJlNIWYLILL`IKY^ILMIIJj`H_dIXYpIOgnIYNfIONlIKjXHmlHNNIJ`]IHKfIIXmIGJbH\\\\IHKkIHl^HhdIG[gIG[IHpGIGp]IGckH`JIGJMIJifIGFWH`OIN_FIKI]ILfaIKcYIK[IIKIeIKIKIKlgIKmMIYOZH^[ILKaIWYgIJjiIKpKIKlgIJkFIKXcIKmMIJlnH_eIYWkIX]kIW\\MIKccIWmFILhLIYXLIKZ^H_dIIFeIYWeIN\\_IYXYIOIHIYObH^[ILFoIYMHHIkILIiIOjNIK`bIYXcIYOkIHKkIHhHIHnfHLnIJe]H`^IKOKH]MIHYnHXnIGlfH[mIGWhHfnIHehHOZIGFZIYXkHkWHnkIHIdIJeaIJNLIGNGIYYMIGOGIJcGH[NIHhYIGJ^IJMhHOYIGZlIGZhIJLaIHLhH[aIIX`HjXIHgFIGLeHObIIXaII^pIIHXIGJJIHpeIHZgIM`hIGFkH][IYYfHgFIHhfIJijIYYgIIN`IGhXHmlIHhiHfpIHKcIIdiIIgWIJdjIHHnIIhbIH\\jIYZ]II[LIGg_IGHMHYMIGkmIJNhII[LIG_OHXLIGhFIYZZHpFHOOIGhLHMWIGhNHlnIGhXHIkILlZHhdIHLGIMZpHMWIKXjILXbIYO]ILhKIJkpIY[[IKZkIYNeIY[WH^FINF[H^[HKLIK[nIYNgIOgnIY[fIYGmIK_mIYOcIL[YIYWkHflIJb_IYXIILHhIW\\MIJmpIYXGIO_ZHMLIKeLIY[fIYXcIW\\MIYWkHMWILMnIKKoIJmYIKGoIK`XHflILJ[IYXNIY\\_IK`aIY\\YIJkeIY\\[HhcIIMIIJlhIK`MIJm`IK`WILbJIKkKIJkNIKdXIY\\mIYX\\H_eHKLINOhH\\MIGGaIH[FIL[aH^FIO[_IKc^IKImIY\\OIOa_INW`IKdKIJlaIWh_IJkIIKdXIWapIJmNILL`IKW\\IGFZIOfhILh\\IJmhIKHMILeeIYMHHImILbJIO_bIXLHILjhIKk]IKmMIKJLIKWlIKLaIY]NIWhaIY]WIY\\IIGZlIGZcIJknIMf]ILW\\IXLIIKHMIY[bIGZcIJpOIK]KIGL^IY^]IKkaH^FHflHImIKHIILZ\\IGLMIK`aIMYmIJjbIOGfH[dIJk\\IJkdIJnZIKIeHnFIMbFINH[IK`aIY^YIY]FIMkXIJn^H^FIG[kIK`XIL_WILdLIKdXIMbnIY_KILmpIMoXIY^nILgeIKKoIKIeIGdHIY_IIMgpIMk[IHXdIJjbH]pIIphIYONIKm]IKkjIJmIIKKHIY_FIJj^IHZWIY_fIY^\\IJjZIJjeILWgIOXnIY`JH_dIYXfIY[`IY[hHMMIHFeIHheIGG]IGKFIY]ZIY[bIK\\bIY`NIY[hIY`WHMLIY`YH_eIGZcIGJdIH^eIH`eH^iHiiIYYcIHFkIJnFIL[GIY`[IWn[IY^GIKWeIWibIXMeILGXILkMIYOgIKHMIJkjIKdGIW\\MIY`XIY`ZIYOlIMkXIOjOH^[IMmnIWn[IY`hH^[IY`jIIYNHOaIGpFIGjLH`kIGpJIG]dIGpMH`dIGpWHkiIIFGIHjkH`_IGG\\HLYIGG^IWnMHiHIJkeIYaXIJjnHONIKIKIKGmIYXHIK]]IKlgHMKIKW\\HpGILJnIYaZINGZIL^kIKWdH^[IJnLIKf\\INjkIJkNIKHMIYaeIGLMIHKFIGpXII[fHomIIiKIJiFIGLgIHd]IIWmIGFFIGNJIGMmIIa]HOcIYYhIJHYIYbGHjXIYbIHLcIGZlIGZaIGZlHKMIYWKIKL]IGYbIH_gHLZIJ^aIJO`IGkYHObIHh^HOhIHiKHmlIHjKHlcIHiaIHgMINdeIY[aIY[NIGZ_IKbdH^FIHiMHJiIWakIKL\\ILKaIK`aILIpIY[MIY`[IY_OIMMMIYd`IKjfIY_YIKGoIY_[HMWIKcXIY]_HMWIYd]IY_MIJj`IYdbIJnHHIeIM]FHO\\IKgoIY^ZIMLWIY[[IYdkIY[bIYdmIY[OIL]GHJiIWf]IYdZIJoZIYd\\IY`KIW\\MIX[oIM_IIJnHIGFgIY`bIY^cIY[`IYdnIYdWIKaFILYJH^KIK`aILYJIK`aILm]IY_MIKeNIGZ_IJn]IYeOIJlFIY^gINdNIYeIIKo`H_dIY^bIK_`ILXbILm]IY[[IYenIY[bHpGIJkeH^FIJnbIJjYIHiMIKHeIMoWIKklIYX\\ILgYIK]]IKIeIYf`H]MIKHpIK]dIYWiH[ZIYWhIY[MIKY^IY_cILlHHImIOONILl]INL[IKokIYfZIY`KIYgGIKM`IXYbHMWIYaeIYdOIK[pHiHHkHHMfHkKIIj_IHboIGh\\IGObIYc_IJnFINJ]H_eIKGMIGLMIMjmIJlZH_eIYfnIWYLIY^OIONlIJjlIYg]IKXmIYfpH_eIGWhIHojIHKWIJLcIGe^IIbfHkWIHdoIGKXIGJLIGK\\HJdIGI]H]hIIkIHn`IGnlHhHH[mINfaIG`^IJ\\lIJbfIGIfH]JIGKiIGI^IGmXIHc_HOJIYY^HIlIJpeIIaMIOZbIJjgIKIeIMIpIYgnIYfmIJjdIX]kIJngIX]nIKc^IK`aIK[_IYdiIY\\KIKHMIYX[IKL[IYfnIK`aIKdhIY[MIKW^IXXoIKklILbkIJkKIN^mIYWkIYa]IYaIHMWHkiIY`kIGJfHpGIGfoHMfIGbdIGbfIGH[IGHlIGH^IGmIIH`KIYcZIYYjIIjZIYhWIHKYIYhZIJO\\IGKnIYh^H\\\\IYh`IH`KIIkHIYZ`HXhIY\\XIKI]IMk[IYepIYg]IJjnIY_bIKZ`IObkIWlmILXbIYi_IY[[IYi_IK`aILK`IYd^IOYMIGZ_HONIYdnIY^eILXbIYXKIY[[IYXKIK`aIY[hIY[bIKacIY`dINalIYfaIJnhIK]dIY]YIYddH_OIYdfIK]KIY[[IY[fIJn^IGLMH^gIY^fIKWeIY^iIWddIJj^IY^_IJoZIYejIYlLIYipIYOlIK]IIGOkIGXFIGJoIHhgIIfaIJHYIYj^HmoIIj]IYhYIJidIIZOIGLpIG[mIGJMIGpGIHkXIGGnHjcHoKIGJMHomII\\ZIYZoHllHNpHlHIGZpHXnIHXZIHKkINFmGWHMFIIgfHKiIJMJHKoIJMMHMLIGfFHNpIG`pIYhcHmOIHWNHiZII\\XHpGIGJeHoFIHpYHkIHIlIIcIIIcKG`GpIGbfHlcIHWNHXgIIdiHMlIHJKIGceIGcgIYjiIHWZIMllHkIIYgbIYjaIHNjIYcKIGLiHLmHJdIJZcIGJ_HYoH`iHp^IGFkIH]gIH\\iIIN`IYZKIGgnIG_OIYZMIJW^IG`XIH[\\IHNLIH[dIH[_HmOIGklHiNIYZiIY`mHjZIYmmIYmoG`IIcMIMc`IY^nIYgjIYfHIYdNIWYLIYlIIL]GIYlKIKgIIYkLIYbmIYa^IYeoIY`MIYafIJleIY\\WIX`pIYkjIYfJIYigIYgMIMnnIY[[IKfYIY`gIYa^IJkeIGLMINK]IJlIIKWNIYfnIYlIH]pIG[kIYocIMnbIYeKIYofIYd_IJjgIKW^IMJeIKcHIYXFH^[IYb]IKGMIKXcIO`nIY\\jIYojIY]hHnaIK^bIYp\\IYJhIK`XHMKIOONIY[[IWXnIYaeIJn^IYbZIJoZIYdXIOcjIJj^IYlWIOnWIY[[INbgIKKoIJl]IZFOIKgdHONINJIIZFZIWjJIZF\\IY`KIZFNIYfWIJlaIZF]IZFfIKbdIZFNIKK[IJnOHMKIGFgINFGIJl`IKNFILOlIJl`HNmHIeIKfOHOeIZF]IJkJIKdXIZF]HJiIIalHONINejIKc]IK`aIZG_IK`aIZF]ILcWIYO]IMdOIJnOIKIKIIaMIJmOIKkaIJjpIKHpIYlIHflIMc^IYfLILbLIKk]HflIKHlIIaMH^nIJjlIKdbIY]hIZHIIY]MIJn^IZGmH[oIJjnH^nIJoYIZHOINH[IJmgIKOLIY[MIZHMIMfaIZGhIY`KIZGkIKmhIZGmHlpIY\\]ILjaIYkmIZHnIYi`IMYXIZHhIYaLIKpXIZGmH_OH`aHO\\IKYaIKjfHO\\INboIZGmHWaIKGMIZGmHWGH`aH^nINOOIJnhIKYJIJpGHflIKaFIJnhIJm]IL]fIYe[IKdXINZjIKKoHOeHNmHcFIYlIHOeIZIlIYpFIZIlIJn^IZInIKYlIM]bIYdhIKXjILajHgGIKhgIK`aHXFIZHXIGclIZHZIJkpIWhcIJklINlXIKYZHhlIKcYIYbiIKdGIY\\jIYlYIYglIYaJIYI^IWnYIMcnIHKkIYg\\IMjeIGOdIGOfIGOhIGlIIIiLIYYiIYmHIK\\HIH^eIYjKIYmlH_eIGZaIYcFIGpZIG_YIG_[IYcJIHGGIYn_IYZOIHgKIGJiIHlbIYhfHmlIYYIHfpIGgnIJZiIGOnIZKJIGOjIYYOIGlYIYiGIYZiIGdiIJcZIGM_IGkfIYhkIHd\\IYn_HJhIGpXIJMiH_eIGZhIOccIKIaIYfJH^KIYppIZL_IYgFIYkXIYiNIYgHIJmIIYpYIK\\lIZHGH^gIY[[IZLaIY[_IY`[IYoaIYXOIZHGIYpIIY_jIY_NIY`GIL\\_IJjnIHiMIJkFIKdbIJmIIYfNIK`[IKkaIKIeH^nIYlFIJj^HO\\HJiIY\\YIYp[IZIjIMnIIY[[ILOFIJoFIY_bIZM]H]pH^KIKW\\IYaXH_dIZJgINHYIZMWIZIFIOL[IYddIOL[IY[[IOL[IYffIY_NINIGIKIeIKeLIY`jIKZ_HMKHOeHfdIJb_HMKIY]JIZNZIKZ^IKImILKaIZJjIYa^IYjHIGWhIJLbIGHNIHJlIGXiIHJoHOZIGZcHWYH_HHnkIYaiIIj_IHKIIYcHIG_[IHlLHNjIHGJIGnbH`LIGelIHJ`HObIH[iIJ^FHg[IGk_II]dIYgeIGh^IGL`HgZIGhbIYmOIY^JIJjmIKkGIY`[H`aIYgGIYgkIYaOIZOmIYfgIO^nIYaJIYolIKIdIY\\ZIJlaHflIZFWHflIYeHIZHMIKdXIYeHIZHbIJlhIKkeIJldIKGMIJljIJm]HO\\HpGH`aIY\\HIYbhIZLhIY]lIN\\XIJmIIYi^IYp_IYOlHhlIZKfIYYFIZKhHfoIJLkIGemIGlFIZKmIGOpHgFIYYWIZLGIJNLIHImIGlHIJ^WIJWZIGNbIGl\\IZLWIYYaIHgGH^FIZL[HnkILmWIYmOIY\\NIKhgIYdMIYaLIY[fIYWaIMkXIK\\FIK_KIHiMIZXlIJjdIYimIZN^IJnHIJlhIZNdIYgoIWn[IGhZIYYeIJLcHmlIG_OHLbIGknIGFZIGMgH]mHohHmOHiLIYoLIJNLIY`mIYOpHpGIHn]IGjjILdcIYYeIG[dIL_bIOIHIGFkIHIeH]^IYWOIGmpIGLoIGoaIGWbIGImH]gIJj`HibHmlHiaHneIZKXIGNKIL\\IIJjmILcgIYMYIZWFIYhFIZYKIZXeIW\\MIJjlIXbiIZHbIYI^IJlcIY]ZIKkjIY]hIYdWIKgdHflIXbiIZGYILNFIY__IZGmIKWmIKJ[IZGmIJknIZHeIKmMIJlgIYhMIJnhIYdWIKjfIY\\mH^gIK`aIY\\mIK`aIZZdIY]bILWdIO`[IYO`IZW^IJnHIJknIZWaIKOWIZWdIWi^IOHJIXWJIZ[XIJkpIJpLIJn\\IZIFIZ[oIZIFIZ[_IJkpHlcHJgILNdIZGmIJnbIL]GIGWhIZ[dIJljIN\\XIZWbIJpGIJp]IYeaIW^YIJndIZ[OIZIXIKa]IZZmIKWeIZ[^IZIHH^[ILMIIZGmIOdfIZZlILK\\H]pH\\MIZ\\gIZMXIJkjIJjbH^nIGgnIJn^IJljIGW_IJk[IKZkILe^IJkpIYpeIZGjH_eIIFeH^nHhlIK`aINlaIKH]IKImIHeMHOeIJm]IHeMHfdIJnFHcFIKHGIY\\kIJkpILm]IY]oIYfMIXKoIYodIY\\nIZ^GIZLmIYOlIYaXIWn[IZYNHh`IOHMIJjaHJGIZMYIKmMIYicIYa`IYg]IYWkIJjlIKbWIJmjIOONIZLjIJnHIK`aIZ^dIK`aIZ^aIMFoIYgZIKaGIYbeIZWgIZMMIZJZIKdXIZGfINZ\\IKIKIZKFIYe^HMMIH]eIGlYHNHHlgHNFIIhkH]hIJifIYbMIJn_IZMZIYeeIYiMIKhgIKW\\IGZcIZJfIYaJIZMfIYWoIYbnILhIIK[pIZNhIYZXIZY[IIhJIZY^IGFZIZYnIYWNIIG_IGmpIZNhIGWjIZNhIGOZII_pIGk]IIanIZZHIGlXIGN\\IGibIG[hHMmIGagHMWIYmiIYOnIY`nIO]YIKjdIHNXIK]IIZMHIGLMIZMlIY[`IMaKIWn[INHfIYkIIZM^IYi]IKdXIYkMIKdXILYJIYOWIKIKIJjkIOgnIKkjIYgnIZZkIJjdILYJIJkgIZaHIY__IYWgIKJLIMMKIYOZIJjlIZFhIKOLIZ[GH^FIYpOIYXIIZaXIZ\\fIZa[IKk]IYb`IKI]IM^^HONIY\\hIYiYIO_ZIZGFIKpKIYOZH^KH`aHONHlcIKW\\IY[ZIYaYIZ_eIJjdIZGfIYaeIZ^LHMMIZK^HOYIY`aIYdLIY^KIN[pIZ_IIYogIZJlIYdKIWn[IJnNIZXiIYpJIYjFIYNjHMMHkiHmJHkmHg[IH[gIZcFHmLHMmIZ_YIYbKIZ_\\IKWlIYiKINliIMXiIKamIZHoIYhKIYaeIKW\\IZJkIGFgIGWhIGZ_IZMoIKYbIZWeIZbnIYO`IJjlIGWhIJkFIGWhIJknIGWhHhlIJn^IYaXIK`XIHiMIYL[IYXNIZdIIK`aIYklIKaGIYiiIKKoIZ_cINHYIKlgIKbdIJlLIYb^IJjcHp`IZaLIYbkIYioIZblIYlJIXWJIInNIIj[IYldIIj_IHK\\IHK^II\\^IGO^IZOaIGOcIJLhHaJIGKaHmbIGclHaIHaKIHXZIIINHkWIZcNIGKFHIlIKaFIYpLIY[`IJjnIYiWIX`pIYpXIKHIIXYbIYppIKZkIZWjIZNeIYijIKW^IMIpIZF_IK]dIYb]IZdGIKHpIZHoIYXKIZ^JIYepIYgnIYkZIJjgIYOZIY^eIKIcIZcbINlFIYbdIYO`IZccIY[kIYO`IYI^IGWhIZciIXYeIZclIY^dIN\\XIKdGIYpOIZeeIKWeIGdiHmOHjnIZ`FHphIGGjIZeFIIa_IYjWIZeKIJNhHK\\IYYNHWHIGoZIZeJHnJIZbpIGOIIZcKIJOOIJb`IYlcIYhXIYgcIGhZIGO_IGOaIZObIGh`IGpFHklIJLgHifIG`HIYZiHkiHWYIGpOHMfIIIJHOZIIgmIGZJIG[dIIZ[IYj\\IJgiIGmlIZgmHoNIYckH_oIHiIIYcnHgWIG^iHLnIHbpH^ZH^[IYYdIZ_kHlGIHLGIYcdIJfgH[mIGLoIGXMHZpHLcIW[WIKdmH^IIL_dIGMOIHdlHNYIHb`IG[dIGIfIYZhIJNoHYHIG[GHJhIGkhIHFXIGJFIJcpHYIIGilIIbXIG[fIH_cIGldHNoIHdhIGLLILlnHJNIXWGIZXhIMlGINboIYb_IY^KIYX[IWLoIYikIZ^^IXMIIHiMIZ^aIY[[IZ^iIYg\\IIaMIZdOIYX\\IZe]IJn^IZfJINLOIW]FIYppIKjOIZjKIOX\\IZjMIYXNIY\\pIZFLIJl_IWlmIJjaIK\\NIZ]^H_eIYXFIZIYIJjdIWJfIZ[NIZWeIZ\\cHnaHONILYJIY[[IYelIKdXIL\\^ILgnIJkpIL\\pIY[[IYLeIZFLIJnZIZHeIZFoHO\\HflIZGGIZ_]IZj`IZ]LIJnHHj]IIaMHO\\IY^pIJlfIJnhIYfGIZk`HO\\HOeHImIGKHH^nINJIIZWaIY]`IYXNIMl_IY[MIZ[gIKmhIZ[NIXnMIJnZIZ[NIZkeIJngHO\\ILk\\IY[[ILk\\IK`aIZkmIYX\\IYi_IYijIZ[NH\\MIJjnH^KIKHlIKGmHO\\H^KIX]kIKHIHO\\INecIYpFINecIZlWIY`KIZkNIKkpIZk`IZLfIZleIKhdIYppIMflIY[MIYlHIKI]IKZcH^KIJpeIJpGIOlpIJoZIY]XIJpfIZapH^gIZjFIZmJIKmMH^KIJoYIZmOIL^kH^gIZcoIJpGIJo^IJleHNmIGNGIJjnHOeINlpHcFH^gIYdhIZljIZMXIZmdIYoiH^gIZmgIJjnHNmIKaNIJoZIZinIZbfIYbeIZh^IZ^NIILeIYaiIIInIJLdIZ`_IY`lH_WIGJiIWkiHnbIKdOIKOWIZjFIY\\MIL^kIYWaHnaIYi\\IYppIZaGHMWIZdMIZMHIKIKIHHlIYXYIKGMIZidIWYLIYX`IYpMIY]ZIYeHIYX\\IJmkH^FIHeMIZllHmFIZ_]IKdeILfnIYXKIZ]oIZemILjbIZXjIMmnIZnkILXbIY\\_IY[[IY\\aIKdXIZMfIZMHIYf]IZMJIMYnIZipIY]ZIZMOIYNdIZ_JIJpfH\\aHpGIGKaIJeiHpGHMhIGpbIZ`JIZYOHnZHObIZn^HoOIZcJIGGdIYhOIZgXIYj`IYlfIZg[IZdnIZOcIGhaIZgaIG`FIZgdIJNLIZgfHW[IGp^IZgjIOggIYkWIMYWIYWaHJNIK^^IZdOIZoKINNNIK_KIYX`IYhKIK[IIJl`IZaaIYO`IY[jIZ]YH^FIWFNHImILX\\HO\\IWFNIYpFIWHhIJnZIZnHIYk\\IZmXIZ`pIYeJIZIFI[FiIJpWIJnhIKNFIJjgIZnJIYkfHIlHNmIJlhIKGmH^gHNmIZldIMoYIZaiHMWI[GFIGLoIKNFI[FjIJoZHO\\IJn^I[GKIZFoH^KIZllIJn^H^KI[GgIKKoI[GjINlFINFGI[GKIKGLI[GaIY\\HHImILd[H^gIWFNIZocI[FgIMH\\IZ]fIZ`oIK_`IKKWHMKIZ^aIZocIZ^aIZjIIWkYIN\\_IZe]IZepIWn[IYbbH_eIGbeIGZlH^]HnKHopHkeIGomHhlHicHi`IH[nIZ^WIMHHIYaJIZieIKOLI[FLIY]YIYWfIZ\\fIY[fIZeoIZ][IYkdIJmXIXhnIZk`IZWbIJmoIL^kIHeMIZ\\^HcFHflIZLaHIoILZoIZeaIZdcIHKkHlcIG\\lIJZZIYZ[IYl`IYYjIG]fIGeiIIkFIGG_IJN[IJNJIHXZIJN_HOcIJFoIHfoIZKMIG`jIG`lIGFZII[^IG`fIIG_IG`iIG`kIGa_IIekIJdHIJNHIJNnHiWIIJNIYYlIZKMI[FIIY_MIWkjIZXgIYefIZjpIYobIYXNIZecIKdXIWXnIYecIKmhIZaeIKKoIYg]IZLoIZMfIYpFI[KWIYkcIYedIKamIYf^IOWaIYONILgjIJnZIKlgIOKnIZbHILWhHONIGLoIJjnIZkOIYO^IJjcIJkFILlOIYkbIHLGIMbKIJpfIYaMIKHJIYg]IZXdIL]cINFnIZMXIYgjI[KpIKGLH_eIKeLIZZaIY_JINNkI[LMIYkXH^FIKGLIYkeH`XIO_MH^[HdYIYiiIZpLHpGIJNGIIiIIIk\\I[JeHm\\I[JgI[JWIYc[IGdbIJZ^IZKLIGjcIKWOIZL]IK_mIYppIKXcIK`aIZLlIZcXIK\\bINhjIWiJIZbkIKIKIYX`IY[fI[MNH^FIY\\_IYddHfdIZHoI[MdIZIFIY\\_IZNMI[JlIKIeHMKIZMiIJlaIK`XILcjIZHoIZjNIK`aI[MhI[MXIZ_^IKIeIZeZIKY^IIMIIYWoIK`MIZYJI[HcIY\\IH\\aIG^eIHnJIYOGIIIgIHfoIGc_H[_HIlIZXbIM`pIGZfHk]IZXjIZbkINNGIYWcI[KLIWn[I[NYIZniI[NkIZZ^I[M^IYaOIGZlIHKkIYjHIGGIIGdoIG_lIG_nIG_pIG^mHgMIYmOIZpmIJOGIJNLIGLMIJcWIGWhIGaeI[NcIWn[IHMiIJcYIMmHH^FIL[_IGZfH`aIZoJIY]YIO`nIJkgIZjaH^[H`aIY\\[INliIZWGIJnHIKmaI[NlIZbfI[OkIYOXI[OmI[NmIZbIIZbZIK[IIYOZIZM\\I[FYIYkhIO[MINNGIJl`IJm]IJkjIZI\\I[I[I[WfI[IdIK[IIZGmIJlhIZW]IL]GH^nIJm]IYXII[WLIJkpIYXcIHKkIY`jIIYeI[ImIG^hIJh\\IYYmIZgpIZpMHMLIWlpIY^LIY^KI[LGIYWdIY^LIZdZIK[IIZoLI[IMIY^NIZYKH_eIZWmIZhbIZpnIYniHk^I[OWIYIGH]`IHkgI[O_IYcpIJghIGFkIIL^IHL_IGfJI[MJIWh`IYmOIZJkIZZ_I[INIYdmI[W_IYI^IZabIKGMI[F]I[F\\IZWKIZf`I[YZI[I[IYkZIKjfIY^eIK[IIZecIZf`I[YgIKgII[YcIJljI[GcI[WnI[F_IZ\\cINNGIZ[NI[YoIJnhHO\\I[W^IZLhIJlhIZ[NIJm]HMKIZ\\cHk]IYpbI[XfIHgHIZ_jI[IoIIOdHmFHk`HLYHkbHMHIIHbIGOjIGakIGamIHcHIIpbIH[bIYoGIGd_HeJIYYHIZO\\I[O\\IJYaIGFLIJOnIGpLIZ_ZIY`_H`FIXoaIY_aIZLcIKc^IZLgIZGfIZIFIZb[IYpKIY`GIW]_IJj]IZXnIKkaIKlgIY`FIYObIYWkHImIMXiH]pI[MfIZocI[MfIK`aIZjNIZM]I[[aIZd^I[[dIKklIZcpI[KkIJmjI[[jIXfgIZocIYLeIO_bIGZ_IHcoIYWaIZOmIZIiIZZ^IY[fIYf]IZbkIJknIZMhIY`[I[ZJIKIeIYlHIKIcIZdXINa_IZcfIL^kIZ_fIZWkI[YWIZXkIGgnIGWHHLmIGe]IGf^HgWI[ZiIGanIILYHmoIKGoIHLJIWn[I[LGIMjmIZOlIZbkIKflI[MkILJGIZ^dIY[[IZ^gIKdXIZ^iIZJnIYacIL^kIZpLIGFZI[MHIYYjIHKFI[]HIGe]I[ZgIZKNIGalIGanIHKFIYoFH^cHWiIIMYIZKhI[[GI[XiI[O]IJ]eIZIfI[NJIZFiIL\\_IZc\\IYXNIYkOIZNMIYepIZLdI[MoIYNGI[FnHMLIYkOI[\\FIKGpI[[bIZMII[[gIK]gI[KaIYblI[[iIJk\\IYpIIZocIYpIIYe\\IKbdIJkYIJoFI[[cIKmhI[[eIKKoIYWmIJmjILX\\H]pIYd]IZocIYd]IYkNIYgWIYOXI[^pIL]fIZpJI[LfIZnXIKc]H\\aIHImIG_OIGhOH`MHlGIHnOIGhIIJhYHLZHK^IGobHNFIZfmIYWYIGK\\IGhXHkoIZ_pIYWMHOLIZYpIGfHIZYcIJcnIYWFIIZaIYWHI[]hIIeiIOiYHMWIJIgIJHOIGfbIGgLI[]lIZX_IYWhIKd^IYONIGZ_IJk[IKW^IZaWIHiMIY]nIZIFIWXeI[^lIYI^I[aFIZ_aIKHIIHiMIZLlIZIFI[IeIKdXI[aLIYblI[_XI[\\LIYOWI[K`IYfkI[ZYILN[IJl`ILWhI[KiIK]dIZafIJleHONIJnFIYb\\IJlaI[GZI[aII[G\\IZoeIYihIYkXIKlgIZkbIKlgIZlJIJjcIY\\YIY[[IY\\YIK`aIO_bIYX\\IZjFIG[KI[OHIYhIIY[kINeLHflIKHeIL]GIYXcIZo]H^FIZ[[H_eH^nIZGiIYObIGZ_ILjpI[b`I[WJIWn[I[LZIHKkIHImHoOIZggI[FGH^eHnkIYjdHLOI[`WHg\\IGhZIYnmHlGIGFeIJeaIZ`aIYOpHkiIHXJH\\XI[`bIYWJIZOKIIKcII_eIZflIJW^HJdIG^nI[`YHi[I[`[IZ`HIGfHIJgJHbkI[XnIKm_HfNI[`hI[JWIGfjIZgpIJLaIZ`MHiHHXgIJNJIJI]IGInHceIGZlIGZnHIiIX_bIZM`I[OIIYXNI[MNIKdXIXNcI[^lIKIKI[aOIZLfIJngIHiMIWb]IY[[I[djI[\\HHMWIKMbI[aGIKOLI[OoINNGIZjJIMMMIZ\\\\IJlFIY`iI[XHI[Y`IHiMIZM_ILiLIKdiIZIFI[NGI[diIY__I[amIJjeIKZWIZGLIZf`IMlWIJnHIZXbIKamI[blIKa]IObfI[^gIXjfIJjbI[efIKWmI[ehIJlaIKeLIZHiIKOLH^nI[beI[MnIZj]IJlaIZFIIZIFIOONIK`aIWdZIIaMIYhIIZFMIJlaH\\MI[fdHONIGGaIYlIHONIWfHI[f`I[eeIY]MI[KhILkKILh\\IZFNIZehILL`IN[aIZabI[b]IL^kIJ[`I[cFIGZlIZWHIZ_KI[NnIWn[IYhNHhlHo`II[mIH]OIGYbH[aHhlIGf^IHp[IH]KHOOIGkbI[HjHXgI[HlHMmI[LHHNnI[]ZIZYKI[X^IK[II[KLI[LGI[YeI[\\lIYNdI[LII[IIIONlIHKkIZWmIYXoIZKgIYYHIZXFIH[gIZKlIZXXIJflIH_ZIYY]IYZiIZXWIZKnIGNiIZXZIJcKHLoIZX]HfmIZLYIZhZIHFkIZXbIKMXI[IIIZOfI[hMIYpKI[Z]IMlGIZXoIZidIY[oI[YaI[iOIZj`IYpfI[hWIWn[I[]kIY`]IGOhI[[NIGj`H_hIZNiIINHHOOHObIYnnH`OIGp[IGGNIGeKHX\\IG\\HIZh\\IGMMIZeOH`FI[hHI[JkIKIaILXbIKXmIY[[IKXmI[MOIYe]IOMWIYkeH_dIY`fILkgIWn[I[`cIYjlIY[kIZMHIYI^IZpHIYepIKlgHoGILNIIYgGIKFMIGZ_IZocIZMbIZHbIZclIKIcIY]eIN`aIZHNIZHgIOYKIY]kILinIZ^pI[FoIYohI[KKIYdaIYkeIJkmIKIcIZegIJmLIZcdIYhNIKWNI[IMI[j]IYg[IYa^IZb]HgpIGZ[IYnnIZbaIYgjI[jXINHYIYa\\I[IiIZ^MIYg^IGnlIIffIHGoI[dXIJM_I[HkIJcbI[gnIZLbI[MjIWiJIZpFI[GZIZMjI[bHIKGNIZLbI[IZI[]`ILh\\IZNFI[NZI[klH_eIGLoIYjIIYmjHMLIYjLIONjI[hnIGp[H\\oIHnbIGphIZp[I[Z`IHNeIYclIZhLIHh`HgpIHFHHW\\IYdIIGZfHJoIHdFIZOgIJoFIYd_IYfHIOMlIYkFILmLIKklIYddIYkKIZIFIZnoIKIYI[L]I[JlH^FIYkZIYfHIY^eIYfJIY`[IYkaI[jOI[IZIZ[jIZMLI[W`IZe\\IZ[kHdYI[dhIYhLIZpLHiHIZK\\IHcHIGLkIYcfIHKFI[lkIZONIGp_IGpaIIhKIJ`iIZKMI[lpIZhKIG[gI[mHHlcI[mJHLdI[mLH^[I[mNIIgfIGbeIHJKIHGeIHbaIHGoIYmhIZnaIM[YIZ`bIY`pI[jGI[KJI[KMIY[`IZFWIWJ_IZWiIKdXIYLeI[KZI[kNIK_KIYdnIJlnIYfJIYpIIYpFI[oaIYeMIYoiIZf`I[mpIW_jIYfkIJlhI[nIIYXNIZdMIYdlI[oeI[K^IYkgI[ohI[KdIK`MIK_KI[L]IYjnIYjGI[oMI[enIYfJIYLoIK`aIXfJIMk[IZ\\KIYfHIYfjI[[kIYaWIZ`jIYbeIYI^I[LeI[\\oI[_iIYa`I[oLIM^OIL`NI[LgI[knI[N`IYcmI[ndHNnI[n]I[nhH^FI[njIYjNHIlIGgnIZLoIZ^dIYpFI\\FNI[^\\IYfhIKc^I[nGIMM`HIlIZeiI[NXIJlaIYk_I[_cIY`cIKc^IYiOIMlGIYbYIY]ZIZMfIZc]I[_iIJj`I[ldIGJgIGY[IGNlIZk`IK_`IYfJIY[^IZIFIKZkIZ`gI[NKIJmLIZpHH^[I[_gI[peI[bkI[Z_HiYIYZKIZp^IGpFIHfXIZn_II[eIZK]H]OIG_[I[nWIH]XIZpaIZgMIGGdIZHcHJNILWYIZbmIY]OI[WMI[NpI[WJIJjlIYpIIZJ_IZF_IZGoIZLpI[obILh_IJnOIZF_IZJ_IY\\[IZWMIZLpIJmYIKdXI\\HIIJnZIY\\[HnaIGnKIY]hI[HYIZ^GIZocIY[^IZpLIY`jI[oFIYjJIYmkIYjMI[HfIKJ[IKINIYjmI[K[IXo`I[m\\IYkHIYiZIZWhIYXNI[mbIYdeIYkWI[`pIY`LIJMoI[k`IZIFIY[hI\\HiIK[pIH[FIGHbHMFIIkIIYoFIHHjIKHMI[GGI\\GGIOWaIYppIZGfI\\FXIJpOI[NlIZedI[lLIJnoIJoJI[l]IZpLIYl[IZNkIHJnIGY[IHJpH^oIHKHHX\\IHKKHm`I\\GhIHoaHkoIIc\\I\\GiHg[IZ_YHpGIYg`IGL]IHKOIZpeIIj^IYjaIJj`HLJHK`HmOI\\JkI[hcIGFkIG_LIGajIYZpIJfHHjfHjhIJf_HjlIGHMHjpIIOiH_iIGnXIYXmIInNI\\JZHMaHK`HNjHKiHZiHL\\IIOjIZnZIIjlIHKaHL`HWYHLgI\\K`HX_I\\KcII`dIIf`IJb`IHkcIHkeHZpINGLH^[GWIHlZIIiGI\\KfI[^FHomI[^HI[nOI\\JWI[LjIJfWI\\KfIGLfIIbHIG]kIYg_IYnZHYIIYgcIZdmIZg]IGOcI\\IaIGJWI\\IdI[ZmI\\IfIONlIG`LIGZlHLKIHNXILhXHJNILdKI[\\\\I[M\\IYg]IW[aIKklIZalIJjcIZlZI[maIYXNIYdhI[gMI[JlI[jdIZd]IZ^oIYkGI[_YIYOYILlHHJNIKcHIYpkI[KLIY]hI[Y^IZj]IZI_IZ[kI[enI[f[IX[NIYppILigIYlIHMKILJmIZHGI\\NIIZHbI[p\\IJnOHflHOeIKM`HMKH^KI[FlHONIZMfIZMeIYXNILYJIJpOHONIKJFIY[MIJkjHKLINJFIZHJIY]MI[F_IKZ_IZWNIKFOIJb_ILcjIKJiIKjfIGdiI[WhIYW^I\\OHHWaI[NhIYW^IKNFIKjfIHiMIGKHIZIMI[^fIK]dIY\\jIKN]IKKfIY_kIZpGIJnOH^FIJpOIZIeIKHpIK`aIMemIJoFHflIZ\\KILlFIZ\\NI[WjI[eZI\\OYIZapI\\O\\IZ\\dIYfKIYgOIY[[IZG_IKM`I[WiIY]\\HONINlaIYpFINlaI\\NaIKc]Hc[IZHLIY[cINJFIZ]JIKZKINf[IX]HH^nH[oHaNI\\NnIKNeIWjIIJnHI\\OGI[YpH_OIZ\\YIKL\\I\\OLH_OI[ZMI[eoI\\OXIJpGIKWlIKGmI[WoILp^IJj^HWGHnaI\\W]I\\ObIJoJH^nIGMYHc[I\\I_I[N\\IHFlHXLH]^I[OYIIiFIZp\\Hh`HIiIKH_I[^lI[jcIYfeIHeMIYX`IKkjI[_YIYOWIZZfI\\F`H^FIKMOIYgnI\\H]I[pMH_dH[cIY[pIZ^FIZbHI[oXIMmeIYOhIYfeI[laH^[IZWmHhlIZYXHNHHMFIYZLH`iHa[IHLpHLmHKnIGHIIJfcII_IIGFkHo`H`HHlcIZ_[IJYlHiWI[i^IYnnI\\YeIHMNHXlHKnILcfI[j^IYaIIMhaIKhgI[JnIYddIKZkIY[]IYXNIOb`I\\IGILn]IZniI[JnIYdnIYb`IYk]I[fGIYk`IY\\oIY__IYaIIL_bIJmII[hGI[LGI[MlI[OpI[iZIY^FIL^kI\\ZZI\\ZoI[mZI[pNIJlFILXbI[bXIZIFI[bZIKdXIYLJI\\ZbH\\aI\\IZI[jGIW\\MI[LGI\\ONI[WII\\[II[mXI\\[KI\\[`IW`JI[NgIL\\XIZHaI\\[^IKOFI\\[`IYdnI[ZLIYfJILfnIYpFILfnIY^lI\\[hI\\ZdIYfHI[GcIYfHIYb`IYfJIZG_IYpFIZG_I\\\\LIGZ_I\\ZnINiFH^FI[ZJI[hII\\[HI[hNI\\\\^IZlmI\\\\NIGZ_I\\\\WIZfXIYddILMbIY[[ILMbIK`aIM`YI\\[gI\\\\_I\\[pI[XgI\\[aIJkpI[LGIJldI\\[mIYogI\\[LIMm^INFmIKM`IOJ`IZfdIN^mI\\X`IMaoHObIGI]I\\YdI[cWI\\YfIHLgI\\ZNIGHII\\]eI\\ZMI\\YiH[mI\\YlIZOXIJj`H[[H]hIHLkH`FHYII[OXIHl_IHkgHiHIHkfHMGIJdFIHaiI[O_I[cgIHLNIHL]IHLYI[iaIMlXIIGhIJeiIGfJHmOIHL\\IHLXIHL_IGahIGNaII\\_II\\OII\\aII\\XI[ccI\\^kII\\bHoKII[hIHKcII[hIGcdIJYIII^cII^\\HhlIHLKH^kIHW`I[N]IG^gH]LIHL`H`MHX\\HkoI\\ZFI[i`IJNLIYahIZp_IYakIGpIIHlJIYaoIGpOII[KI[ipIKZ]IWddIL^XI[hOI\\FZIZbcIZZ`I\\`FIKhFIZHaI\\`HI[IJIZbfIKImIKXcIY]LI[YOI\\\\aIZfYI[ILI[a_I[WYIWJfIYpeI[Y`IZaoI[YbIKpKIZGmINIOI[I[I[LWI[I[IKeLIZoZINNGIJljIZXbIZ[JIZ[jIJkdI[YpIKHeI\\`nI[YlIKpKIZW_I[YhIJnHI[ffI[YpIKeLIZk^IKpKIZ[NIKHlI[YnI[mfI[WKIKOnIYpOINeLI\\`_I\\MiI\\`aIOWaI[YcI\\`dI\\OmI[WiI\\OHI\\`iIY_NI[YpI\\`mI[eZIKgII\\`pIZ[eI[_jI[YfILJGI[eoI\\`kIZ\\_I\\WnI\\aNI\\bGI\\aWI\\alI[ZKI[IGI\\a\\IMMMI[eoHk]HMKIGGiI[F^I\\bFIJl`IKJaIK_KH[oI\\bbIKpKIJl`HlpI\\b_IKNeI\\bhI[WbIJlaIKKNIK_KH_OIKG[IK_KHWaIIphIYaOIKmaIZc[IZHcIYa_I\\ZoI[e[I[paIZ^[IY]ZIZbnI\\`^IKjXI\\acI[W`I[e\\INNGI\\agHJgIGbmIZGmI\\`gIZGmI\\akI\\bFI\\`lI[YjI\\bJI[WWI\\bGI\\`eIJljI\\bOIJljI\\bXIZk_I\\aZINgoIZkXI\\cbI\\aXI[ZHIJnhIKHeI\\b\\I\\MmIKmaI\\a`IKOLI\\abIKamI\\adI\\OOI\\`cIJkpIJp`I\\cgIJkpI\\ciIZ\\JI\\`oI\\aJI[elI\\cnIZ[KI\\cpI\\aKI\\bNI\\aLH^nI\\dKIKkaI\\dMINFFI\\dOH^_ILLFI\\dXIK[IIZlFIZ[jI[iYI\\d]I\\a_IKZ^I\\bnI\\``IKFOI\\blI\\bgI\\a]I\\bcIJlaI\\bkIKKfIOX\\HoGILfKI\\F^I\\caI\\cFIJjdI\\cHIZNaI\\cKIY^KIYgnIKImI[F[I[F`I[LGIZkgH^FIWcaIZHGI\\fYI\\\\gHMWILHkI\\ZdI[N[I\\HFIZOoIKXHH`aI[pHIY[`IYgnI\\fbIZIpI[\\iIY[`IJMoI[k\\I[F`INLHIZbFIKImIYkOI\\`WIYaJI\\cYIYojI\\fkIKpKIKIeIKWoIK_KIZIhI\\cMIYWbIJj^I\\fiIJjdI[WMI\\fmIZcgIKGmIYfnI\\]\\I[^fIZfdIJj`IGgnH]hI\\YbIG^^I\\ZLI\\YgIHLhI\\YjIYmFI\\YmI\\]pIGjjHpZIHXMHLmI\\^KI[XoIIiFI\\^NI\\LGI\\^XIGdoI\\^ZI[OdHmOIHLOI\\^fIGFoIHKnI\\^aIZYkIGfKIHL[I\\^]I\\^gIHoYHX_IKjaIJjmIMadIZbmI\\f_I[iZI\\[FI[IKIZ[cI[\\bI\\MKIYWlI\\MOI[XbIJjcI\\`eIKlgIZk\\IYfkIKacILYhIYOZI[LYI[eII[pJI[WZIZN[IZiiIYI^IYMHIYphIJjdI[ZJIYOZIXnMI[W_IJnFI[F[I[fgIYflIM`LIZa`I\\fJINWaI\\cOI\\gHI[g[INboIYg]I\\hnIZOkI\\hpI[[ZI\\iGI[a`I[e^I[_ZI\\iKIKJLIMogI\\iMIY[MI[NWI[H_I[H[HMLINFGIZoLIIaMI\\j^IJnZIYOZHjNIKNXI\\jcIYfkI[JlIYOZI\\\\kI\\ieIKJLIKLHIZbJI\\a]IKacI\\dbIYflI[W_IJjlI\\gbIWh[I[i[H_eI\\ggI\\YaI\\]bI\\YcI\\gkI\\]gI\\]lI\\goI\\]oIGjhI\\^GI\\hII\\hKIKGlI\\^MIIXcHgMI\\hWIGdgI\\hYH_eIGZoHMWI\\h\\IHL^IGFoI\\^cI\\hcI\\h]I\\^_IMnMI\\h`I\\^hI\\hgINakHJNI\\hjI\\cXI\\`YI\\[bI[e[I\\jKIZ\\XI\\iFIZfYI\\iJI\\jWI[FWIHiMI\\iLIJjcI\\iNI\\j^H^gI\\iYI\\i_I[WYI[eOI\\icI[W\\IJjdHOeI\\ibI\\NYI\\kHI\\biIJlaIKHeI\\imIMMMIYepIJl`HmdI\\ilIZXpI\\inI\\cNI\\YHI\\jFI\\`GI\\ZpI\\l]IY[fI\\l_I\\jMI\\laI[\\KI\\lcIX_NI\\leI\\lbI[XYI\\g]I\\i]I[lKI\\MMI\\lmI\\lpI[aeI\\mHIKGoI\\nII\\ihIYaLIJnZIJl`HhcINFGI\\mNI[fbI\\nMI\\F]I[feHMLIKNXI\\mNI\\gaI\\fpI\\[lIYopI[pkH\\aIZhJI[pnIYcoHkiIHXHIHMbHOZIHhHIYaiI\\nhHmIIYanIGpNIGpWI\\_kHIlI\\OGIZ_`IY[fI\\F[IYpWIZbFIZLgI\\FNIZIFI\\FWIYX]H^FIJnNI[kZIZ^hIY`KIZjFI\\o_IWiJIYpaIYFNI\\n\\IYb[IYObIZFNIYbWI[_FIKIcI[HeHoGIZcdIYbgIZf`I[g\\IYogIKN\\I\\YHI[l`IY^iIK[pIZbpI\\]fI\\YhI[`kIIeGI[mFI[ncI\\niH_WIGJ\\I\\nlI\\cWI[oLIYdnIYo_IW\\MIZLoIZdIIYpFI\\phI[o[IK]]I[KLI[mpIJjlIYfdIKlgI[McI[fGI[[nI\\H^I[jOIKIKIZbjI[fGI\\pjH_dIYI^I]FMIKcYIZpLIY]NIJjlI\\FXIMGGH_eI\\GXI\\]^IMMMI\\nfIYOHI\\npIZhFI\\nkIHOiIZWnHhIHIjILhXIHLnI\\glHXlIGi`IGYIIGYOIHOHIGhXHgjIJZJIH^cIJbjIGgaIIdHIG^`IHYHIHXfIGXkIHM[HL[IGLLIWMKIYfJI[MfIYpFI]GaI\\FXI[NMIWONI[HbI\\naIYgnI[^eI[MfIY[[I]GcIZ^ZI\\FYILKaI[nGIJjlI[\\nIY[XHMWIYpIIYpHIYXNI\\NII[MiIYoiIZLdI\\oOIYiXI]GiIZe`IKOcIYppI]HNIZcXI]FLIZMYIY[[I[FcILXbIWFNI]HcI\\FbI]HWI\\FZIJjYI]GgIY^oIWlmI]H\\I[FgI[FpI[_cI]FXI]HbI\\Y^H^FIGclI\\J\\IZcGI\\J^I\\JfIIj\\IZgYIYjaIZphI\\LeIZpjIZg`IGj_HomIZpWHomIZpZIYYKI[ibI\\G]IYOHIZp`IGHgIYcGIZb_IZhFIGLfIZKaIGI`IYgdI]I\\IGFkIIWiI[O[I[^XI[[II[cLI[FFIZgiHNNILjiI[FJI\\IHI]HII[JpI\\Z_IYXWIL`NIN\\_IZOlI\\oMIXo`IZa]ILeZIZe_IJj^I]GaIZIFI]FIHMWIYopIYXXIOgnIYOiIKIKI]JlIJkaIK^^I[eNI\\nGIJkpIZbLILJGIKjfI\\kII[I[IJlhI[YkI\\a]IL]GIJjlIY_LIKaZH^[IIaMIY\\LI[FdIJoZILYJHNmIYekIYXNIZjoILcWI[aZIK`aIZHFIJn^HNmI[GKIYlIHNmIKbcIZHGI]LFI]KlIJoZIZFoHNmHNmH^KI[deI]KpIJj^I]KdIKdXI]LFI]KhI[lYI]KkIJnZI]KmIK`WIJngHNmILigIY[[IXXlIKaZIYppI]KkIJjgIZJLIJk^IKcHH\\MIYX`IKIIINiFHfdI[GYIKOLIKJNH_eHfdIGGaIZagHOeIXbiIYpFIXbiIK`XHfdINg`IY[[INg`IZ]FIKKoH\\MIKIMIKFMIGGiH\\MILMbIZ\\pIKdXILMbI]L\\I]LhI\\HOIYXKIGGaIJn^I]MJIGL^INFGH\\MIZN`IJn^I]NHILIWILd[H\\MIMbnIZaZIHFlIKHMI\\XmI\\kKI]F_IJm]I]LgI[jIIJpfIY^YIY[[IY^YIK`aIMgbIZ^FHONIY\\_IZocI[MhI]JnH^FIZpLIYjHI\\hHI\\^IIG`eI[dKIG^nI\\klIY`iIGLMHKiI]JLIZghII][HOZI[YLH_eIG`LIGbaIGp^HIjIZIfI\\nXIYOOIJmKI\\mWI[apIZWJIYOZIZH]IOa_IJn^I\\aXHnFIKGmI\\`aI[[fIJl`IZM\\I\\H`I\\loINZOIZ^eI\\GNI\\GFIKXpILOeIJm\\IYkhIGflIZmJHnaIGflI[ZWIKKoIZ^dH^_IKNXI[GKILdjIJj]I[aZI[GiIJpfI[[fIZ^aIZd_IKGoIGLoIJn^I[MfI]OjIKGnHfdIJMoINFGI]LMIKkaI]LLIZpMIGnKI]MHI[kaI\\hkI[lcIYlbI]IXIZpfIGbHI]I[IGh]IGh_IZOdIZplI]JJIYZiIHXdHKdHbHIJacH^OIYmGHklIHLkH^jH^lI]NoIGHMIG`aHpGIG_jH`iI]IMIZgNI]OMI[cNIWfLIKbZI\\olI\\oNIJjYI[gLI[aoIZFNIYlIIYXIIZebIYXNI\\FNIIFeI]JcIGnKIZjHI\\jfI[\\HI[fdI[[hIKHIHONIZeoIZIFI\\ZjI]HJI[fnIZ\\XI\\nNI[fZIYX\\I[WeI]OpIY\\jI\\HLI[omIZIFIZdMIK`aIZMbIN[aIZjHIJjgH^nIYO]IJjnIZm\\IKWNI\\XMI\\ILH^nI\\N]IZIFI[KWI]Y`I[_dIZk`I\\`jINFGI\\aXI\\\\kI]WZI]WGIZnHH_dIGflIYejINlFIKNXH^KI\\mIIN[aIZlcI]NlI[_iIZYMIZgLI\\J]IIIoIGopI]FfHoOI]FhH^eI]XOIZdhI]IZHO]IZpiIZg_IGj[IGjeHlZHkWIHnGIHW\\IHjKI[dXIYXoIHYpIGZfHH_IIfWIGZfHGLHLcI\\knHj^I[XjHm\\I[J[IJfGIZNnI\\^LIIiFIJfcHMmIMogIHN_IHN_HH^IKJ[IMXdI[oLIYddI[jKIZIFI\\FjIYaII\\pkI\\pdI[JoI[lZIZLkI\\GYI\\FYIW]_I]HkIYa`I]GhIZ`nH]pI]HKIZIFI[oaIZj[I[IOI[nGIJkFI]]FI[lWILIYIZHGIZMbI[_LI]IJIZpHI[dlI[bnIZ`nIHiMI]ZaIK`aI[KWIZkJIYfkIKdeIJngIYMWIZHoIZkIIYpKIZj\\I[OoI]OfIJknI]OkI\\a^IK`XIOgXIZHoI]LHI]]nIL_eIZJbI]]OI\\n\\I[eoI]^IIY][IYXNILgdI]IJIIFeIZadIZoYI[^mI\\a\\IZkZI\\XMIZFWH^nILl]IZFdIKhpIMIpI\\OiIZHGIKj]I[fpIZXbI\\W]IJjlIZo\\IYa`IHeMH^gI]^WI]Z^IZjKH^nI]MWIZ\\HIYXNIMXII]]]IZk`IZ\\XILKZIZ^dIKHeIZMkI[LXI\\NjIZkaIW^YH^gIKJGIZmfI[IGI]_aINNGI[GmI\\bOI[GmIKHeHNmILgjIYiaHNmI\\bOI]XHI]_oI[LHIJlhI[GXIOgnI]_jH^FI]_pIKpKI]XHI]`II[LHIJpeHfdI[KgIYXMIZmYI]`HINWaH^KH\\MIY\\LIYOlIYhNI][OI]INI][XII[MI\\p\\IHiJHgWI\\njIHW\\I\\nlIGp[HgLIH`oHLmHjmHjgIHH\\I[[MIYbLIY``IOG]I]\\aIYfJI[F[IK`aI[jMIZ_FI]\\lI[kMIZjKIKFLIZL`I]aaI[odI[o\\I]LaI]JjI[fGI\\ndI]]mIKWeIOMlI]JcI]]WIZjpH]pIZdMIY[[I[omIYg\\I[\\YH^FIZogIL^kIZcXIZopIZMYIZfHIKc^IZfKIMkXIKY^IZfMIXWJI]^WIYgpI]bOIYI^IZ_hIWn[IJm]I]a[I\\mOIZHGI]a_I\\IjI]_[IYaII]FYI]aaIYa^I[kdIY`^I]aXI[jFIKImI]biI\\cOIYpFI]blI]KMI]IJI[]gIHKkI\\pkIZLoI[oaI]]JI[mmI[ooIY`eIYkHI]J]I[j\\IY`LI]XLIZ^KIK[pIH]OH]GIG`^IJfbI\\GdHOYI\\XhI]N_IZYJIY[[I[nJI]cNI]]fIYaXI\\mgI]WIIY]kILX\\IZikIYaOI\\oaI]GlI\\obIL^kI\\odI]FZI\\FkI]ciIHbgI]ckI]FiI]IkHIiI]WiI[_eI\\HOI[_YIZjGIZcYIYObIYi_I]NWI\\]]I[bJIGZ_I]d^I]cFI[kmIYo\\H_eI]bpI]FbI[pbI]`jI]YGI\\ngI[mGI\\p^IHh\\HklI]aHI[hZIZWoILNGIGXKHJdIGj]III^IJWOIH_\\I]GNIGN_I]GWIGOXIHXfI\\nlIHZmIHLkHkNIGLLI\\cLI\\I\\IZLoIZjNIYpFI]fJIZcXI[^cI[[ZI]H\\I]fJI[ebI[_cIKacIMniI[M[IKc^IWYgI]JcI[M_I[f[I[MpIYXNI]fLIJk\\IYdmIZ_`IZMKI]\\oIJkFI]HHI]\\iIYd]IYp^IZMXIYkFIJnNIZLdI[l`I\\gIIKIKI\\I\\I]gII[NnI]gKIZJpI]d`I\\]`HgGI[NbI[N_IJeNI[NaI[N^I[NdH^FI[NfILiaI[NiI]J^I\\fbI[M]I\\gII\\mmI\\gLI[OFI[jgI[OHI[NoI[pfI]`XIZbhINliI]a\\I[lYI]cWIY[\\I]cYIYogI[]hIGZ_I]agHnGIY`LI]eNIZ[OIJgWI[iHI[hOI\\`XI[OJI\\_oIZ[kI]\\aIYkJI[fGIZlZIKbZIGZ_I]gLI\\pkI[piI]d_I\\hkH^[IJnFI]hcI]bjI[jLI]Y\\IN^FIYaJI]hiI]cfI]hXI[NjIZpLI[XhIZgcI[^YHm\\I[OOHaKI\\keI]OHI[eJI[YGIGafI[YII\\lFHOcI[YLIKm]ILYJI[g[IYaIIZdOI\\fdI\\cpIYOZI[Y\\I\\cpI[Y_I\\caIZckI\\cpIZ\\kI\\ahIJnHIZ[dIZOpI\\aHI[bfI\\dmIZkYI[YpIJkFI[ZGI\\eZI\\bZIKGMIZ[NI[ZMI]W\\I\\\\bIZIgI[KLI[ZZI[kkIZoNI]bgI\\G[HgGI[n`I[]nI[ZcI[ZeI\\LNI[]MIHcHI[[FIH\\FIJhMI[ZmIGeII[[HIYZiIGFMIYanI]aWIZ_\\INlKI]GdIZpFI]HIIKfZIZHoIYO]IK`aI\\HhI[[_IZnfIN`iI[_WI\\jXIKlgI]dMIJlnI[\\NIZobI]YiIZjYI\\HOI[_NIYONIZk_I\\MaI[^pIZ^oI[_GIK_eI\\YZIMHgILJKIZXjI[\\[IZiaIZ`hI\\`LIY^KI[\\aI\\meI]faI[OFIOJ`I\\fbI[\\hI]b^ILkJI[\\lIYbkI[NYI]bfI[]FI[ZbHMmI[]JHhgI[]LIHHmI[]NIHHmIKOKIZXbIGXOIYgjIZYKI\\jKI[YcIZLdI\\fbI\\MNIJpGIZHoI[]dIZ_iILJKI]ceIYaII[]jI]jiIYYmI]jlI]lkI[ZdHkcI]joI]loI]kFIGjhI]kHI[^JI[ZmI[^LHWWHmkI]X_IG`JIKm]I\\FXIZLgI[MhI[MgI]fZI\\GMIY]\\I[eaIYppI]mZIKO_I]knIW^lI[aMI[\\II]kgI]lHI[MnI[_]IYW^I]lLI]nbIYgHI[\\GI]keI]dMI[[fI[_[I]lJIKLYI]ncI[NII]ffI[\\II[_fI]noI]hZI[LhI[OMIGdgI]i[IG_oI]OGI[OZI\\gIIKeLIX_^I[WFI[XdI\\ldIXgYI]KHI]FcIKOWI[WHIZ[jI[cHI\\a^I\\OLI[jgI\\hkIY`jI[lHI[gkIJcbHgpIH]mIJYkIGG_I[XXI[WlI[gpIYhLI[kkINNGI\\MaI[WXI\\[fI]pHI\\`FI[gjIJhfI[lJI]F]IHLGI[kiILh\\I]pIIZpLI[IkI[cWIGJMI[cZI[caI[`_I[ccIYWGHnpI[cgI[coIZYoI[dGIYhdI]\\JIHk`IILeIH_hIH_jHNHHKbIH_mIZgpIG`KIWZ^IKeJI[`oIZlmI[eLIZelIZbWIK`aI]k_I[]eI]d\\H^[I]NZI^F_I\\pLIWgMI\\ojH^FIMc[IOjNIYONIYeNI[^nHp`I]Y^IMkXI\\FgI\\poI^FdIN`iIYpOI[fKIJkfILJGIZabI[WGI\\cbIK_KIYpmIK_KIZojI]nKI]HgIZMXI\\jeI[adIJoZI\\j_IJpfIZFGILYnIYXNIZ\\GIK`aI[FgI\\jdI[WFI]YNI\\moIYO\\IL^kIMJOI^GGHMLIMc[IYX`I^GgH^[IJ[`I[baI]cXIYplI\\cZI]ghH_eI]ILI]IiI\\GcIHGdI\\GeIHbgIYcfI]eWIZpcI][^I]IYIZpgI][aI]I\\I][cIZplI]oJIIihIHmlI]NpIG`aI\\XdIYnMI\\_KII^nII^MIYoWIYmoHHXIYnGH^oHNeIG`cIGYpIYZHI\\_cIYajIGpHIGMgI\\_gI\\oHI\\_jH^oI[i`IXWnIYdKIGZfI[^eI]\\cI]a^I]\\lI[^jI]k\\IZLhI[]cIYXNIXO`I[[`I]nZIJmII[deH]pIWb]I]doIN^JI[_MI\\b]I]H\\I[flI[edI]fpIKWeI]KaHMLI[eFIZIFI^IkIZnfI]b[IY_GIJleI]mWI]JdI\\oXI]H\\I]^]IYpFI]^]IYONI]dgI[^nI\\lhIOgnI\\nZI[bmI\\HdIX`pIZ^oI\\O]IZ`oIHiMI\\InI[LHHOeI^KII\\NcI\\olH]pIY]KI^GiI[GOI^FpI\\M^ILIWI\\onI\\ffIYbeH^[IKZoI\\pHIOgnI\\pKIYhKILeeIGZlI]lhI\\HjIG_hIGdgI]XkIG``I]oNIKZfIKf`I]hpI\\cOI]iGI]d[I[pKI[j^IZOlIZpFHp`I]]^IYdKI[HbI^JlI\\oWIZFNI\\gcI]hlIYOlIZYMI\\XfIZn\\IZp_I\\G`I[nNI[chI]IdIYm_I^H]IGGbI]`kIZpdI]XWI\\JhI^HbHoHI][bI]X]I]I_I^HgI\\kcI^HjI^KnIYWJIYjNI^HmHNeIJYJII^oI\\ZFI^IKIGILI^IMH]LIKmiI]bNI]c[IZnfI[^]IOhgIYXNI]LFI\\GLH^oI[hMI]o\\I[X_I]jgIK_KIJjlIO`fIZkKIJkpI\\\\YIJnHIZNLIZNGI\\HOI]ZYIJjdI]^dIJlaI[deH^nIOL[I\\YLIOjXIKbdI^NKIJkmIJngH^nIZMbIY[[I]][IKdXI[^iI^MoI[YgIJkeI\\a\\I]Z[IZ[kI\\XLIJoZI[GZI^NWI[lYI\\ZaI]_dIKWmIKg\\IZlIIKOLH^gIKINIKFLI^OLI[LHIKf`IOJ`I]MHHk]H^nI[GkIJpOI\\W`IJo\\I\\X[IZNbIZ^FIZ[pI]ncIZ^aIK`aILl]I^MfIL^lI[FOIY]YI^MjI[Z]I]o^IJnpI]^aIZaKI[GHIZHfI[eoIZJWIJj^ILkIIZocILkII]gMIZ_KIZn[IGHJI^LbIIIXHIlIKf`I\\I\\I\\GlI]J^I[YXI\\mkI^OlI]pHI]o^IZ^iI\\W]I^WFI[bhILh\\I^WII^ObIJnhI]ncIZlZIZpLI\\FlI^L`I^WYI\\G_IIIXI\\bHI^W_I\\GnIY^LI\\GpI[\\_I[iZIJjlI[MWIJn[IZo[I]WHIZo^IZHWIZ^FI[JpI\\HgI]eII[iLI\\J_I][WIZcMI^I]I]cJIHcoIZcoI^IlILY]I[NlIZ_bI]gjIZfOI\\pGIKdGI]lgIYa^IYmOI]pZIWn[I]fMIZHfI]p^I]gXIZb^IZn`IGJfIGWhIGJhIGNlIKjXI\\f\\I\\[OIX]kIKIcIZJkIZMnIYaJI[jZI]lhI[lcI^XGI\\JLHLOIZNmIH[gIYaiIYYWIZ_OHNeIIXhI]pjIZ`GH^`IHWWI]cnI[haIGFlIHbaIG`GIGgdI]pWI[glIKZMIHp`HJNHlcIZZ]I[]]IKc^IYI^I]ofI^XXIOL\\IZHXIYf]IKeYIZGmI\\[dIZHeIZjeI^GMIJkpIZjhIKjfI\\phIZIFI]FOI[WeIJjgI\\agIMFoIZkoIY\\iI^WmI^X`IJnHI]ncI]kaI\\hkIYjHIGclIJcpIGlMII\\KIYapII[KI]e_I]FkI[h\\IYYJIG^oHaGHOJIJfhI^ZNIZXMIJcHIJNLIN^[IZLJIGIeHXcH`MIGJlIGIeIGKfIJ[gHXnIGJGIGHFIJdFIJ`eIGJpIJN\\HLdI[hkH[ZI[hmIZX`IH\\aI^H\\IGJJILkKI^Y`IYddIZJOIZIFI\\MZI\\pcINIeI\\jNI\\FlIKZ_I[[cI\\cII[\\LH^nI[iOI]WMI\\[fI\\HHI\\ZlI]bWI]GnI[MmHj]I^YgI[_iIYbpHo]Ho_HWWHoaI[_lHObI[_nIGhXI[`FI][gIHKOI]ojHkfHkoHkiIGhjIJaWHi\\I[lGIGjWIIYZHaKIGj[I^H`I]XXHkWI][eHOFI\\^[I]iXI]JKI]\\MIHmaI]O[IGMpIGFZHiMI\\JNIMmnILKcI\\GOI]n]IK`WILX\\I]cXIZocI^F\\IXZiIKk]IYX[I[dmIJjcI[deI]dXIYd[I^F]IY[[I^OoI[jbI^^`I[mgI[^nI[miIJjcI^OoIZIFI^OoIKGXIYXcIYX_H_eIMNXIZ^LI^GgIJj`I\\NGIWe]IZHGIWh_I\\nZIZk_I]OnIZF^I[YaIXKbIJlaI[OoI[fjIKZKIYppIZjmIOJXILY]IZF_IOKnI\\XMIK]dIZjbIZjpHONI]HfI]IFIY[[INJII\\HJI[gnIKZ]IZ[LI\\eII\\nJI\\aOI\\doI]jJHfdI[Z[IJpfHnFI\\nZIJkFIG`MIZ]HIL]GI^OWIZ[WI\\GZIZapI^HJI\\c]I[gMIJkFI[bpIYaJI^`mIZXeI[cIIWn[IXdoI^]_HMHI^]aI[_pHObIHnWI]oiI]pXI^]gHg\\IHZGIGMMIYXoIGMLHlHI[dXIGLXHl[IGN\\IIX]HjXIJZlHh`IYWJI\\_[I\\HkHljIY`mIGJpII[_Hk^HlfHlhHoJI[XLIJZ^I^MMI^^OIG_[I\\XdIGLMHH_IHpOHmWIGFkI^^[IGJcIGLoIGmZIGH`HiHIGklIGJJIGmJHmYI[daH^IIGWhIGnIIHiGIZfkH[OI^bjIGFkHnoHneIJgdIHFaH[_IHFiI]paI[`OIGFnI^a]IIecHljIGO^HiJIJ[KI]mhHiYIZ`MIO_iHLmHiMI[d^IHcWIHdZIJ[jHk[IGY`HMjHiNIIXZIHdLIJM]IIYhH\\dIHc`IGW\\IHcfI^IMIHlXIKlOILMgIZjFI^^iILdgIZ^]HIkILFoI[baIMNXIZdXI^^kIZLhIZocI]nXILIOIZMXI[fcI]YnI\\HKI^^bIZodIZZoIYXMI]bJIZFgI\\n[I]ipI^daIYfIIJlaI]ZJIZdLIMbXIJlaIJjlIGnKI[gLI\\nZI[JlI^_dI^JWI\\gdI^eFI^NcIYXNIKaXIYX\\I\\iiI^dkI\\\\kIZGIIZjKIOdfI[lYIKaXI[fdIZbHI[deI^`KIZFYI^`MIZIFINGaIJmKI\\NMIJl`HjNIZ][IKIKIKdbI[gHIY[MI^d`I\\n\\I\\NbI[\\MH_dIZHFI^deIZHHI^fHI^diI\\n]I\\ijI\\N[IKFWIZHoIJnpI]KjI[fnIZJ^IKg\\IJl`IZH\\I^[FIKOWIZH^IKOWHO\\IZmaIJlaI]jeIJjdIGGaIJmZIJmKI^fbI^eFIKGII^GLIHImI\\MkI^gKIOJ`I^fkI]OlI\\e_I[bjI^eZIYa`I^`fI]oZIWNYI]jbIYX`I\\e]I]o_H^[I[baI^eJIKkaI\\bjI[_\\HMWI]NeI^fOI^gjIKdXIN``I^gZI]ObHONI\\WmI^dkI^_JHONI^gnIZIFIN``I\\FgIMmjIJjYHflIGdiI]OfIGgnHIoIKYYHONINMKIZmIIYa`IMMcIJp]H`aHNmIY]LI[XZI^dMHNmI[emIOHJIJnlILZoHONI]f\\I^gZIYI^I^g\\ILjjIWodI^g_I^`kI\\\\eI^gcH_eI^geIKmhIJl`HWaI[_GHMLINoLI^eOHMWI^i\\I^goI^gfIJlaIKL_I^e^I]^ZINmKIYXNI^ifIK`aI^i_IIFeI[agIN\\_I^eII\\n\\I^eKIJlaIZkgI^dcIOHHI^i]HapIYXNIK`FI^d_I^fYHONH\\cI^f[I^e_IOmgIYppI^jMIJoFHONIZIfIJk[IKXmI[GZHONIO`^IZHGI^jeIK`aI^j]I^hpH^FIMMcI^`gI^g^IN\\XI^g`I^ZnI[HeI^jjIL]iI\\OaI^fgI\\cWIOJ`I^jpI^`lI^aGI^iNI^ioI^iaI\\N\\I^ghHMLIWGJI^jJIN_eIYXNIKkGI^jNI^gpIWXiI^hHI^`JINcZI[fGIWNGIZIFI^kbI^j^IZJcHJNIKKnIYLYI[OpIZmWI[fhIZ[OI]l\\IZGmIXi[I[I[INFXIL]GI^h[IKamIKiYIZnGI]_II\\mlHMLILFoI]`gIGlKIGLoI^hlIJlaIKgdI^jNI^iFI^kJIKmMIWJfI^iJI[WII^kOI[HdI^kXI\\F^IJpMI^lhI]obI^iLI]KYI^HNH^[I]ILIGnfIHlcH][H]]IGImI\\_[IHhhIGnXIZZNIYZcIHhkI[icI^YnHObI^YpHmoI^ZGHp_H^GHLnHKdHmOIIWkHMlIGj[I^MYIGGOI^M[HhKHlcIHl`H]cH]eI]cHI[i_I^XiIHcIIGLYIGL[H`pI]kWIG]kIHhkHWeIHhmI[cWI\\_aHWKINkKI]JXI]ahIY]\\I^HKI[[]I]iHI^LJIZFiI]adIYXNIZLlIZioIJYdIKifIZniIY]LI\\bFI^mJI^XWI[kkI^XLI]_cI\\MII]l]I^oIIWYLIJjlIZ\\GIY\\dI^flIJleI^]IIX`pI\\WFI\\HLIZ\\GIYpFI^oaI^eoIKkaIZHeHj]H[cI\\HaI^[XIZMbI[jjI[jOI[meIZ_iIZLoI]L[IZIFI]L[I\\pcIYfHIJn]IYkeHjNI[jZI[phIZcXIZk_IKIeIXnMI]fhIZGnI\\fjI[NpIZfOI]b`INhdI]HmI\\m]IZ^aI^oFIKpKI\\kOIZbfI\\fbIJpeIZigI[bLI[XeI]pHIGLMIYjHI^mNIHf`I^mXHOLIG_KII^nH\\LIMcWI\\KXIHfeI^mOIIhnI]IeIZYOIGhoI^mbIZ_NI^mdHNFI^mfHnGI^mhI^mjHaZIGaIIZplI^mnI^ILH[jI^pfI[jHI^ncI]acI\\IWIYpFI^\\iI]iLIZLoI\\MZI^\\hI]c`I]ahI\\ILIKIZI]akI^]LI]IHI]iNIYa^I\\\\LIJjlIMaJI\\gMI[H`I]gjI\\HGIXffILY]I^oiIJm[I\\cbIKGmI^o_IKHIHflI^oaIZ\\FI\\HOIY\\[IYlHI_GhI^GbI^obIYlMIJoJI[KfI^G`ILbJIZdMIZocI]bKI[_iI[IkI_FFIHfgI_FHHgpI^nHHLoIHhbH\\aI\\ZJI[i`H]gI_FJIHKIIYcYIYnjIZp]I^IJI^moIGJJHhKI^m[IG\\pIYZ\\IGJ\\IKhpI]eKI^onIY[fIZLoI[[\\I^F[IYXNI^WfIZbbIYo`ILXbIZilIZIFIZnWI]\\fIJYdIYe`ILgeI^pII[jiI]\\iIZdIIY[[IZdKIKdXI]nnIYgjIMlfI\\l[I^`nIZnhIY[cIYg]I^`cI_GFILXbI]]cIZomIYXNI^WNI]\\gIYfHIJkmIYfJI^WNIZIFILkII\\\\LIJlhI]H`I\\YIIWYLIZocIWb]I^GaILc`I^eiI^IjI_GlIZjdIZjpHflI]^]IY[[I]^]I[fmIMMkIZbHIJlnIY]mI[kKI[bII\\\\LHkiIYdnH`XI_JZIZo^I^YWI\\hkI\\ggIGdiIZdgI^HaIHK[IHK]HnMIINWI^LoI]JFIIoMIHYkIJ^fIGf^I[]WH]MI\\L`IYgaI\\LbIYjaI^^JIGbNIZfkIGJLIJhcI]pmH]iHnLI^nJI_H`I^nMI^adIGj_I^nWIH]GILNHI[i`IYZYI^m\\I^n[HYmI[JNH`JI^n_HWeIX^^I^LFI\\YHI^LHI]bnI[jWIYfpI[mpI\\oiIYkjILXbI^\\gIK`aI\\MZIYaeIYlNI[eNILYlI\\GoI[H`I]ikI\\]OIYfnI\\WgI^[NI^MhIY]YIZm^IHiMI]fnIZIFI[_aIKdXIY\\YI[gMI\\XkI\\mjI\\olI[aYIZdYIYNdI^_FIY^nI]YaI^G]I^pKI^GIIZkeIZfLI^K^IZfWIKf\\I^K`IYogIMN\\I[akI^`aI\\ljIKOLIYfbI\\iHIHiMIKf`I\\j^I[W_IKHlI\\iiI\\kJI[WpI^FbI^YJI]YkI]gYH^aIGfMI^LfI_KoI^^WI]mkHWiIGZLIIjoHiWIGFMH]kIHmjI^YkI^YmIIcOI\\JXIHKJI\\KfIGp[H[[IIgoH`FIJ[KIIOhI^^MIYZiI^HlI[YFI\\^cI]OKI^MMI^KlI]OFIGNGI\\^HIGHMI_OHI\\L^I_OJI\\JNIGZ^INmhI]kZI]IIIZFWI]k]IZ^HI]cXI]k`I]afI^]NI^i\\IYkFI^pkI\\`\\I\\Y]I[paI[X_I[YcI\\XpI^GNI\\mnI[ZMIYOZINboIZFNI]pFI[FZI\\a^I\\caIZmgI\\ccI]jJI\\`gIZHeI\\akI]`FIJnhHONIZXbIZjfIK[II[bjIKHeI[GKINNGI[GKIKf`I[KiI]ggIYpOI[WfIZbHIZ[dI\\mjI\\OYI[YcIZ[NIJnFI]_KIKOWIZl_IKpKI[GmI\\`gI]`YIJn]I^hgI\\NOIK[IHfdI[fXI[L_I\\bHIZfaINiFIZ[NIJpeI[aZIN\\XI][KIMmeINkOI_XlIK[II_X[I]gpI\\]OI][KIKIKHNmI^GnIJpfH^KI^heIYiaI[YcI]XHIJnFHOeIZapI]MHIKIKI[GmHNmIJphI_M`I]pNI]ajH\\aI]\\MH_FIHhcIH_MI]cIIYbMIYZII^m`I^n^I^XiI[ihI_HlHfpIGFZI^cdHWiH]gI_KOIYj_I^LmI_KYIZdkI_K\\IGh[I_K^IIIWHMHI_KaIG\\cIM\\GI^LkI][_IYlfI_KiIGj\\I^chI_KmI_HpI^nbI\\[OI^ndI_GpI_GkI[mdIJjeIK^MI[X]I\\f`IZZ_I^peI_YcI\\fbI[baI\\M]IKXeIZ\\hIZGlI]hKI]KaIN[[IKfZI[[oI[^`IZ[FIZ[cILGlI]jNI]KLI\\WnIJjlI\\eYIOWaIYkMIN^mI^WJI^dfI_OjIZodI_FkIK_\\IY[fH^_I]c\\IYfJIXiYIK`aI[f_IKdXI[FgI^nmIYp`I[Z^I[mpI[anI\\IKI]\\iINJII^`NI]^\\I_HGH_dI^hiI[l[I]HiI[p_I[nGIKf`I]bFIZLgIKG^IYppI_\\gIK_\\I^KOI[]XIZpLIZYMI_O[I^HkI]\\WI[O[IIh_HplIYoII]jpH]hHplI]clI]OWILNMI[HfHG^IZYkI\\lYH^FI[nlIGLMI^miIGLMI^FJIHW[IIZaHgFIJfdIGe^IYndIGILI]YHI]JNIZKNH`[HMfIKX_IJjmIHgGI]KNIYjoI]l^I_NII^FmI[W_I[kmIKIKIOZbIKn`ILdLI[eMI\\jLI[W]I]KIIZYII\\oXIY[fI]]IIK`aI[_KIKdXIYd]I^OhIIKWI]f^I_^II[ekIZa]I]KKI\\gXIL\\_IZXeI^JNIK\\bI_^OIKa[I]ikI\\mdI_^ZI\\nKI\\m\\IKa]H]pIZkGIZIFIL\\pIK`aI^ejI]geIMbnIJmfIW\\MI_^hI_^JI[fMIZYKI[gLIZbcI]GdI_^pIZMKI_WMI\\lnIZalI\\nIIZXbIYpXIY[fIZlMIZIFIZlOIKdXINecI_^dI__[IW^YI\\mjI[INI[ekI^lpI[\\`IY[gIY`ZI__dIYi]I_^XI__HI_JdI\\nIIKHeI__lIJj^IMYmIY[[IMYmIK`aI\\\\KIJj]I[\\\\I_`IIYWjI[lKI]ikI_`MI^dMI_^lI^HNI]GdIXYaI__FI__gI]KII_WOIJjdIKf`I_``H]pIMpcIZHGI_aWI_`HI_^fI[WOI__^IYOMIKamI]jgI__bI_`XI^MaIKJLI_aGI__fI[W[I__hI]jKI_NOI__KIZnlINdFIZHGIYXmIZMgIYaLI_`iI_^gIKOWI[pHI]KKI_a`I_`WIYkpI^IlIGGiIZGNIJjdI^ifIY[[I^ifI[^jH[oIZLgI^ifIYpFI^ihIKdXINmoIKaGIGZlIXKnIZbeI^[\\IK[pI^^GI_ZNHkWI]XZIYgfI^HeI]I_IIeoH_KI_LFIHhdI^nLI_YkI_LIIGLZIGL\\I^nYI]ooIZn`IHhjIGehI_LYIYZLI_L\\IKZWIN^kI]cMI^FbI^IdIY[[I[[^I_I[I[khI_LdIYkgI_LfI[m^ILXbI]GkI]JhIYXNIZoXI^YNIKmhI[]`IZLgI^[GIK`aI\\phI^nmI[\\\\I^LMI]bGIYeZI]foI\\[ZI]nLI_dGIZOnI^p[HoGI]FaI_\\`IY^nIZoJI]n_I[GII[m^IKYZI[HeHp`I^p`IZceI^KbIYI^IMN\\IYb]I\\OLIYgnI\\jKIZmeIKc^I_NZI]KNI\\j\\I[MLI\\mnI^ZcI]giI\\`FI^poI]daIIF^H^bI]FiIIeoIHmmI\\_WIHmIHifI_FKIHmkIHppHhjI]XhIHmnIGMgIHmHHoOIJ\\bI_NmI\\JWIGXHI\\JYI_OFI^bNIIKcIH[FI_O^HYIH[[HLKHYIHkOI_OKIZhFH^MH^OIHXlIXlGI_I_IY^KI[oOIKc]I]ncI]GmIZLnILXbI[]bI\\o[IYXNI_fbI\\n[I[KLIYddI_^_I]FJI\\[JIJjlI]eMI\\Y^I\\\\LI]YmIGZ_I^N]IZnpI[fGI_HNI[mYIZnfI[GcI^p[IYebI]]gI[biI\\iOI\\YII]kcI]eFI^LWIYkXI\\kGIKMFIYpiIKL[IZoLIZpLIYbpI_cGI]XeI_cII_YiI_cKI^nZI_FYIGHNI_YnIYbMI_YpI_cYI_ZGHaOI^]]I_ZJI_Z`I_KXI_bmI^HcI]X[I]I]IGj[I_e^I]XiI\\_XH^hI^MJI^bWI[IIIX_XI_f]IY[`IYddI^FZI]a`IY[[I^ocIHLGI_ZoIYeeI_[FI^oJI\\nFINFmI_[JIY\\IIZWHI[^aIZ][I[JlIZGmIKXjIMXiI^jWI[H`I[_bIZHXIZ\\XI_[_I\\aoI[\\^I^`[I_[cI^dMIZJiI\\FhIZ]lI_GMI]ncIYopI[oLIYlNIYi\\I]abIYddI[f]I_\\HIYXNILk\\I]abI[K]IJpGI_\\OI[k^I_ckINY]IZHoINFcI__oIY__IJnaIKo\\I^pYI_^IIKH_IK_KI_j\\I\\n]IYfpI^L[I]gpI]hZI]p`IHX`HXhIHnZIGjgI[n_I[LpHnbI]eZHgWIIi`I[nbI]`oI]g\\IYdHIHgYIHp`IHiiH_nIIHpH_`H_bIZgOIKWLHLnIGpGIG`[HOXIGYWIGknIIYoH_jIHflH_nIHpfHWiI^MMIHfiIGfgIHXlIHjgIIXaIZndI]HOI_d\\I[NLI[lOIKFMIY\\YIKZkI^JGI[KGIYdgI_d[I]GoI]^NIYfkIJkFIZaLI[LdIKa[I^JNIJj`IYgYI^Y_I_`gI[W`I[^eI_JFI^YHIZLbI\\gfIKfOH^KI^dnIKdXI]ZLIKdXI]ZNIKgaIYXcIOeeILZGI[eaIHiMI_bXH^KI[KWI]ZbI[_cI_lZI\\O^I\\moI^WpIK[pIYdGIHgLIHgYI[LnI_kiIJknIKlOI_LpI[NLI\\MJI\\fnI\\inI]h`H_eHnkI\\p[I_joIZhMI_kFI_mXIHfnIHcpIHpXI[pmI_jlI[`lHMLI[nlHnkIHiaI_jgIGHOI_moIIZ\\I_k_IHinI_kaIYZGII^pI_kJIHfnI_kLH][I_kNI[O[I[inIMnNIX^jI]nHIYi[I_L`I]\\dI_OmIYiLI\\FdI^J_IOgnI_\\eI_ndI_LiIKdXIZmpI_IeI]HhIYijI]HXI]\\oI\\oiIYfnIYdpIYfkIZjNIY[[I[ecILWoI_oGI_lKILbkIZe]I\\FgI]fkI_lXI_daIZLeIJnHI^IoI^_kI_WeIZajIZIFIXKnIYjpI[F_I_McI]kfIJoZIZelI^`LI^GeIYXNI_jNI_M\\I^^`IZl_IKfOHNmI_jNIZocI_pHI_olIZM]I_M`IYONHnkI^XoI^p^IYaJI^KaIZo^I[XaIMmGI^KgI_N\\IO[MI[dYI^ZYIGLoIIbKIHOHIG[II_jnI][ZI_mWH_lIYdII[XYI^Y`I_ojI^epI]ccI_ZhI_jGI[I\\IZWHI^GgIYbkI\\i\\I^WOIKWeHgFI_nII^aXH^dI\\jkI\\JFILI\\IZXjI]iOIK[pIGclH_iIHlmIGfWI\\_[I_poHXhIYdIIYYkI[LoIYYjI_keHOHI_kgH_nI_kiI\\HoIYNgINlpI\\ImI\\JHIZ_aIY[YI[fGI^^eIK`^I_lJHJgI^JYI\\[GI_`ZI_maI\\nIIJkFIZYJIJjlI]FOI_dNIZMYI[MlI_d^I_njIJknI]flI_kkI_\\jI[HXI_ggI\\I`H_hI_nNHXhIHjgI_kbHOZI_kII_k`I_n[IGgWHjhH_cIZJlIIH^I_jfI`F^I_jhI]jjIJHYI\\]pIHiOI_ZLI\\JgIYleI_ZOI_K[I]IpI_hYIGp[I]mmI_NfI\\ZHHm\\IZppI]ONIZgjIJLaIYZXHnkII^YIHYkIHNLIZ`cIOjcIHNXIWbWI_ncI_o`I_LaI]gII_dFI_obI^IgIZLaI]\\kIY[[I_pWI^]NI_knI_bXHMKI_jNI`IbI_mJI\\GMI^_HI^J^I_OhI\\foIZWWI_jLI`FaI_lKI[KcI^NjI^pbI_dWIYkOIY[[IYkOIK`aI_jNI[\\KI[lXI]dMIZGMIKfOI`IgI_JoI\\foI_p[H^FIKhZI\\iaI[W_IKHeI[fcI]cXIJnFI\\GII\\WnIKIKI_[`IZadI\\OHIKf`IZ^oI]hZI\\FlI\\_YIG\\pIHnGIYYlI]g[I]g`HhMI_acI]oeIZYKI]KNI^XOI]gmI_eWIZWFI]gfI_hpI]faI_mcI]hnIK[pI^MHI]oLI]i]I]oOIZ^MI]mpHiWI[YFI[OaIJghI[cgI[YLIMmII[OiI^g]I[OlI\\mpI]ikI[baIYhII^GLI[baI\\]OI\\pfINWaI^XOI[OjI]o[I]pLIZcgI]KII\\[dI__II[W_IJlhI`JgI^gHI[WdIY^LI^ZjI_W`I]jJI]pFI\\MLI\\aKIYo`I`LYI_W_I[_iI^ppI\\p_I`FlIHgYI^FKI\\HoII[LI`FgIHmYH]JI`FiH]MI`GFIHfkI_nOIHfnI`GJH^[H^HI`FnIIXaIWk^I`FLIYo^I^YaIKFMIKomI[JpI_lGIKHMIWa`H_eI]bMI_dbIKWeIJpOIY[mI_dWI_cmIK`aI]JiIWhbI]d\\I_M]IYdoI`J]I]]YI^olIZMXI[FOI]n_I_JLIJjcI]ZNIZIFI^NbIYdjIWONI\\jWI_MdIOMWILdbIYOZIKflIYOZI`LfIYXcIZfcIY]ZI[KII\\o]I\\jOIOKfIKlgIJo^I^GiI[pcIYblI`NZI`MpIJoJIYWkHj]I`FdIYNkI_OMIZYbHmFI[XmI_OOI]i_I`KmI]iaIGFZI[YJI\\lGI[OfI]ifI\\lZI]iiIYOOIZXmI_eNI\\a]I[YcI]ipI\\kJI]jGI\\afI[FaI\\OHI\\XGI[LKI[I[I\\dpI[YmIZYHI^`[I]jZI\\cpI[ZII]j\\I[ZLI_WiI[HXIOJ`I^o]I\\loIKmaI[Z\\I_YcIMn[I\\pZI]mbI[]II]mdI[ZfIIhJI\\LOI[ZjI]kIIGeHIH[dI[^OI]kHI`KjI[[JILNHI]kOI\\oJIWibI_OfI[^dI_ndI_hgI]bmI_OlIZfdI[^jI]kdI[^mI]lGI[^nIJlnI]naIZjNIZocI[[pI^IlI`X]I]lFI[\\JI_ddI^fLI__MI`J_I[\\XI^W`I]lWI`KZI\\WbI^ZdIYfgI\\fbI[\\cI\\bYIGLMI[\\fIJj^I]lbI[\\jIKa\\I]leI_[gI]giI^KhI_bjI]ljI`WhI[ZeI[]KI[^GI`WmI[]OI]mGH^FI]mII[X\\IZe[I\\faI[]^I\\gZILKaIJknI_feIZ^fI_ILI]iII]m]I[]iI[_iI[]kI[dXI`WgI[]pI`WkI_]KI]mkHXXI]mmI[^NI]kGIGJLI]kLI]nFI^I`INliI_ndI^IcIKdXI]hJI]nnI`GgI`XOI\\XOI[fGIY\\_I`X\\I[_OI`X^I`XiI`X`I^ghI]bHI`J_IZdMI`ZmI]kpI^^`I]niI^]FI[\\NI]NhI^GYI_lbI]npIKa]I_d`I`FZI\\FlI\\LdI`HjHkiIHnoIHk_H_cIKHeI]nHI]H\\I_GHI_LjI_oZI[MmI^IgI`YpIKdXI^d]I_FpIOZbI]k[IYidIYOjI[_iIY`jIZOMI\\KpHLaI\\^OIHlGIHlIIHlWI[`kI[IGI_hdI[KnI`ZhI\\Z[I_dOI^iZI^IhI_ffI\\FaI_ZmI[[XI]fNI\\[MI`GhIKL[I_GXI\\hkI`[_I_hXIYgfIHcIH][HlYIGncI`KNI`JGIZLgIZ^iI_IYI`[kI`\\HI`]LI[lYI_IMI`\\GI]III_l[I_bhIYOlIYpMI`\\MI_KYI\\^OI`F`I`GnI_l[IGZ_I_mNI]FdHpaIYjiIHlkIHn`IM[YI_FNH[_I`]lI\\IhI_FmI_IJI_hhI_apI]eGI]III\\IpIZoGI\\o^I]III`FZIZWmIIFKIHp]I\\pZIHnLH^OIHnNI`H^I`MaI[n`I_fGI^HhI_N_I_e]H^hI_h]IO]YI]G_HMWI]KgIZIFI]KgI`XNI[lNIZMYI\\ILI]nOI^ngIZIFI_igI^]NIMn_IZOnIZbkINeLI_YLI`KaI[iKI_KJI_obH^nI_odIY\\mI^NYIY^JI_dYIZNMI]IHIZLdI_pFI_lYI\\GMI`_^IY\\YIZMfIZkjI_laI`_gIZLbI_foI`^MI_\\JI[_cIJkFI]gGIL`NIZcXIJknI``KI^L]IHKkIYpMI_NiIHiaI`]dI\\FXI`]fI][LI\\hkIYpMIIfHH^aIHmdI[jaI`KWI_mLI`]gI`ZKI_eZIHpaH^OI_N`IGhJI^^WI_h\\I_ehH[mI`KKI]g^IGaZIHloH^OI[`kIKkkI[[XI[lMIKIeI_odIYO]I^^dI`_JI[^bI`^WI`_fIKdXI`_LI`][IZLdI`InIYigI^JGI`aaIOgnI``OI_oZI``^I[[XIJmWI_^WI[deIYp]I_[jI_ljI^dMI[NOI[\\mI[dfIZNMIYf]I`GjI`aoI_oeI^JGI]igIKgaIYX`I`bIIGZ_ILMFI]gnILJnI`YmI\\]MI\\iFI_alI^_LIK`aI^^pI_acI`[lIKFMI^leI]^[IZocI^JdI``MI`a^I[fGI`bgI`abIKc^I`InIJnpI^JGI`cGI\\cbI`aiI]hZI[i]I_cJI\\ZKHnkIHnoHgLIGg]IZO_I\\_kI_LOI_cZIIZkI^n]I_L[I_YoI^n`IMkdI_L_I`ZdI]bjI\\IpI_[lI`FMI[jYI`FKI_jFI\\[NI`FMIYb`I[kYI^XpIZfYI[k]IYkiIYfeI^W^IMk[I]bYI\\pHI]bXI`_iI[bJI_lWI_KLIZddI`WeIHXdI_KWI^^HIIHZIGJLHK\\I_FbI`[`I`\\pHnkIHlJI`YbI`WlIGanIHImIZg\\I_hYI`YbI\\LNHhlIHnoI]pkHMLIZ``I^aoI[gmI]aZIGZlIYddIZjoIY[[I`^oI_IoI\\IMIYoeI`e\\I_GJI\\plIZe[I_ciI_jJI]FFILXbIYigIY[[IYigIK`aI]KgI]hgI^M_I^YMI]iLI`cnIYokI_nkI_\\XI`dHI`ZnI]bYI[_[I]dMHnaI[pdI\\[JI^XkIGZ_I]lbI^YdI^K_I^YOIZpKI_peI^HMIYaaI`eoH_eIZpLIYhNI_LGI_YkI^m_IYZKI_hFI`HnIZKcIZKOI`cbHdZI_hLIKOZIK]NI_caI[^aIZIFI_iJIHLGIL_gI\\`KI\\`JI\\laI]geIZbkIYX`I_[LI`apI]YpI]dlHONIZMbI`_aI[jkIY]bIYf]I_i\\I]^`I`JjI[YpIYI^I_[dIZIWI`WKI[MbILbJIYdhIZocI\\MZIIFeI`ZIIWi]H_eI[]hI`]^I]h]I`^GI_III[lYI\\IlI_acIM]bI`a_I\\IMI`a]H^GI`^XI]m_I_YeI_goI[idIGopI^mcIZ_WIIXhIGZcI`dgI^miI^b_I_FdI_h[I_KkH\\fIGFOIJj^I`GMI`eYI[jJI[fGI]\\eI]O`IYogIL_]I\\MLI`LZI_bMI^oWI^ZfIK]]IY\\[INK]I_MKI_GfI^`jIZHmIYeHIY[[IYeHI_dKI_\\]IYimIJkmILbJI[H\\I`]NI`cWIK[pI`fjI_FZIYOHI`hgI^meI[dKI`hkI_FcI^mlI]X^I`hpI_ZfI^GoI]hFIWi^I`iKI[^_IZfdI^Y`IL^KI_m^IOgnI^ZdIYhJINonI_GbI^_hI^o\\IY]ZI`iaIZjhI_GoIZoXIZIFIYeHI\\WZI[YgIZWgIYiaI^OdI^XcIY]NIGLoI`hXI\\IkI_oZI`h\\I]heI_lJI`kOI``WI]ocH\\aI_bkI`HfI_hWI_K]I_hYI_bpIHcoHkiI]\\bI`iLI^dpIZXjI_bgI]HiI]YMI_gZHMWIMJOIYkFIMc[I_pdI`\\mI[plIK\\WIYc]IHpiHOKI\\fnI_ihI_I]IJmLI`ffIK[pIGhZI_eeH[_IYbHIIFbIHJKIHpZIHp\\HOKI`lLH]MI^amI\\FnIGJiI\\kKHJNILpKI]hmI]gdI\\ObIYg]IO`nIO[MI\\[cIKYZIZJkI\\opIYogI^p_I`dLI\\fnI^]XIY`[IGLMIKaFIIpLI`dcI_blI`deHLWI`jKI`diIZObHomIGZLIYbJI^XhI_YkI`lZI`]oHLdI`l]I`^\\I_ZFI_NaIHhlI]I_I`flIYZNI`l_I`lJIHp]H]^I_cMI_LKHomI\\JdI\\JpI_ecI``pI_e`IGp[IHpiIHpJI\\h`I_\\oI^MKIZJlIHKFI]aJIGaFHNGIGbMIIJII`ncI]aOIZpOH`pIJeiI`^[HZiI^cNI`eMIGeLI^MLI\\HoIGbdIOJ^IYmnIIcKIYoZIHeMI_IFI]N_I^LGI_nfI^dgI`\\fI`ecI`kkIYX[I\\ppI]HnI_gKIYppI`[JI^IlI[MlIWhYI_aHI_agI__KI[WOI_WdI[KbI[KLI]KNI`NjI\\mJI^ZeI^nhI\\[OIZMkILXbI`JMI`gLIYXNINKkIYkWIYdmILfkI]gpI[LGI^hjI_IkI^MkI[WJIZagIYknIZHGI`oaIZnfI_XbI_ndI_J`I__XI[olI]nZIYXMI_pII`OFIGL^IGflI[eLIYOWIZJ^I]YbHMKIZH\\I^GiIJoYI[IYI_[OI\\NhI]OfIJoYIKGmIZalIJMoI\\jiI[\\HI\\gcIKIJI[bJI^FiINYKI_M_I[]XIKdbI[XaI[\\KI`G[I]YYINk]IZHGI]_ZIaF[I]d\\IYdmIKiGIKlgHlpI]o\\IZXbIaFcIZ_KI_XbIW\\MI_G\\IK`aIL_]I^doI^^gIZHYIKjjILoII_^XI^gMI^dmI\\mKI`gaIZacINhKI]bmI^iMI\\l\\I^gHHWGIK_JHONIMneIKFOIK`aIaGhI\\FgIIYNI^_jIaGhIYpFIaGhIK`aI]f\\I\\FgIHhHHJWILOeI^j_I_lLHflIaFNIYObI\\HdIaFYIKlHI\\[lIaF\\IaGNI]IJI]cGI`mfIHfdI`l\\IYc]IIFbI`hWIYfJI`^IIaGaI]F^I`cOI\\MXIKk]IZXjIaHkI`FZIYhNIHp`IYYoIIHaIHJZI`HLI^alI^YZI^anIZnbI^Y^H]LIH[FIYddIKXcI]dHIYXNI[ocI_acI^KIIJmfI_l]I^pXIKa[IZ`iI\\mcI`f^IXWJIZfXI[gZI`dMIYbeI[kFIZNFI`igI_^nI\\JGIZMYHnFI]lhIIYNIYYnIIF_IYYpIaIJI_nXHiHI`l`I`lKIG[II`nJI_cOI\\JcHkII]YFIZpcI`ipIIXGI]IgI^LcI`k]IZgZI`\\oIZg^I^MFI\\JeIIF^HOKIIHlIHpmIHgNI]IkI`Z_I`KkI[OfH^[IHpOIHmgI[lfIZNlI_OcIGonHlFIG[XHLYIGhbHLnIHbGIHIfI`]HHnXIHX\\HLjIG`WIYmhI`noH_eHH_IGbfI_HcIG_MH^oI]\\NI`n^I]ihI_]\\IKJ[IK_kI`oMI_FlIZLoIOkpIZHGIaLII`fcI`aOI\\GMI]]XI`]MI]dZI`jmI`G\\IWhmI`_OI`G`IZniI`KbIJjlIOfgI`[ZI`MoI`XhI\\M_IY_oI_jKI\\O_IZHoIZolHMWIK\\NIaGOIJknIHHlI]KHI\\nIIJlhI]o^IZ_KI^ilHIkIJoOILjbIZapIIaMIZIhI[GdIZWfIJngINHnIZHoIO_bIK`aIKZfI^l[IY^WIMXiH^nI]LFIZ[[I]LZIYXNIOMGI]W[IJnHI[FlH^gI^JYI_JjIZIFIaMhIaMXI^NKIJkeI[GeIZmhI\\mlI[GWI[LHI[GZH^gIaMhIYpFIaNWIaMOIYkXI[GKI]_pIKHIH^gINnnIYpFIaN`IaNZI[JlIaN\\I[GlI\\dnI^_gI[GpIZjpH^gI\\\\nIZIFI\\\\pIKdXIaN`IY\\gI[lYIaM_IaMiIaNGI[HGI[LFIJnZH^KI^OKIaNfI]`eIKFMIKjcH^KIaMhI^foIKdXIaMpIaOMIJoZIZlGIKGnIaOXIKH]I`poI[GMI[LHI_b^IKHIHNmIMjbIYpFIMjbIK`aIMkaIZnLIY]cILd[HNmIaMhI]^iIaMhIJjbIZbKIZlmIZLaIKKHIKZMI[GmIKJiIJj]I_YOILn]I`ilIYgJI[LHIZJ\\IJpfIZJ[IaMgIY`KIY\\LI]LIIZ^aI]KoIOMFI[lYIaNYIaOgI[JlI]XHI[GZIaWIIaWlI\\HOIZ^aI\\XFI]LbIM]eIZHoIMZiIK`aIaO_IaOgH^gIaXKI[LHIM_iIY[[IM_iIaXWIaXIIJoZIG[kHJNIKXJHOeI\\WkIKGoHOeHWaH`aHfdIY_lIYXMIaXmIMnnINO[IKGoI]MMI]gpI_\\_I\\OLIG[kI]KdH^FIOGkIaMoIaWfI\\n[I]XHI`GiI[LHIaYMILh\\I]MHIY[[I`_NILcWI\\MWIYlIHO\\IO]lIZHGIaYfIK`aIaMLIK`aIaLlIZ^FIHiMIZ\\GIZocI_hjI`N[I^FjI^K[I_d_I[^nI]m\\I^JOIYfJIOilIZHGIaZOI[mlIY[[IaLIIaZYIaH_IY`[I`nYIHp]I`n[IGImIHLFI``eI\\[kI^W`I`hbHMMI^XGIZ_mIZY]IHeKIG^iIIZXHjGI]IkI\\_[IGgnIHpiIaJmIIH\\IHcoINlpILMMI^iHI[iII`L^I_J\\I^gHI]YkI]HII\\XMI]mYIaI]IY__I]j[IMFoI_XWILoGIZ\\cIZaWHO\\IYpII^JGI\\H_I]_\\IJlaHJgIaLaIZllIZ^nI]hKI`a[I`OMIMNdIZj]I`inI_H_I^]eI^a[I[HmIIIpIG[GIIJYI[dXI_bnIaJhIZpkI`mnIa\\OHmoIIKaIIK^IHi\\IIKJIJ_mIKOZIJpeHJnIHLGI[iKI^OjIKklIZicI\\i[IZbFI_ahI[F^I]KNI^e^I\\caIZf[IZiaI\\`nI\\OHIYX`I[[\\I[_iI[LhI^[dH[mIM_fHK\\HoiIGgaIZLLHXcIHdhIIjXH^kIGNeHihIGInHodIIWcIGKhIIM]IGi_HOIIHWlHpeIIbWIGJFIJ]\\IIceIIa\\IGMoHLeIJNcH[eIINGIHOdH[^II[OIGHpIHhiIZhfIO^^IYcdIGfWHIlIKHHI`h^IaHlI`JGI]GeI\\FeI\\F\\I^lpI\\FiI`G\\I`GjIMFoIYX`I`GmIZpLI``YIIIWHj[I^HGI`JGI`akIaZ]IZfZIIHeIHacIIN]IIYmIIXiIIXMIINdIINoI[dXI_mZIZKMHIlIaFII`bhI`\\HI`]]I`oNI^[YI[KFI_coI`G\\I_dOI[MmI[o_IYHjI[lYI_cpI`IdI`\\jI]GeHnFI`bII_lWI^YII\\hkIYhNIa_JHj[H]hIa_WIH_mIIOLIIYHH]lIINdI\\pZIa_ZI[MII]cLIa_^I`]\\I_mLI^_]I[o`I[lYIaI^I`\\_ILKaIa_gIZjKI]]HIa`cIa_eIa_mI^p[Ia_oI^dMIa^kI^YXI\\JpIIHfIIO\\HlnI^iOI`^pIKIeIa_`I]cgIHKkI\\FlIa`JIGegI_glIIKLI^kYI`GnI`biIaaNIa_HIaaXIa^nI[`XHkGIIOpIJ]eI]pZI`cHIaaMIa``I``_IYOlI[IkI^H^IZcHI^HXIHcHIaJpIZK`IHOZIGHNI`HdI^LlI`k^IZdjI`HhIIHoIHOiHlHI\\GfIGjHI_hNI^^HIGFkIIW_IJ`hHonI_ZMI`k^I`m\\I`hkIXYHI_d\\I_IHI`ZcI`kfI^IiIZd[IYo`I[aXIZLhI\\FOI`ZGI]J]IYX[I]NkI[a`I\\[bI]n_HMKI^dZI[_KI]c_IZokI`OGI_MFI^GiI]^FI^KZIZelI^N`I`N`IY\\`I\\HOIYgnHp`I]ZdIaF^IWYLI]dMIacNIGMYIHiMILYJI`_mI`NLI_JhIacZI[eaI\\FgI_\\WIZekIaboI^JdIZIFI]^]I\\MbI]dXI[fpIJknINGfIL^kIaFOI]^HI]]iI\\foI`IiIacpIZFmI^GII[gKIOgnI]JpH^FIacJIa_HIa]WIaacI^bFHoWIIXYIIXJIYlgIIXjIIXOIIX\\I`aHIHnIIG^gI\\FKH^FI^jiI_G]IaaMI\\HFI\\c[I`baI\\MNI`_IIablI]klI^JNI`\\hI^NLIa^hI^F`I`Y[IZ_gIaaFIaaYIadlIaeGHXdIaa]IaaLIYJNIZZ^I`]hHMMIaegIIXoIIZaI^ajIaahI[[YIaajIaenIaefIadkIHkmII__IILiIaekIa`^IZLdIaa`I`[^I`ioIafOIIL]HZ^IIYYIIaJIaaKIaf[IY]WIaakIaaOI\\pII`OZIJLlIIKLIa_LIIN\\IIYoIaZnIIZeIa`XIIYmIa_XI[loIa`[IHgFHIlIY]LIaelIMMkIYgGI\\Z]I[fGI_lHIOGfIae_I\\GMI[MlIZpFIJlnI_ndI`NIIKdXI`NKIKFOIag^I_klIaeaI]b\\ILjbIa^jI`bKI`lXIafkIZXHIafmIINlIIZHIH_mIIZJIIZlIagGIINMIa_MIa_YI[XOIa_[IagOIaffIafLIagYILXbI\\Z^I\\GJIZdJIa`kI[]`Ia`gI]GjI]FHIahaIaghI_obIaY[I^J^ILcWIagmIa`GI]chIagpIIdoHjGIaaIIHdNIafZIaaiIaemI[jgIaeoHmOIaiFI[XNIaa[IGZ]IaiJIafKIaiLI`\\JI`lGIahpIagFIafGH\\XIafII`ZaI`aWIai]I`hNI`k[HMMIaZmIahLIafWII_OIafeIaiKIagXIai^IahoIaijIGkpIafmIafaIIL_II`IIafdIai[IaifIajFIaihI^OmII\\III[fIIeXIaZdIWkLI`FcI[_iI``aII[`HL\\IJX[Ia^pI`]eI``gIaalI``XI\\pOHfmI\\^oIH[nI``\\I``fIaZfIajbIK[pI`dpII^_I\\KcIaj_Ia\\HIajaI```I`FeII_NIIYLII]gHObIajpIaZeIakOI`]_IK[pIHhHIJZoHMYII^WIIHaI^HnII_LIak]Iaj`I`ZJIakWH\\aHemIakcII_WIJ[FH`LII_ZII^dIakiIakNIakkIak`H\\aIGdiIakoII_mH\\YIIg`IakMI_lnIalLIajkH_fH[LIafbIajNII`bIGaHIalJIal\\I``hIaklHMMIIaGIalaII``IIaJII`oHMkIaleI`FbIal]IaKmIIa`I^bHHNGIIcYIHdlIalpI`\\IIalgIalMHMMIIcOIGJMIamLHjXIamNIa_GIaHpI]jiHLoIYZXIZZXHm\\IKbZIYjYIGNiIGOmIGgGHpXI[_nIH^[I[]oHgIHJgHmlI[]HIampIGLoIZfhI[`ZIOk`I]\\iI`cjI]cNIMnFIL^kI`kiIaLMIMWOIZohI^egIZHoI[a\\IKIhI`kNILMII`khIZWFI^OhIaIeIO^nI_djI^YGIMllIKhgI`_HI]ndI`oXIZIFI]H_I`]dIOGfIJmFIYXZIMlGI[b[IZa\\I\\FfIKloI_`NI]_cI`OpI[KLIZmWI]KHI]KKIYaZIZfOIZFNI_XFIY]ZI[HbI]lhIYpMIHXdIYaiIIOZH\\lHX_I[]oHLcI]XbIGf[IKOOIJknIM\\nI]mJI]pNI_IkI[gZI]haIamXI`aMI]hoI`h[IanbIaZMIZ`oIZnnIanaI]geI`\\HIN[aIaiMIaaFIaJeIYjaIGFZIH`iIINNI^kJHJgIK]`IZJkI]ikI[XII_`nI]h^I^lnI`]iI]`mIYhoIIeIIIMGIGgnHgLIZNiI_kYIGg_I[phIONlH^]Ia_\\IaieIKmpIZjFIaLfI]FFI]H\\I]c^I_^`I`pgI`o^I[lXI]aeIZimIWONIY_bIYeXIJj^IYk`Iae^I`_KI`MkIONlI`MnI]J_IajGIaaWIK[pIIeOI^FHI\\_GI[Z`I[F_IK\\YIapFI_ZpI[iZIbGWI[iKI_XfIH[gIbFIIHLhIbFKII\\XI`OcI_OaHOcI]eYI\\p]HNGI[O[I\\nnI]`nI_mhI^IZI^[bHlHI`c`IZeIIIOcIHIeIYamIJOZH]oIKmZHJgILZjI[_NI]mOI_^XI]h`I]GiI_[nI[lYI\\IOIZ^dI_ojIOeHI[paIZc_I\\c[IaniI]F_I`^LI[kZIaFdIKjHIKklINFXINGLI\\fMIZZbINiFI]FFI`onI`jcIJMoI^FlI^_cIachI^e\\IK]]I^eLI[jnI_^fIKYbIKIKIKWdIYI^I]^GI\\bKI]NZIJjlIZb\\IZ_iI`hcIGGMIbGaI_mfI][ZIbFHHjgIbG]H`iIG`[IajoIZJlI[g^HMbIIiKI^ZII_FIIIG_IIbcI_LZHm^HLYHgJHJlHJaHKLHLaHJlIMHlH_eI[HiIH\\nI`gGIN\\`I`FLIMXdILX_I_^GIa\\mIZiiI`YoI[fGIbH[ILb_IZbaIak^I[pgI_acI[K_I^^`I`JII[HWI[baI]YWI\\XNIKfZI_lpIOneI]ndIYpFI_lhI_oYIaIpI_oHI]LXIZMpI`f`IalhI^nKIYnnHIiI`kdI_ndI`[nI\\Y[I`d]IYoiI_pbIaFbI_MbI]]`IZefIYNdIbKeI[_hIai_IY`\\IIfaIGHeII_oI[XXIJkFIbGMI`YiIYkpI_hnI`iZIbGFH\\aI`dbIabcIIj_IabeI`dhIG`nI`hnIZgaIapeIapgI`YjIa\\nI\\inI`WdI`gWI[iLIIeoIGgLIIeJIbLFH^FIbLHI\\MLIbGOI\\jNIapII`\\KI`Y^IZgWIabMIYgcIapbHMfIINNIHcIHiJI^ZXHNFIaWnI]\\mI]GfI`fIIYpXIbK_IbJdIOKfIaphI]\\oIbIXI`JKIap]IbFpIaiiIbMMHoYIbKpIbGKIbLGI]pGIbLmI`gYI_^mIamHIIe`HoYIIM]I[F_IL[WH_eI\\jKI\\`XIapJI``iIbI_II_FIbIaIap`IYlfIIefHoYIbMOHOcIbGgI_mgIHh`IbGjI\\_iIHIlI^IJIGXHIZhdI]ImIabJIZgFI_cWIHcoIGNGI^IfI_lKI]aoI]\\pI`JKIanfIMc_IO[LI]h[H_eI]NZI]HaIaI[Ia`hIKNeIZjXILY]I[M`HJNINGLI]^`I_WMINboI_^ZI\\aeI[e[I\\HdI]lhI[]kIbIkHMGIIiKIHWXHoYIbIbI_nLIHImHoLIbNgHjlIYn^HYIIbNkI`leI^Y\\I\\FoIKYYI]nGI`iJIZ^GI]J\\I\\IXIaJFI[NpI_\\LI_LcI\\pmIYkgI^FoI_LgIKInIZenIYXNI`gdI_G^I`_]IKYZIYaXI_diIZfYIbHaI_djI_d`I[NHI_lJIaI`I`lWI`faIY`jIbOhIbImI^cOHgJIZYkIKJ[I]mHIZOfI`llI_WHIYgGI[WOI^_]I\\gWI[lYIbJeI^G]HMWIJkHIZidI``^IJMoI\\X_I^YYI^HZIIKcIGWhIGKaI`Z^HhlHKmIIffIZ_]IKWmILenIZJkI`K_I_`lIZYKI`p[IaKmI\\iGIab]I_blIZO`I^HdIaJiIbL^IZddIapiIbYMIbGYIbLcI\\FlIIflIHbaIbMiI_jiIHgFIbGLIbMlI_hmIbGXI`gYIbKZIIfeIHbaIbNHIJkFIbNJI^g]IbXZI]h]IbYaIOa_I[YIIbIaI\\ZFIYhZI^XgI_LMI^nMIGb[IYhZI\\YoH]oIGclIbH_I[NjIbHaIMH\\IbHcI`_FI]dLI]n_IL]^IZoLIZd`IKWNIYpgI]YbI_bNI^G]I]b[I]imIKaGIa]NIad\\IbOeI`faI[]kIbG`IIbIIbYXI`k^IG`XIIffIbN^IJ[NHkXIbIlIG_[IIoMIIfjHJ_IGWHHLcIIJlI_FJIGikI]N[IMaMIbLIIbJ_IX\\mIbJaIa[XIJknIaLWI^^nI_ZhIYlNIYimI`NJI^omIbW[I]YoIaiNI^]iHjkIbYfI`H`IbYhIbMkIbGNIbYkIbLnIbLLIbMfIbLOI`HeIbLXII\\OI`m]IbLZHmeIbL\\IGj_IbY]IaphI`OkIYfpIbYNIbZLI`KHIIg^IIZeIIMGIbLiHMWIbLkI_FjIbLJIbYlIbLoI\\hkI`^ZI_HfI_gpIYOHIZOIIH`KI`hjI_FbIGFZIJiHIGhhI`mkIYZII^n\\I^MGI^ZMIMpfIW`JI`hJIKI]I\\GmI[i[I`YFI[jgI`jbI`i[IKNiI`jeIZF_I_GdI^FoI_GgI]KJI[lYIZjNI[jlIaFKIKa]I\\XYI\\eLI^o[IKYlI_ibI`kFI^d[I`\\dIa_HIIphHomHjmH_MHhlIaK\\IHbIIb[WIYgcIbGcI_jpHgFHNeIZfoH[WIGOcIGGIHMpIZfjI`XJI][WIZdfIbLWIYhZIabOIHK_I`m_IZdoIajJIIKYI^HlHpiI[ckIJNLIZfnIIOJHLYIbNkIHKFIJjGIaokIb__IJXKIGFlIYoOI`oIIIcLIM[MH^[I[nlIZaeI[OaIIKgI[gdIIJKI_KnI\\KFIJhJHoHI][fIGWkIIh[HklHLhIZOeIMZdI`IYI[^^IYXNI]hJI^XZI_nhI]gHI`[]IanWI]hhI`h[I`I]IZLgI_lfI`o_I_oaHJgINecIZXjI[l_I[NjI`baI_^MI[iII]gdIZXjI`_\\I]GeI]WgIYX`I_nlI\\g[I[fGI]]eI]amIKW^IJmZHJXI\\n\\IYaZIYpgI\\i\\I[bcI]KLI[W[IKIKI\\enI\\kJI`W\\IJlaIMGLIZIFIMGLI^_bIJjeILZjIJl`I[ZJI[WcI[fWI^l]I[fZIZagHONI]_ZIYpFI]_ZI\\NLIb^XIYfjI_XcILoGIZZjIKL[HflIaF\\I^NgIJlaIGL^I]_JI[F_I^NkI]Z\\IZJoI\\]OIb^ZIYijIZ]MIJleH^gIGhZIZl^ILL`IaWFIJoYIZIpI[LHIY]\\HMKIbakIK`aILmdIZFWHMKIOFOH_gIK`aIOFOIbcNI_[]IZ\\KIKWZI\\OlI\\MkIGNGIbOcI`JlIONlI[[\\Hk]HflH_OIa]II`eYI\\bYI]^cI`gjI^OJIaG`IL]GI]Z\\HnaH^nIMnXIZHGIbdKIaHGIY`KI\\`jIKKoI]^cI^MoH^nHWGI\\WLIK`YI\\XXI^X[IYijIZGmIGW_IZH`IbKkIYa_IY[WI^W]I^M`Ian\\I_OiI_cdI_fgI_oZI[^eI`I`I[a[IbdmI`_hI`MoI\\GWI]oGIaaaI`KdH\\dHjnH_HIb^gIHbYIHbIIONaIZGgI`epI^IaI]H\\I]JgIb\\JIahhI[^eIbK`I]mXI_cnIbeHI_g_IZo^IaInI[KHI]IGI]dFIZWII`ieIbWeIbelIbKOIKcYIb`dI^W`I]bdI`ZaHpGI[^eI`pII_iYI[f^I[_cIYf]Ib`nIZnjIbaII]OgI_m`IaL^IY^KI]h`IbI\\I_HOI``jIJLoIaJjIZXHH[jIJMXI[n^Ib\\YIZXGIIimI`nlIbffII[LII_GIJMWIJacIa]aI^ZNI[igHWKIaKOIGopIGpGIHdhI^IYI\\oGIbGkIbNlIbK[I_HaHIlILl_I^opI[lYI^pHI`h[IKpJIa\\jI]pKI\\mpI`KXIbaHI]ocI_eKI[\\LI]o\\IaFFI_`OIbaHI]mMIXMIIapII]o\\IWWiIbHjIYblIa\\lI\\mjIYbaI_MkIaIkIaoWI_MlHMWILL]I_doIbf_I`K^I\\l`IbhIIY]YIbhKI_IjI]OcI]o\\I]lbI]\\cIbWkIZcgI`mKIYaIIbJpI^KFI_`oIK`aIZmHIZNMI^FiIZM[I`I^I_dWILkIIY[[ILkII^OfI`IjIagiI]OoI]III]GeI^]WIbeKIbiHI`d\\IahdI_ndINlaIY[[INlaIK`aIa[MIbaLIZpFIbiZI_^WIbi\\IbKXIYiiIbaLI]LdIJnHI\\WgIZ[pI_G_I`YJIKZ_IL\\_IKeLI[LJIO\\GIbh_I[LJIM`]IbgpI\\Y^IJj`I[LhIJLhIbgIIJLjI\\pZHhlIbfpIZKkIJNkHNNIbfjI[]XI`MdI[JmI\\[NIZLoIb[pI]m[IbWZI[[XIbiIIKa[I[MmI^KFI`FYI\\neIajIIIiiIbgJI\\pZIIilHkcIIinIGGeIbj_IJN`IJMNIGFXIbfiIbk[H\\XI_XeI`\\]I\\HOI[KNIah^Iag[I\\MYI`ebIbi_IagiI`IlILn_I\\[lIaeeIbKlIbjaIGGjIbk[I^XjIbFXIagiI]nNIa_bIYpFIY[^I`I]Iaf]IaiNI[dXIbkWHZnIbfoIblHI]WJIaa^I`]WI]H\\I\\GII`XZI_oaIblXI[_iI[lcIZbpIHIMIIjJI]g\\IblkIJ_oI\\pZI`moIYnoI^IOIbgWIYalIbNcI\\oII`mdIG]kI`fhIGKFILdKIWMKILXbIbOWIK`aI]dII]]YI`GnILibIbgfI[\\JI[WXIbgiI]lZI_iGI\\mfIY]YI^lOI_N[IbHkIbhNIZ[eI^K]I_p^IafjIad[I^KZIbXfI^ehIbkjI_obIbklIZM[I]H\\I[pXI[oYIbiXIbnJIbiKI]GeH^_I`[]IbihI]bZI`GoI[eaI\\pMI[F`IZpaIbljIJMcIG_cIJMeI^dFI`\\[IJldIbXYI]lXI\\Z[I`g[I[gFIbaJIbMfI^acIIjHH\\\\IblkIbl_IagWIbOXIblcIKdXIblOI]GnIblfI_KMI``jIYmcII\\IIGgdII_oI[JJIJNYIJNhI[JMI`^]H\\dI[LlIGelIJNIIboaH[WIJNjIJOGI`INI\\o^I[nkIGbfIbmGI\\_eIbgYIbHGI\\_hIbmKIbZZI_YkIb]cI_LXI`cdIM_gI_c^Ibg]I^XiILbGIblJIamOIa_aI`XXI_OkIKdXIYf[I`h[I^fGI]pJI]YcIY]YIWioIZniIbgjI^pmI\\mkI[ZMI\\M]IbhJI\\mkIbbnI_mLI\\HdI]GdI^p[IZbKI_oJI\\oWI\\fgI^p[I]_pI^p]IYaOIZfZI^KbI`YZI_lIIYgpIaeXIYjFI\\fbIaWNI`ofI^K^INboIZNWIKYZIbOWIbhjIYa`IbhlIbmpI]bcIK``I^LKIbjhI[MmHhcIZpHI_gHIKlgHmdI^_\\IaedI_jWIcGFIZpFIcGHIaHXI^^`IcGLIYfkI]HGI[dfIK`aIMbnIbnIIZLgI]_WI]M_IbnII]GeIGL^Ibn\\IcFoI\\IiH]pIOFOIYpFIcGmI`d[IbfGIOHMIbfIIZofI]noIN^IIcHIIZOpIbI]I_pfI[JcI[LjIbohIJN]I]iZI[loIbo]IHKJII[hIbo`IcHZI[JMIbjhI`cmI`MeI\\Z\\IYfJIbjmI`kGIbjoIaLbIbnXIbkHI`\\kI`Y\\IbNOHMMIcHWIGK`IcHYIIa_I^]mIHNFIbofIJNfI[JKIJNhIbokH[lIG`NIbooI`\\\\I_INIbZoIbkeIbWXIah`I`\\eIcHjIcGfIagaI_obIKKHIMogI^J^HJgIKH[ILlHI\\gcIbkoIajHI\\pZIcH]I_]fIG`dI`^GIbl`I]III[^eIbp`I]hKI`clIblWIafhIadiI]m`I[n`IHnGI[LlIcIZI\\FJIKeLIboLIcJLI`GYI^nkI`G\\I\\j[IK_mIcIjIZihIa_`IbXgI[_iI_KNI]IWI_ZaI`HgIHK_IIkKIIkMI^WXIGZpHXhHnNIHHhIblFI[hbIHbHIZhaIb_[II]II^HlIaJpIIkOIIjcHNdIIjeIJfXIIk\\IcKHIIk_IIkaH[OHjXIIkdHZpH_jHhZIKcmI\\i`IaKhHNFIY[KI`jYI]caI`NcI`fIIYonIa^_I\\IpI`ZFI\\]^Ib`hI_ndI^GXIbWpIaHmIbJiI_dcI`[FIMGXIJmII^JGIY\\pI\\W]IYI^ILMIIZ]_IOGfIZHeI[ZLILfnIYeHIZocIZoXIbFnIZJoIbaKIcGjI_obI[FlH]pIZjkIZIFI^_mIY^hIZLbI_gHIahkI^LOIMWOI[XaIZelI]bMIaoKIaY`IY`KI]mWI^_^IY]^IK`aI^_aIYfkILgjIZfII_JdILh\\IYgnIZakI[W`I^G_I`OII\\ohIKldIZaOIIgHIcMdI_g`IGFZIJpOI\\mII_KIIcNGIYe_IYfkIZN\\IJoFI]JcIZaLIKIKI\\YJI[\\LIK`aIMNnIYX\\IZm^IOGfIZmJI[GcIK]nI^`hI\\YXIKoiI]ncIZlgI^GgIJknI^iOIKL[HMKI^foIZIFIaYaI`boIcGkIK^lIYppI\\OgIZNMIcMeI\\meIcHHIL^kI]bOIcNlI]GnIZLgIaYaIcOFIcGOI``eI]keIcL^I[\\HIK`aIanWILL`I`iiILfnIMmcI_[jIcOiI`FZI[lcIblpI[ihIH^FIJOLIZ_YIbZWIJidIbZYH]iI_LNIHi\\IJOLIbZ^IYnXHkjIJidIcWOIbpZIYbMILdKINakIZLoI]nJIcLYIa^aIap\\I_pXIacMIaZII_dgI`dKIaIjI\\fnILL[Ibh^IankI\\`KI\\fbI_I`IbglIYXII]o\\IJlnI^K]I\\g^I`mLI\\g`IbnFIcFHI_[jIYgLIboLIcHmIZLgI_\\GIbekIbKNIbnYI_knIbnZIbimI`]OIbi[IZpFIcMGI^McIY[[I]LFIK`aIXXlIcXYIcXeI`JHIcXbIcX^HJgILiIIZLdI\\WgI_`KIcFaI`YlI\\WgI[aiIcHNI[W`I`jJI_FbIcKGI\\]mI^ZMIHmkIIjbIJd\\IIkZIcHXIcKHI[dXI`leIZKXIYjMIbNnI]JaIa^cIcFNIbFaIbOYIZHGI`XeIZnfIacjINMoIL\\_I_[[IcXpIcXmI[^eIYk^IbFjIcZHI_apI[acIKIeH^_IaHoI`I]I`kYI^XcIYhNIcK\\H[LIIkWIIjdIcY`IcIHIcYbI[loIcYdI\\HmIHcoIZ]KI^XlI`bjIbFhI`J_I[IXIah[IZjdIbM]Ia[]IcIbIZooI\\GMHnFIcZZI]GnIcZ\\I]hZIY]NIJknIJYcI]h_Ibf\\I[gXI]ghI_IkIHKkI^L_IGjhIHJjHmOI_]eIGNOIGeYIIhNII\\fIGGlHOLIGLoIc[eIILbIHcHHkiIJhGIIYbIabGIIWnHOFI_YlIYYfIa[FI`jGI_F]I`hhI_F`IGdjIb\\fHnlI`jMIb]fIbXjI_NaIb`LIGHOI[HpHa[IHXNI`caI_hJI`ccIGj_IXbnI_ZhI_hfIcJcH_dIKGXI_bfIZZ^Ic\\nH_eIKgZI`p]I]ikIZZ]I^GKIKjfI[ekI^`ZI\\OYIXaZIJpGI\\]OI\\mjIc\\mIZ^]I[fII\\cbI^GkIcN[I]OcI`IpI`p^Ia[lIJjdI]KnIKKWHONIY\\mIZocIY\\mIc]^IZcoI^[KI[pMH]iIJnOIJknIMIGIbfMIZIFIZG_IJkeIaONI[LHIZmkIcHcIKGmH^KHOeI[GZH^KI\\\\[Ic^KI\\HOIc^NHhcILMII][HI^G`IKHIIKFII[lYIOe`I`bfIc^`IJoZH\\MIK`XIKFaI[fGINJIIZGaIc^kI]_fIK]]I_Y_IJleHOeIZl`IKGnIc^[IZjpIJpbI`cFIYXNI\\\\]I]WaIZHYIaO`H^KHk]IHeMI`]MIMFoIZ]eIN^mIc^ZIZ]lI^k[I]ncI]ZcIafMI]ogIaf_H`YI^m`IGLoIJXiIIH`I\\_FIG`dI[gJIKGXIb]jIJjmILKII]h`Ic`WI[hOIZWHI`_LIYaZIKNhIGFZINboIZ[gIKmaI[eoI[ZJIZ[gIbgoIJnHI[aeIOWaIYXFIb^_IYi_IZocI^WoIa]OIamaIYZKIcKnIZgbIGeFIJOdIc`HIH\\jII[cIbcFI\\[nI]F^IMF[I[jdI`a`I]aiI[aeIZHoI\\IOIYigIZJ_I]H[IJkpIYopIbFkIKbdI`i^IcNnI[W[I^`WIWioI\\ejI[YaIb^_I^jbI`oWIa_HI^KiIYZ_IGanIc`FIcaII^[cI`hdIa^]IcFpIae`IJMoIapOIJj[IKnYIYX`I[OHI[NWI[bbIY]ZIZLaIKM`I^WkIa[oIZ^dI^d\\I^XcIaabIc_oIYZKIcaKIcJHHkiHJNI]M\\IbLKI]pII]pOIY]ZIKZkIbd]I^_]ILfnI`aZI^nfI]hZIY`jIHp`IJWcIJXmHkOIJfpIcH[IbYgI[ZaI^i[IcbIHL[IIeXIGNGIaIZI[fGIbm\\Ia_kIGZlIZHFIb`oIONlI`LIIaGGIa\\kI[IJIZXgI`g\\I\\cpIZidI^MiIccnIY]ZI]feIZOpIaHoIaiNHiHIJObIc`GII[KI^FKIcJ`IcZpI^JII[dnILlHIZHoIag\\I[lZI`h_IZdNI]F`Ibi^IcdNIG`nIJXfIcdXI^abI[Z`IKGnIanZIcX_I`_GIbOXI\\oZIcLMI_oaI]F_IbeJI[l_I]NmI`lHH[eIHf`H\\^HklHkWIK]IHXHHM\\Ha^IHfcHMoIG`pHMdHLbHJbHbnHLbHKeHKaH]FHLHHKeHLNI]FjIYYGI[hlI^[gIb^gIY`^IG`pIZXLIZLFI^[nHiWIGNGIJdIIZhdIIOGIHW_IGpgHNjHLOI^\\]IHInI^\\_INhlHnkHJNILG[I^Z`I`iZIapHIb]LIYa`I^\\mI[iOIZYFI`LXIY\\FI\\jYIZ\\^IbdeIbLMHMMIJepI`MOIYlcI^^WI`KII[NcIafJIajXI`\\IIajZI^WdIIjLH\\gIcKaIJfZHYIIam^IajiIafiI^OmIHi\\HObIZh`IJfkI^lhIWaMI^XNI^W`I`K\\Icb\\Ia`HIbeMIMaoHicHpoIJj`IbJOI\\i`IanIHMpIGO`IGL[IHkaI[N`IJgeHK\\I[ObIGZ^IKJGIMFbIb\\kIbLaI_bKI__aI_`WIcfcI_[KIc[^IOgnI_WFI\\M_I]cNI`jcI`KbI]pOIYYLH`\\IJe^I[kgIbW^IY`ZI`mNIYOl");local I,G,H,K=1,Y and Y.bxor or function(I,H)local K,G=1,0 while I>0 and H>0 do local L,l=I%2,H%2 if L~=l then G=G+K end I,H,K=(I-L)/2,(H-l)/2,K*2 end if I0 do local H=I%2 if H>0 then G=G+K end I,K=(I-H)/2,K*2 end return G end,138,function(H,I,K)if K then local I=(H/2^(I-1))%2^((K-1)-(I-1)+1);return I-I%1;else local I=2^(I-1);return(H%(I+I)>=I)and 1 or 0;end;end local H,Y,e=function()local K,L,J,l=J(Z,I,I+3);K,L,J,l=G(K,H),G(L,H),G(J,H),G(l,H)I=I+4;return(l*16777216)+(J*65536)+(L*256)+K;end,function()local H=G(J(Z,I,I),H);I=I+1;return H;end,function()local L,K=J(Z,I,I+2);L,K=G(L,H),G(K,H)I=I+2;return(K*256)+L;end;local function N()local G=H();local I=H();local L=1;local G=(K(I,1,20)*(2^32))+G;local H=K(I,21,31);local I=((-1)^K(I,32));if(H==0)then if(G==0)then return I*0;else H=1;L=0;end;elseif(H==2047)then return(G==0)and(I*(1/0))or(I*(0/0));end;return O(I,H-1023)*(L+(G/(2^52)));end;local I,L=H,function(K)local l;if(not K)then K=H();if(K==0)then return'';end;end;l=L(Z,I,I+K-1);I=I+K;local H={}for I=1,#l do H[I]=M(G(J(L(l,I,I)),138))end return o(H);end;local I,O=H,function(...)return{...},n('#',...)end local function W()local M,Z,I={},{},{};local J={M,Z,nil,I};local I,G=H(),{}for K=1,I do local H,I=Y();if(H==0)then I=(Y()~=0);elseif(H==1)then I=N();elseif(H==3)then I=L();end;G[K]=I;end;J[3]=Y();for J=1,H()do local I=Y();if(K(I,1,1)==0)then local L,l,I=K(I,2,3),K(I,4,6),{e(),e(),nil,nil};if(L==0)then I[3]=e();I[4]=e();elseif(L==1)then I[3]=H();elseif(L==2)then I[3]=H()-(2^16)elseif(L==3)then I[3]=H()-(2^16)I[4]=e();end;if(K(l,1,1)==1)then I[2]=G[I[2]]end if(K(l,2,2)==1)then I[3]=G[I[3]]end if(K(l,3,3)==1)then I[4]=G[I[4]]end M[J]=I;end end;for I=1,H()do Z[I-1]=W();end;return J;end;local function o(I,J,e)local I,H,K=I[1],I[2],I[3];return function(...)local G,N,L,Z,H,M,n,W,O,Y,K=I,H,K,O,1,-1,{},{...},n('#',...)-1,{},{};for I=0,O do if(I>=L)then n[I-L]=W[I+1];else K[I]=W[I+1];end;end;local O=O-L+1 local I;local L;while true do I=G[H];L=I[1];if L<=192 then if L<=95 then if L<=47 then if L<=23 then if L<=11 then if L<=5 then if L<=2 then if L<=0 then local H=I[2];local G=K[H];for I=H+1,I[3]do a(G,K[I])end;elseif L>1 then K[I[2]]=(not K[I[3]]);else local J;local L;K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};end;elseif L<=3 then local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];for I=I[2],I[3]do K[I]=nil;end;H=H+1;I=G[H];K[I[2]]=(I[3]~=0);elseif L>4 then K[I[2]]=J[I[3]];else K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]/I[4];H=H+1;I=G[H];K[I[2]]=K[I[3]]-I[4];end;elseif L<=8 then if L<=6 then local e;local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];do return end;elseif L==7 then local H=I[2];local G=K[I[3]];K[H+1]=G;K[H]=G[I[4]];else K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]-K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]/I[4];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]-K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];end;elseif L<=9 then local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]][K[I[4]]];H=H+1;I=G[H];if not K[I[2]]then H=H+1;else H=I[3];end;elseif L>10 then local e;local L;L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];J[I[3]]=K[I[2]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];else local L,L;local J;local Y,n;local a;local L;K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];L=I[2];a=K[I[3]];K[L+1]=a;K[L]=a[I[4]];H=H+1;I=G[H];L=I[2]Y,n=Z(K[L](K[L+1]))M=n+L-1 J=0;for I=L,M do J=J+1;K[I]=Y[J];end;H=H+1;I=G[H];L=I[2]Y,J={K[L](l(K,L+1,M))},0;for I=L,I[4]do J=J+1;K[I]=Y[J];end H=H+1;I=G[H];H=I[3];end;elseif L<=17 then if L<=14 then if L<=12 then local L;K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];elseif L>13 then local M;local J;local a;local e;local Z;local n;local L;K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];n={};for I=1,#Y do Z=Y[I];for I=0,#Z do e=Z[I];a=e[1];J=e[2];if a==K and J>=L then n[J]=a[J];e[1]=n;end;end;end;H=H+1;I=G[H];L=I[2];M=K[I[3]];K[L+1]=M;K[L]=M[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]={};else local H=I[2]local G,I=Z(K[H](l(K,H+1,I[3])))M=I+H-1 local I=0;for H=H,M do I=I+1;K[H]=G[I];end;end;elseif L<=15 then if(K[I[2]]<=I[4])then H=H+1;else H=I[3];end;elseif L>16 then K[I[2]][K[I[3]]]=K[I[4]];else K[I[2]]=K[I[3]]-K[I[4]];end;elseif L<=20 then if L<=18 then local I=I[2]K[I]=K[I]()elseif L>19 then local I=I[2]local G,H=Z(K[I](K[I+1]))M=H+I-1 local H=0;for I=I,M do H=H+1;K[I]=G[H];end;else K[I[2]]=(I[3]~=0);end;elseif L<=21 then local I=I[2]K[I]=K[I](K[I+1])elseif L>22 then local H=I[2];local G=K[H];for I=H+1,I[3]do a(G,K[I])end;else K[I[2]]=-K[I[3]];end;elseif L<=35 then if L<=29 then if L<=26 then if L<=24 then if(K[I[2]]<=K[I[4]])then H=I[3];else H=H+1;end;elseif L==25 then local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];if K[I[2]]then H=H+1;else H=I[3];end;else if(K[I[2]]~=I[4])then H=H+1;else H=I[3];end;end;elseif L<=27 then local H=I[2]K[H](l(K,H+1,I[3]))elseif L==28 then local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]]-K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]+K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]+K[I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];do return end;else if(K[I[2]]<=I[4])then H=I[3];else H=H+1;end;end;elseif L<=32 then if L<=30 then K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]][K[I[4]]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];elseif L==31 then K[I[2]]=o(N[I[3]],nil,e);else K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];end;elseif L<=33 then if(K[I[2]]34 then K[I[2]]=(I[3]~=0);else local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];end;elseif L<=41 then if L<=38 then if L<=36 then if(I[2]<=K[I[4]])then H=I[3];else H=H+1;end;elseif L>37 then local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];else local J;local a,Y;local L;K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]a,Y=Z(K[L](l(K,L+1,I[3])))M=Y+L-1 J=0;for I=L,M do J=J+1;K[I]=a[J];end;H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,M))H=H+1;I=G[H];if(K[I[2]]~=I[4])then H=H+1;else H=I[3];end;end;elseif L<=39 then local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];elseif L==40 then local M;local L;L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];L=I[2]K[L]=K[L]()H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];M=K[I[3]];K[L+1]=M;K[L]=M[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];M=K[I[3]];K[L+1]=M;K[L]=M[I[4]];else local L;K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];for I=I[2],I[3]do K[I]=nil;end;H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L]()end;elseif L<=44 then if L<=42 then local J;local L;L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];if K[I[2]]then H=H+1;else H=I[3];end;elseif L==43 then local e;local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];H=I[3];else K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];end;elseif L<=45 then local J;local L;K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]();H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];for I=I[2],I[3]do K[I]=nil;end;H=H+1;I=G[H];K[I[2]]=(I[3]~=0);elseif L>46 then local J;local L;L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];else do return K[I[2]]end end;elseif L<=71 then if L<=59 then if L<=53 then if L<=50 then if L<=48 then K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]/I[4];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]-K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]/I[4];H=H+1;I=G[H];K[I[2]]=J[I[3]];elseif L>49 then local M;local L;K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];M=K[I[3]];K[L+1]=M;K[L]=M[I[4]];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))else K[I[2]]=K[I[3]]*K[I[4]];end;elseif L<=51 then K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];do return K[I[2]]end H=H+1;I=G[H];do return end;elseif L>52 then local I=I[2]K[I](l(K,I+1,M))else local L;local l;K[I[2]]=I[3];H=H+1;I=G[H];l=I[2];L=K[I[3]];K[l+1]=L;K[l]=L[K[I[4]]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=e[I[3]];end;elseif L<=56 then if L<=54 then local l;local L;L=I[2];l=K[I[3]];K[L+1]=l;K[L]=l[I[4]];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];l=K[I[3]];K[L+1]=l;K[L]=l[I[4]];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];for I=I[2],I[3]do K[I]=nil;end;H=H+1;I=G[H];J[I[3]]=K[I[2]];elseif L>55 then local l;local L;K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];l=K[I[3]];K[L+1]=l;K[L]=l[K[I[4]]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=e[I[3]];else local L,L;local Y;local a,n;local L;K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2]a,n=Z(K[L]())M=n+L-1 Y=0;for I=L,M do Y=Y+1;K[I]=a[Y];end;H=H+1;I=G[H];L=I[2]a,Y={K[L](l(K,L+1,M))},0;for I=L,I[4]do Y=Y+1;K[I]=a[Y];end H=H+1;I=G[H];H=I[3];end;elseif L<=57 then local Z,J;local e;local L;K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2];M=L+O-1;for I=L,M do e=n[I-L];K[I]=e;end;H=H+1;I=G[H];L=I[2]Z,J={K[L](l(K,L+1,M))},0;for I=L,I[4]do J=J+1;K[I]=Z[J];end H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2];do return l(K,L,L+I[3])end;elseif L==58 then local J;local L;K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2];M=L+O-1;for I=L,M do J=n[I-L];K[I]=J;end;H=H+1;I=G[H];L=I[2];do return K[L](l(K,L+1,M))end;H=H+1;I=G[H];L=I[2];do return l(K,L,M)end;H=H+1;I=G[H];do return end;else K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];do return K[I[2]]end H=H+1;I=G[H];do return end;end;elseif L<=65 then if L<=62 then if L<=60 then local J;local a,Y;local L;L=I[2]a,Y=Z(K[L](K[L+1]))M=Y+L-1 J=0;for I=L,M do J=J+1;K[I]=a[J];end;H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,M))H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];for I=I[2],I[3]do K[I]=nil;end;H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=e[I[3]];elseif L==61 then local J,L;local l;K[I[2]]={};H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];l=I[2]J,L={K[l](K[l+1])},0;for I=l,I[4]do L=L+1;K[I]=J[L];end H=H+1;I=G[H];H=I[3];else local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]][K[I[4]]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];end;elseif L<=63 then local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];if(K[I[2]]~=I[4])then H=H+1;else H=I[3];end;elseif L==64 then local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];else local H=I[2];do return l(K,H,H+I[3])end;end;elseif L<=68 then if L<=66 then local n;local J;local a;local e;local Z;local M;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];M={};for I=1,#Y do Z=Y[I];for I=0,#Z do e=Z[I];a=e[1];J=e[2];if a==K and J>=L then M[J]=a[J];e[1]=M;end;end;end;H=H+1;I=G[H];L=I[2];M={};for I=1,#Y do Z=Y[I];for I=0,#Z do e=Z[I];a=e[1];J=e[2];if a==K and J>=L then M[J]=a[J];e[1]=M;end;end;end;H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]][K[I[4]]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];n=K[I[3]];K[L+1]=n;K[L]=n[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];elseif L==67 then local L,L;local e;local Y,n;local a;local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];a=K[I[3]];K[L+1]=a;K[L]=a[I[4]];H=H+1;I=G[H];L=I[2]Y,n=Z(K[L](K[L+1]))M=n+L-1 e=0;for I=L,M do e=e+1;K[I]=Y[e];end;H=H+1;I=G[H];L=I[2]Y,e={K[L](l(K,L+1,M))},0;for I=L,I[4]do e=e+1;K[I]=Y[e];end H=H+1;I=G[H];H=I[3];else local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=K[I[3]]+K[I[4]];end;elseif L<=69 then local L;K[I[2]]();H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];H=I[3];elseif L>70 then local L,L;local J;local Y,a;local L;K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];L=I[2]Y,a=Z(K[L](K[L+1]))M=a+L-1 J=0;for I=L,M do J=J+1;K[I]=Y[J];end;H=H+1;I=G[H];L=I[2]Y,J={K[L](l(K,L+1,M))},0;for I=L,I[4]do J=J+1;K[I]=Y[J];end H=H+1;I=G[H];H=I[3];else local G=I[2];local l=I[4];local L=G+2 local G={K[G](K[G+1],K[L])};for I=1,l do K[L+I]=G[I];end;local G=G[1]if G then K[L]=G H=I[3];else H=H+1;end;end;elseif L<=83 then if L<=77 then if L<=74 then if L<=72 then local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];elseif L==73 then local L;K[I[2]]=K[I[3]]/I[4];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]-K[I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];do return end;else local e;local l;local L;K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];l=K[L]e=K[L+2];if(e>0)then if(l>K[L+1])then H=I[3];else K[L+3]=l;end elseif(l76 then local J;local L;L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];else local e;local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];end;elseif L<=80 then if L<=78 then local J;local L;K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];elseif L>79 then local l;local L;L=I[2]K[L]=K[L]()H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];l=K[I[3]];K[L+1]=l;K[L]=l[I[4]];H=H+1;I=G[H];L=I[2]K[L](K[L+1])else for I=I[2],I[3]do K[I]=nil;end;end;elseif L<=81 then local J;local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];do return end;elseif L==82 then local H=I[2]K[H]=K[H](l(K,H+1,I[3]))else local J;local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];if not K[I[2]]then H=H+1;else H=I[3];end;end;elseif L<=89 then if L<=86 then if L<=84 then K[I[2]]=K[I[3]]*K[I[4]];elseif L==85 then local e;local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];do return end;else if K[I[2]]then H=H+1;else H=I[3];end;end;elseif L<=87 then local H=I[2]local L,G={K[H](K[H+1])},0;for I=H,I[4]do G=G+1;K[I]=L[G];end elseif L>88 then if(K[I[2]]91 then K[I[2]]=K[I[3]]-I[4];else local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=K[I[3]]+K[I[4]];end;elseif L<=93 then local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];H=I[3];elseif L>94 then K[I[2]]=K[I[3]]-I[4];else local I=I[2]K[I]=K[I](l(K,I+1,M))end;elseif L<=143 then if L<=119 then if L<=107 then if L<=101 then if L<=98 then if L<=96 then K[I[2]]=K[I[3]]+K[I[4]];elseif L==97 then K[I[2]]={};H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];else local e;local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];if K[I[2]]then H=H+1;else H=I[3];end;end;elseif L<=99 then K[I[2]][I[3]]=I[4];elseif L==100 then local J;local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];for I=I[2],I[3]do K[I]=nil;end;H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};else local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];end;elseif L<=104 then if L<=102 then local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);elseif L==103 then local J;local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];H=I[3];else local e;local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](K[L+1])H=H+1;I=G[H];J[I[3]]=K[I[2]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];if K[I[2]]then H=H+1;else H=I[3];end;end;elseif L<=105 then local l;local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];l=K[I[3]];K[L+1]=l;K[L]=l[I[4]];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];elseif L>106 then local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];else local L;K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=K[I[3]]*K[I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];H=I[3];end;elseif L<=113 then if L<=110 then if L<=108 then local e;local n,a;local Y;local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];Y=K[I[3]];K[L+1]=Y;K[L]=Y[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2]n,a=Z(K[L]())M=a+L-1 e=0;for I=L,M do e=e+1;K[I]=n[e];end;H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,M))H=H+1;I=G[H];do return end;elseif L>109 then local G=I[2];local L=K[G]local l=K[G+2];if(l>0)then if(L>K[G+1])then H=I[3];else K[G+3]=L;end elseif(L115 then K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]-K[I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];else local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];if not K[I[2]]then H=H+1;else H=I[3];end;end;elseif L<=117 then local M=N[I[3]];local l;local L={};l=_({},{__index=function(H,I)local I=L[I];return I[1][I[2]];end,__newindex=function(K,I,H)local I=L[I]I[1][I[2]]=H;end;});for l=1,I[4]do H=H+1;local I=G[H];if I[1]==242 then L[l-1]={K,I[3]};else L[l-1]={J,I[3]};end;Y[#Y+1]=L;end;K[I[2]]=o(M,l,e);elseif L==118 then local l;local L;K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];l=K[I[3]];K[L+1]=l;K[L]=l[I[4]];else local e;local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];do return end;end;elseif L<=131 then if L<=125 then if L<=122 then if L<=120 then local J;local L;L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];elseif L==121 then local J;local L;K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[K[I[4]]];else local J;local L;L=I[2]K[L](K[L+1])H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);end;elseif L<=123 then K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];elseif L==124 then local Y,M;local Z;local L;K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];Z=K[I[3]];K[L+1]=Z;K[L]=Z[I[4]];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2]Y,M={K[L](K[L+1])},0;for I=L,I[4]do M=M+1;K[I]=Y[M];end H=H+1;I=G[H];H=I[3];else local J;local L;K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];if not K[I[2]]then H=H+1;else H=I[3];end;end;elseif L<=128 then if L<=126 then K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];do return K[I[2]]end H=H+1;I=G[H];do return end;elseif L>127 then K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];else local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]={};end;elseif L<=129 then local J;local L;L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];do return K[L](l(K,L+1,I[3]))end;H=H+1;I=G[H];L=I[2];do return l(K,L,M)end;H=H+1;I=G[H];do return end;elseif L>130 then local Z,l;local M;local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];M=K[I[3]];K[L+1]=M;K[L]=M[I[4]];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2]Z,l={K[L](K[L+1])},0;for I=L,I[4]do l=l+1;K[I]=Z[l];end H=H+1;I=G[H];H=I[3];else K[I[2]][K[I[3]]]=I[4];end;elseif L<=137 then if L<=134 then if L<=132 then local L,L;local Y;local a,O;local n;local L;K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];n=K[I[3]];K[L+1]=n;K[L]=n[I[4]];H=H+1;I=G[H];L=I[2]a,O=Z(K[L](K[L+1]))M=O+L-1 Y=0;for I=L,M do Y=Y+1;K[I]=a[Y];end;H=H+1;I=G[H];L=I[2]a,Y={K[L](l(K,L+1,M))},0;for I=L,I[4]do Y=Y+1;K[I]=a[Y];end H=H+1;I=G[H];H=I[3];elseif L>133 then local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]][K[I[4]]];H=H+1;I=G[H];if not K[I[2]]then H=H+1;else H=I[3];end;else if(K[I[2]]139 then local J;local L;L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];if not K[I[2]]then H=H+1;else H=I[3];end;else local H=I[2];do return l(K,H,H+I[3])end;end;elseif L<=141 then local L;K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](K[L+1])elseif L==142 then local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];for I=I[2],I[3]do K[I]=nil;end;H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=e[I[3]];else local I=I[2];local H=K[I];for I=I+1,M do a(H,K[I])end;end;elseif L<=167 then if L<=155 then if L<=149 then if L<=146 then if L<=144 then local J;local L;K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];if K[I[2]]then H=H+1;else H=I[3];end;elseif L==145 then local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];if K[I[2]]then H=H+1;else H=I[3];end;else if(I[2]157 then local G=I[2];local L=K[G]local l=K[G+2];if(l>0)then if(L>K[G+1])then H=I[3];else K[G+3]=L;end elseif(L160 then H=I[3];else local l;local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];l=K[I[3]];K[L+1]=l;K[L]=l[I[4]];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];if not K[I[2]]then H=H+1;else H=I[3];end;end;elseif L<=164 then if L<=162 then K[I[2]][K[I[3]]]=I[4];elseif L==163 then local L;K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2]K[L](K[L+1])else local L;K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2];do return K[L](l(K,L+1,I[3]))end;H=H+1;I=G[H];L=I[2];do return l(K,L,M)end;H=H+1;I=G[H];do return end;end;elseif L<=165 then K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]][K[I[4]]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];elseif L==166 then if(K[I[2]]175 then local G=K[I[4]];if not G then H=H+1;else K[I[2]]=G;H=I[3];end;else local e;local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];do return end;end;elseif L<=177 then local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];elseif L>178 then local l;local L;local J;K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];J=I[3];L=K[J]for I=J+1,I[4]do L=L..K[I];end;K[I[2]]=L;H=H+1;I=G[H];l=I[2]K[l](K[l+1])H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];l=I[2]K[l]=K[l](K[l+1])H=H+1;I=G[H];J=I[3];L=K[J]for I=J+1,I[4]do L=L..K[I];end;K[I[2]]=L;H=H+1;I=G[H];do return K[I[2]]end else local J;local L;L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=I[4];end;elseif L<=185 then if L<=182 then if L<=180 then local L;K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][K[I[4]]];H=H+1;I=G[H];if not K[I[2]]then H=H+1;else H=I[3];end;elseif L==181 then local M,l;local L;K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2]M,l={K[L](K[L+1])},0;for I=L,I[4]do l=l+1;K[I]=M[l];end H=H+1;I=G[H];H=I[3];else local J;local L;L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];if K[I[2]]then H=H+1;else H=I[3];end;end;elseif L<=183 then K[I[2]]=K[I[3]]/K[I[4]];elseif L>184 then K[I[2]]=K[I[3]]/I[4];else local J;local L;L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];if not K[I[2]]then H=H+1;else H=I[3];end;end;elseif L<=188 then if L<=186 then K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];if(K[I[2]]~=K[I[4]])then H=H+1;else H=I[3];end;elseif L>187 then if(K[I[2]]<=I[4])then H=I[3];else H=H+1;end;else local Y;local a,n;local L;K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]a,n=Z(K[L](K[L+1]))M=n+L-1 Y=0;for I=L,M do Y=Y+1;K[I]=a[Y];end;H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,M))H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]a,n=Z(K[L](K[L+1]))M=n+L-1 Y=0;for I=L,M do Y=Y+1;K[I]=a[Y];end;H=H+1;I=G[H];L=I[2];do return K[L](l(K,L+1,M))end;H=H+1;I=G[H];L=I[2];do return l(K,L,M)end;end;elseif L<=190 then if L>189 then local I=I[2];do return K[I](l(K,I+1,M))end;else local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];do return end;end;elseif L==191 then local J;local L;L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]][K[I[4]]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]][K[I[4]]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];L=I[2]K[L]=K[L]()H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](K[L+1])H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];for I=I[2],I[3]do K[I]=nil;end;H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];else local e;local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];end;elseif L<=288 then if L<=240 then if L<=216 then if L<=204 then if L<=198 then if L<=195 then if L<=193 then local L,L;local J;local Y,n;local a;local L;L=I[2];a=K[I[3]];K[L+1]=a;K[L]=a[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2]Y,n=Z(K[L](K[L+1]))M=n+L-1 J=0;for I=L,M do J=J+1;K[I]=Y[J];end;H=H+1;I=G[H];L=I[2]Y,J={K[L](l(K,L+1,M))},0;for I=L,I[4]do J=J+1;K[I]=Y[J];end elseif L>194 then local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];else K[I[2]]=K[I[3]]*I[4];end;elseif L<=196 then K[I[2]]=K[I[3]]+K[I[4]];elseif L==197 then local e;local l;local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2]K[L]=K[L]()H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];l=K[L]e=K[L+2];if(e>0)then if(l>K[L+1])then H=I[3];else K[L+3]=l;end elseif(l203 then local J;local L;K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];else local H=I[2]K[H](l(K,H+1,I[3]))end;elseif L<=210 then if L<=207 then if L<=205 then local H=I[2]local L,G={K[H](K[H+1])},0;for I=H,I[4]do G=G+1;K[I]=L[G];end elseif L==206 then local e;local L;L=I[2]K[L]=K[L]()H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];else local I=I[2];do return K[I](l(K,I+1,M))end;end;elseif L<=208 then local J;local L;K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[K[I[4]]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]][K[I[4]]];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);elseif L>209 then local I=I[2];M=I+O-1;for H=I,M do local I=n[H-I];K[H]=I;end;else local M;local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]+K[I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];M=K[I[3]];K[L+1]=M;K[L]=M[I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];do return end;end;elseif L<=213 then if L<=211 then local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]+K[I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];elseif L>212 then K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]/I[4];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]-K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]/I[4];H=H+1;I=G[H];K[I[2]]=J[I[3]];else local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=K[I[3]]+K[I[4]];end;elseif L<=214 then local e;local L;L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];elseif L==215 then local e;local L;L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];else local e;local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];do return end;end;elseif L<=228 then if L<=222 then if L<=219 then if L<=217 then local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];elseif L==218 then local L;L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];if K[I[2]]then H=H+1;else H=I[3];end;else K[I[2]]=K[I[3]][K[I[4]]];end;elseif L<=220 then local L,L;local e;local Y,n;local a;local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];a=K[I[3]];K[L+1]=a;K[L]=a[I[4]];H=H+1;I=G[H];L=I[2]Y,n=Z(K[L](K[L+1]))M=n+L-1 e=0;for I=L,M do e=e+1;K[I]=Y[e];end;H=H+1;I=G[H];L=I[2]Y,e={K[L](l(K,L+1,M))},0;for I=L,I[4]do e=e+1;K[I]=Y[e];end H=H+1;I=G[H];H=I[3];elseif L>221 then K[I[2]]=e[I[3]];else local J;local L;K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];end;elseif L<=225 then if L<=223 then local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];if K[I[2]]then H=H+1;else H=I[3];end;elseif L>224 then K[I[2]]=I[3]*K[I[4]];else if not K[I[2]]then H=H+1;else H=I[3];end;end;elseif L<=226 then K[I[2]]=K[I[3]]%I[4];elseif L==227 then K[I[2]]=o(N[I[3]],nil,e);else K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]][K[I[4]]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];end;elseif L<=234 then if L<=231 then if L<=229 then local L,L;local Y;local a,O;local n;local L;K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];n=K[I[3]];K[L+1]=n;K[L]=n[I[4]];H=H+1;I=G[H];L=I[2]a,O=Z(K[L](K[L+1]))M=O+L-1 Y=0;for I=L,M do Y=Y+1;K[I]=a[Y];end;H=H+1;I=G[H];L=I[2]a,Y={K[L](l(K,L+1,M))},0;for I=L,I[4]do Y=Y+1;K[I]=a[Y];end H=H+1;I=G[H];H=I[3];elseif L==230 then local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];else if K[I[2]]then H=H+1;else H=I[3];end;end;elseif L<=232 then local H=I[2];local G=K[I[3]];K[H+1]=G;K[H]=G[I[4]];elseif L==233 then local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);else if(K[I[2]]~=K[I[4]])then H=H+1;else H=I[3];end;end;elseif L<=237 then if L<=235 then do return K[I[2]]end elseif L>236 then if(K[I[2]]~=K[I[4]])then H=H+1;else H=I[3];end;else local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[K[I[4]]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);end;elseif L<=238 then local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[K[I[4]]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];elseif L==239 then K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]-K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]-K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]/I[4];H=H+1;I=G[H];K[I[2]]=J[I[3]];else local e;local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];if not K[I[2]]then H=H+1;else H=I[3];end;end;elseif L<=264 then if L<=252 then if L<=246 then if L<=243 then if L<=241 then do return end;elseif L==242 then K[I[2]]=K[I[3]];else local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]][K[I[4]]];H=H+1;I=G[H];K[I[2]]=I[3];end;elseif L<=244 then local J;local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];if K[I[2]]then H=H+1;else H=I[3];end;elseif L==245 then local G=I[2];local l=K[G+2];local L=K[G]+l;K[G]=L;if(l>0)then if(L<=K[G+1])then H=I[3];K[G+3]=L;end elseif(L>=K[G+1])then H=I[3];K[G+3]=L;end else K[I[2]]=(I[3]~=0);H=H+1;I=G[H];J[I[3]]=K[I[2]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];end;elseif L<=249 then if L<=247 then local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];do return K[L](l(K,L+1,I[3]))end;H=H+1;I=G[H];L=I[2];do return l(K,L,M)end;H=H+1;I=G[H];do return end;elseif L>248 then local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=-K[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]]/I[4];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=-K[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]]/I[4];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];do return end;else local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]][K[I[4]]];end;elseif L<=250 then K[I[2]][I[3]]=K[I[4]];elseif L==251 then K[I[2]]={};else K[I[2]]=K[I[3]]%I[4];end;elseif L<=258 then if L<=255 then if L<=253 then local l;local L;K[I[2]]={};H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];l=K[L];for I=L+1,I[3]do a(l,K[I])end;elseif L>254 then local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]();H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];L=I[2]K[L]=K[L]()H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];L=I[2]K[L]=K[L]()H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];L=I[2]K[L]=K[L]()H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]/I[4];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]-K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]-K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]/I[4];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]-K[I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]/I[4];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]-K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]+K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]/I[4];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]-K[I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];L=I[2]K[L]=K[L]()H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];else J[I[3]]=K[I[2]];end;elseif L<=256 then K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];do return end;elseif L==257 then do return end;else K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];if K[I[2]]then H=H+1;else H=I[3];end;end;elseif L<=261 then if L<=259 then local l;local L;L=I[2]K[L]=K[L]()H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];l=K[I[3]];K[L+1]=l;K[L]=l[I[4]];H=H+1;I=G[H];L=I[2]K[L](K[L+1])elseif L>260 then K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];else local Z,l;local M;local L;L=I[2];M=K[I[3]];K[L+1]=M;K[L]=M[I[4]];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2]Z,l={K[L](K[L+1])},0;for I=L,I[4]do l=l+1;K[I]=Z[l];end H=H+1;I=G[H];H=I[3];end;elseif L<=262 then local J;local L;L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];elseif L>263 then local I=I[2]local G,H=Z(K[I]())M=H+I-1 local H=0;for I=I,M do H=H+1;K[I]=G[H];end;else local J;local e;local a,Y;local L;L=I[2]a,Y=Z(K[L](K[L+1]))M=Y+L-1 e=0;for I=L,M do e=e+1;K[I]=a[e];end;H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,M))H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];end;elseif L<=276 then if L<=270 then if L<=267 then if L<=265 then K[I[2]]=I[3];elseif L==266 then local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[K[I[4]]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};else local e;local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=(not K[I[3]]);H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];do return end;end;elseif L<=268 then K[I[2]]=K[I[3]][K[I[4]]];elseif L>269 then local L;local l;K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];l=I[2];L=K[I[3]];K[l+1]=L;K[l]=L[I[4]];else e[I[3]]=K[I[2]];end;elseif L<=273 then if L<=271 then if(K[I[2]]=l then G[H]=L[H];I[1]=G;end;end;end;elseif L==275 then local I=I[2];do return l(K,I,M)end;else local J;local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];do return K[L](l(K,L+1,I[3]))end;H=H+1;I=G[H];L=I[2];do return l(K,L,M)end;H=H+1;I=G[H];do return end;end;elseif L<=282 then if L<=279 then if L<=277 then if(K[I[2]]==K[I[4]])then H=H+1;else H=I[3];end;elseif L>278 then if(I[2]<=K[I[4]])then H=I[3];else H=H+1;end;else local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];if K[I[2]]then H=H+1;else H=I[3];end;end;elseif L<=280 then local L;K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];for I=I[2],I[3]do K[I]=nil;end;H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];if not K[I[2]]then H=H+1;else H=I[3];end;elseif L==281 then local l;local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];l=K[I[3]];K[L+1]=l;K[L]=l[I[4]];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2]K[L]=K[L](K[L+1])H=H+1;I=G[H];if K[I[2]]then H=H+1;else H=I[3];end;else K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];end;elseif L<=285 then if L<=283 then local M,l;local L;K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2]M,l={K[L](K[L+1])},0;for I=L,I[4]do l=l+1;K[I]=M[l];end H=H+1;I=G[H];H=I[3];elseif L>284 then local H=I[2]local G,I=Z(K[H]())M=I+H-1 local I=0;for H=H,M do I=I+1;K[H]=G[I];end;else K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];end;elseif L<=286 then local J;local L;K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2];M=L+O-1;for I=L,M do J=n[I-L];K[I]=J;end;H=H+1;I=G[H];L=I[2];do return K[L](l(K,L+1,M))end;H=H+1;I=G[H];L=I[2];do return l(K,L,M)end;H=H+1;I=G[H];do return end;elseif L>287 then local L,L;local e;local Y,n;local a;local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];a=K[I[3]];K[L+1]=a;K[L]=a[I[4]];H=H+1;I=G[H];L=I[2]Y,n=Z(K[L](K[L+1]))M=n+L-1 e=0;for I=L,M do e=e+1;K[I]=Y[e];end;H=H+1;I=G[H];L=I[2]Y,e={K[L](l(K,L+1,M))},0;for I=L,I[4]do e=e+1;K[I]=Y[e];end H=H+1;I=G[H];H=I[3];else local I=I[2]K[I]=K[I](K[I+1])end;elseif L<=336 then if L<=312 then if L<=300 then if L<=294 then if L<=291 then if L<=289 then e[I[3]]=K[I[2]];elseif L==290 then K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]();H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];else local J;local L;K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[K[I[4]]];end;elseif L<=292 then local M;local L;L=I[2];M=K[I[3]];K[L+1]=M;K[L]=M[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]K[L]=K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];M=K[I[3]];K[L+1]=M;K[L]=M[I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];do return end;elseif L>293 then local H=I[2]local L,G={K[H](l(K,H+1,M))},0;for I=H,I[4]do G=G+1;K[I]=L[G];end else K[I[2]]={};end;elseif L<=297 then if L<=295 then K[I[2]]=K[I[3]]*I[4];elseif L>296 then local H=I[2];do return K[H](l(K,H+1,I[3]))end;else local J;local L;K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[K[I[4]]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]][K[I[4]]];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];end;elseif L<=298 then K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];elseif L==299 then local L;local l;l=I[2];L=K[I[3]];K[l+1]=L;K[l]=L[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];else local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];end;elseif L<=306 then if L<=303 then if L<=301 then local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]]-K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]+K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]+K[I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];do return end;elseif L==302 then local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]][K[I[4]]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];else local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))end;elseif L<=304 then local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];if K[I[2]]then H=H+1;else H=I[3];end;elseif L>305 then if(K[I[2]]~=I[4])then H=H+1;else H=I[3];end;else K[I[2]]=(I[3]~=0);H=H+1;I=G[H];J[I[3]]=K[I[2]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]();H=H+1;I=G[H];do return end;end;elseif L<=309 then if L<=307 then local J;local a,Y;local L;K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]a,Y=Z(K[L](K[L+1]))M=Y+L-1 J=0;for I=L,M do J=J+1;K[I]=a[J];end;H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,M))elseif L>308 then local I=I[2];local H=K[I];for I=I+1,M do a(H,K[I])end;else K[I[2]][I[3]]=K[I[4]];end;elseif L<=310 then local L;L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];do return end;elseif L>311 then local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[K[I[4]]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=e[I[3]];else local L;K[I[2]]=K[I[3]]-K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]-K[I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];end;elseif L<=324 then if L<=318 then if L<=315 then if L<=313 then local J;local L;L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];elseif L==314 then local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]();H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];do return end;else local e;local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];do return end;end;elseif L<=316 then local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]][K[I[4]]];H=H+1;I=G[H];K[I[2]]=I[3];elseif L>317 then K[I[2]]=K[I[3]][I[4]];else if(K[I[2]]==K[I[4]])then H=H+1;else H=I[3];end;end;elseif L<=321 then if L<=319 then local J;local a,Y;local L;K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]a,Y=Z(K[L](K[L+1]))M=Y+L-1 J=0;for I=L,M do J=J+1;K[I]=a[J];end;H=H+1;I=G[H];L=I[2];do return K[L](l(K,L+1,M))end;H=H+1;I=G[H];L=I[2];do return l(K,L,M)end;elseif L==320 then if(K[I[2]]323 then local e;local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];do return K[L](l(K,L+1,I[3]))end;H=H+1;I=G[H];L=I[2];do return l(K,L,M)end;H=H+1;I=G[H];do return end;else local I=I[2]local G,H=Z(K[I](K[I+1]))M=H+I-1 local H=0;for I=I,M do H=H+1;K[I]=G[H];end;end;elseif L<=330 then if L<=327 then if L<=325 then if(I[2]326 then local l;local L;L=I[2];l=K[I[3]];K[L+1]=l;K[L]=l[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];else if(K[I[2]]<=K[I[4]])then H=I[3];else H=H+1;end;end;elseif L<=328 then if(K[I[2]]<=I[4])then H=H+1;else H=I[3];end;elseif L>329 then local I=I[2];do return l(K,I,M)end;else K[I[2]]();end;elseif L<=333 then if L<=331 then local L;K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];elseif L>332 then K[I[2]][I[3]]=I[4];else local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];end;elseif L<=334 then K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];do return K[I[2]]end H=H+1;I=G[H];do return end;elseif L==335 then local J;local L;K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[K[I[4]]];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[K[I[4]]];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[K[I[4]]];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[K[I[4]]];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[K[I[4]]];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[K[I[4]]];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[K[I[4]]];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[K[I[4]]];H=H+1;I=G[H];K[I[2]]={};else local L;K[I[2]]=K[I[3]]-K[I[4]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];L=I[2]K[L]=K[L]()H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];end;elseif L<=360 then if L<=348 then if L<=342 then if L<=339 then if L<=337 then local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]][K[I[4]]];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};elseif L>338 then local L;K[I[2]]=e[I[3]];H=H+1;I=G[H];L=I[2]K[L]=K[L]()H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]]/I[4];else local e;local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];do return end;end;elseif L<=340 then K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][K[I[3]]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];elseif L>341 then local G=I[3];local H=K[G]for I=G+1,I[4]do H=H..K[I];end;K[I[2]]=H;else local I=I[2]K[I](K[I+1])end;elseif L<=345 then if L<=343 then local I=I[2]K[I]=K[I](l(K,I+1,M))elseif L>344 then K[I[2]]();else local L;local l;K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];l=I[2];L=K[I[3]];K[l+1]=L;K[l]=L[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];end;elseif L<=346 then K[I[2]][K[I[3]]]=K[I[4]];elseif L==347 then local e;local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];do return end;else K[I[2]]=I[3]*K[I[4]];end;elseif L<=354 then if L<=351 then if L<=349 then K[I[2]]=K[I[3]]+I[4];elseif L==350 then local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];else local J;local L;L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];end;elseif L<=352 then local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];elseif L==353 then local I=I[2]K[I]=K[I]()else if(K[I[2]]0)then if(L<=K[G+1])then H=I[3];K[G+3]=L;end elseif(L>=K[G+1])then H=I[3];K[G+3]=L;end else local L;K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=J[I[3]];end;elseif L<=358 then local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]][K[I[4]]];H=H+1;I=G[H];for I=I[2],I[3]do K[I]=nil;end;H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=e[I[3]];elseif L>359 then K[I[2]]=K[I[3]][I[4]];else local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[K[I[4]]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=e[I[3]];end;elseif L<=372 then if L<=366 then if L<=363 then if L<=361 then if(I[2]365 then local H=I[2]K[H]=K[H](l(K,H+1,I[3]))else local L;K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];if not K[I[2]]then H=H+1;else H=I[3];end;end;elseif L<=369 then if L<=367 then local l;local L;K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];L=I[2]K[L]=K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];l=K[I[4]];if not l then H=H+1;else K[I[2]]=l;H=I[3];end;elseif L>368 then K[I[2]]=K[I[3]]-K[I[4]];else K[I[2]]=K[I[3]]/I[4];end;elseif L<=370 then local J;local L;L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};elseif L>371 then local l;local L;J[I[3]]=K[I[2]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];J[I[3]]=K[I[2]];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];J[I[3]]=K[I[2]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];L=I[2];l=K[I[3]];K[L+1]=l;K[L]=l[I[4]];else K[I[2]]=J[I[3]];end;elseif L<=378 then if L<=375 then if L<=373 then H=I[3];elseif L==374 then K[I[2]]=-K[I[3]];else local J;local L;K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))end;elseif L<=376 then local J;local L;K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];L=I[2]K[L](K[L+1])H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[K[I[4]]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];elseif L==377 then K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]][K[I[4]]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]=K[I[3]][K[I[4]]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];else local J;local L;L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))end;elseif L<=381 then if L<=379 then local J;local Y,e;local L;L=I[2]Y,e=Z(K[L](K[L+1]))M=e+L-1 J=0;for I=L,M do J=J+1;K[I]=Y[J];end;H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,M))H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]]=I[3];elseif L==380 then local J;local L;L=I[2];J=K[I[3]];K[L+1]=J;K[L]=J[I[4]];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];H=I[3];else local L;local l;l=I[2];L=K[I[3]];K[l+1]=L;K[l]=L[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]]={};H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];K[I[2]]=(I[3]~=0);H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];end;elseif L<=383 then if L==382 then local l;local L;K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]][I[3]]=I[4];H=H+1;I=G[H];K[I[2]]=e[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]]=K[I[3]][I[4]];H=H+1;I=G[H];K[I[2]][I[3]]=K[I[4]];H=H+1;I=G[H];L=I[2];l=K[I[3]];K[L+1]=l;K[L]=l[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];else local e;local L;J[I[3]]=K[I[2]];H=H+1;I=G[H];L=I[2];e=K[I[3]];K[L+1]=e;K[L]=e[I[4]];H=H+1;I=G[H];K[I[2]]=I[3];H=H+1;I=G[H];L=I[2]K[L]=K[L](l(K,L+1,I[3]))H=H+1;I=G[H];K[I[2]]=J[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];K[I[2]]=K[I[3]];H=H+1;I=G[H];L=I[2]K[L](l(K,L+1,I[3]))H=H+1;I=G[H];do return end;end;elseif L==384 then K[I[2]]=I[3];else local H=I[2];do return K[H](l(K,H+1,I[3]))end;end;H=H+1;end;end;end;return o(W(),{},X)(...);end)(...)