
Sieve: A lightweight real-time data streaming engine
with an expressive DSL for Ethereum & The

Superchain.

Ayodeji Akinola
akinayodeji4all@gmail.com

December 30, 2024

1 Motivation

Ethereum blockchain ecosystem has evolved beyond single-chain architectures, with Ethereum
and its layer 2 solutions (the Superchain) processing substantial data volumes across multi-
ple networks. Ethereum processes blocks approximately every 12 seconds, with each block
containing up to 10MB of data. Layer 2 solutions like Unchain, Ink, and Optimism process
additional data at varying frequencies. While existing blockchain data solutions offer various
querying options, they often face challenges with real-time data processing and cross-chain
compatibility. The complexity lies not in the query languages themselves, but in efficiently
handling high-frequency updates, maintaining low latency across multiple networks, and
correlating events across different chain architectures.

Key Reasons:

1. Real-Time Processing: Applications like MEV searchers, trading systems, and block
builders require immediate access to specific blockchain events. The streaming archi-
tecture processes blocks as they arrive, delivering relevant data with minimal latency.

2. Memory Efficiency: By processing data streams in-memory without persistence,
Sieve minimizes resource usage while maintaining high performance. The filter en-
gine performs efficient property-based filtering using configurable conditions to process
transaction data in real-time.

3. Cross-Chain Compatibility: With the growing ecosystem of L2s and sidechains,
Sieve provides a unified interface for filtering data across multiple chains, abstracting
the complexity of different protocols and endpoints.

4. Developer Experience: The ORM-like DSL provides an intuitive interface for defin-
ing complex filter conditions, making it accessible.

Sieve: A lightweight real-time data streaming engine 1

2 System Architecture

Sieve is a high-performance streaming engine that connects directly to Ethereum & multiple
L2s called the Superchain (like Base, Unchain, Ink, and Optimism). Unlike traditional
blockchain data solutions that store and index data, Sieve operates purely as a streaming
service, acting as a real-time filter between blockchain networks and applications.

Core Principles:

1. Pure streaming with no persistence layer

2. Configurable filtering at the ingestion point

3. Unified interface across multiple chains

Critical Use Cases:

• MEV searchers can instantly detect profitable opportunities across multiple chains

• Trading firms can monitor specific contract events without processing irrelevant data

• Block builders can efficiently track and analyze cross-chain transaction patterns

By filtering at ingestion, unnecessary data never reaches the consumer, providing these
stakeholders with exactly the data they need, when they need it, without the overhead of
processing irrelevant information or managing complex infrastructure.

Architecture:

Figure 1: High-level Sieve Architecture

Sieve: A lightweight real-time data streaming engine 2

3 Streaming Layer

The streaming layer forms the foundation of Sieve, responsible for ingesting blockchain data
from multiple chains through both RPC and Gossipsub protocols. This layer ensures reliable,
ordered delivery of block and transaction data to the filtering system.

It is composed of three main components that work together to provide a reliable block
& transaction stream:

• Network layer

• Connection Orchestrator

• Ingestion Pipeline

Data Flow:
[Network Layer] → [Connection Orchestrator] → [Ingestion Layer] → [Filtering Engine]

Figure 2: Streaming Pipeline to subscribers.

3.1 Network Layer

This foundational layer provides the core implementation for connecting to blockchain nodes
via both RPC and Gossipsub protocols. It’s a pure connection handler that takes URLs and
peer information as input and manages the connection lifecycle. The layer is protocol-aware

Sieve: A lightweight real-time data streaming engine 3

but chain-agnostic, focusing solely on maintaining stable connections and providing raw data
streams. It handles connection establishment, reconnection logic, and basic error handling
for both RPC (HTTP/WebSocket) and Gossipsub protocols.

3.2 Connection Orchestrator

The Connection Orchestrator serves as the coordination layer between raw node connections
and data processing. It maintains a registry of chain configurations and creates appropriate
Network instances for each chain. This layer abstracts away the complexity of managing
multiple chains and their connections, providing a unified interface for the Ingestion Layer.
It handles the lifecycle of Connections, coordinates data flow from multiple chains, and
provides the first level of stream aggregation.

3.3 Ingestion Layer

Sitting at the top of the stack, the Ingestion Layer receives aggregated data streams from
the Connection Orchestrator and transforms them into a clean, unified data feed. It handles
cross-chain block deduplication and manages any gaps in block sequences. This layer provides
a simple subscribe stream() interface that consumers can use to specify which chains they
want to monitor (e.g., ingest.subscribe stream(Chain.Optimism | Chain.Ethereum)),
abstracting away all the complexity of multi-chain data ingestion and processing.

4 Filter Engine

The filter engine is a high-performance, memory-efficient system processing concurrent filters
across blockchain data streams. It combines predicate matching with optimized execution
strategies for handling thousands of filters efficiently.

5 Logical Operations

Logical operations combine different conditions to filter events. They enable complex filtering
patterns through basic and advanced operators.

Core Operators

• AND: All conditions must be true

• OR: At least one condition must be true

• NOT: Negate the condition

Sieve: A lightweight real-time data streaming engine 4

Advanced Operators

• ANY OF: Group-based OR operations

• ALL OF: Group-based AND operations

• NONE OF: No conditions should be true

6 Implementation Examples

In our implementation we made use of builder pattern where we followed a callback-style
because it’s more flexible for dynamic filter creation, better for complex conditional logic,
memory efficient (no vector allocation) and finally it allows for stateful filter building.

OR Operations

.or(|tx| {

tx.value().gt(U256::from(1000));

tx.gas_price().lt(50000);

})

AND Operations

.and(|tx| {

tx.value().gt(U256::from(1000));

tx.gas_price().lt(50000);

})

7 Comparison Operations

Value-based filtering operations:

• Basic: eq, neq, gt, gte, lt, lte

• Range: between, outside

• Pattern: contains, matches

• Existence: exists

Examples

eq - Equal to a specific value

Sieve: A lightweight real-time data streaming engine 5

.filter(|f| {

f.event("Transfer")

.value().eq(eth(100)) // Equal to 100 ETH

})

neq - Not equal to a specified value

.filter(|f| {

f.value().neq(eth(1)) // Not equal to 1 ETH

})

8 Filter Tree Design

The filter is structured as a tree that represents logical conditions for matching blockchain
data (transactions, blocks, events). The engine evaluates this tree structure to determine
matches.

Figure 3: Complex logical Operation Tree

The diagram above demonstrates a hierarchical filter tree optimized for blockchain data
evaluation. Each node represents either a logical operator (AND, OR) or a condition predi-
cate (value comparisons, address matching, function signatures). The tree structure enables
efficient evaluation through short-circuiting & parallel processing of independent subtrees.
Conditions are organized to minimize computational overhead, with gas-efficient checks per-
formed first and more expensive contract interactions deferred when possible.

9 Execution Model

A parallel evaluation system for filter conditions using Rayon workers. The engine evaluates
two node types:

Sieve: A lightweight real-time data streaming engine 6

Leaf Node Evaluation

Direct evaluation of single conditions through a shared context. Conditions include value
checks, address matching, and pattern validation against blockchain data.

Logical Node Evaluation

• AND: Parallel evaluation of all children, succeeds if all match

• OR: Parallel evaluation with early return on first match

• NOT: Inverts aggregate result of child evaluations

• XOR: Counts successful matches, ensures exactly one match

10 Optimization Techniques

The filter engine employs two key optimization techniques: cost-based ordering and
short-circuit evaluation. These optimizations aim to minimize computation by perform-
ing cheaper operations first and terminating the evaluation as early as possible.

Cost-Based Ordering

The engine orders operations based on their computational cost and likelihood of execution.
Think of checking a high-value DEX trade: we have two operations: checking the transaction
value and analyzing the input data. Value checking is a simple numeric comparison that
takes microseconds, while input analysis requires expensive decoding and pattern matching
that might take hundreds of microseconds.

By checking value first, we can quickly eliminate transactions that do not meet the
threshold without ever touching the input data. This is particularly effective since most
blockchain transactions won’t match our criteria.

Short-Circuit Evaluation

The engine optimizes OR conditions by prioritizing operations that are more likely to succeed
and cheaper to compute. Consider a filter looking for either simple token transfers or complex
decoding of call-data:

Before: After:

AND AND

/ \ / \

value OR → value OR

>10 / \ >10 / \

expensive simple. simple. expensive

Sieve: A lightweight real-time data streaming engine 7

By prioritizing simple token transfer checks, which are both common and cheap to verify,
we can often avoid the expensive data decoding entirely. This reordering preserves the logical
meaning while minimizing the average computational cost. In practice, this means that a
simple token transfer can be matched with a single quick check, while complex call-data
analysis only occurs when necessary.

The combined effect of these optimizations means that in the best case, we only perform
a single cheap comparison, and even in average cases, we rarely need to execute our most
expensive operations.

Filter Node Execution Priority:

Figure 4: Transaction Filter Evaluation Priority and Ordering.

11 Caching Strategy

The engine maintains a global cache for decoded blockchain data in a dash-map (thread-
safe) that persists across evaluation contexts. This single-layer caching system focuses on
preventing redundant decoding operations.

When processing transactions, the engine:

• Decodes transaction data, call-data, and input data once

• Stores decoded results in the global cache

• Shares cached results across all active filter evaluations

• Prevents duplicate decoding of frequently accessed data

12 Future Implementation

• Dynamic Event Listeners: Enable the creation of short-lived listeners that are
dynamically instantiated to monitor specific transactions, events, etc. For instance,

Sieve: A lightweight real-time data streaming engine 8

when a user sends 100 ETH on the base chain, a listener can be created instantly to
track this event on the base or optimism network and react accordingly in real time.

• Optimized Performance: To support thousands of listeners across multiple chains,
it’s crucial to optimize how events are processed. This can be done by ensuring that
each listener operates with minimal overhead, efficiently analyzing filter trees and fil-
tering events, without introducing performance bottlenecks.

13 Known Challenges in Call Data Analysis

While analyzing ethereum call data, multiple approaches were tested to optimize data pro-
cessing and improve developer experience. The following challenges emerged as significant
pain points requiring careful consideration.

Calldata Decoding Complexity

• Runtime lacks parameter names, which requires developers to work with raw positional
values.

• Nested structures intensify the issue, making it un-intuitive and error prone to work
with low-level data.

Developer Experience Pain Points

• A deep understanding of ABI encoding is necessary to handle raw call data.

• Developers must manually track positions in nested structures, which adds to the
cognitive load just to write filters.

Trade-offs in ABI Usage

• Full ABIs simplify development but are memory intensive.

• Omitting ABIs saves resources but significantly complicates the developer experience.

• Even middle-ground approaches require understanding low-level details, which can be
challenging.

14 Conclusion

The system strikes a balance between I/O and CPU-bound operations through a carefully
designed processing pipeline. Blocks are ingested through RPC endpoints and Gossipsub
networks in an I/O-bound phase, transitioning to a CPU-intensive stage where transactions
and logs are decoded and cached in a shared Data View. This caching strategy minimizes
redundant decoding and ensures efficient data access for multiple filter threads.

Sieve: A lightweight real-time data streaming engine 9

To address the challenges of filtering, the execution engine employs a tree-structured
approach, optimizing for early termination by evaluating filters from the least to the most
computationally expensive. Using in-memory processing, property-based filtering, and a
unified interface for cross-chain data, the system meets the growing demands of real-time
applications in the Ethereum ecosystem. This solution bridges the gap between usability
for developers and performance optimization, addressing the complexities of high-frequency
updates and cross-chain compatibility.

Sieve: A lightweight real-time data streaming engine 10

	Motivation
	System Architecture
	Streaming Layer
	Network Layer
	Connection Orchestrator
	Ingestion Layer

	Filter Engine
	Logical Operations
	Implementation Examples
	Comparison Operations
	Filter Tree Design
	Execution Model
	Optimization Techniques
	Caching Strategy
	Future Implementation
	Known Challenges in Call Data Analysis
	Conclusion

