
CMake tutorial
and its friends CPack, CTest and CDash

Eric NOULARD - eric.noulard@gmail.com

http://www.cmake.org

February, 8th 2012

This presentation is licensed

http://creativecommons.org/licenses/by-sa/3.0/us/

1 / 118CMake tutorial
N

eric.noulard@gmail.com
http://www.cmake.org
http://creativecommons.org/licenses/by-sa/3.0/us/

Thanks to. . .

Kitware for making a really nice set of tools and making them
open-source

the CMake mailing list for its friendliness and its more than
valuable source of information

CMake developers for their tolerance when I break the dashboard
or mess-up with the git workflow,

CPack users for their patience when things don’t work as they
shouldexpect

Alan, Alex, Bill, Brad, Clint, David, Eike, Julien, Mathieu, Michael
& Michael, and many more. . .

My son Louis for the nice CPack 3D logo done with Blender.

and...Toulibre for hosting this presention in Toulouse, France.

2 / 118CMake tutorial
N

Outlines

CMake tool sets

CMake
CMake is a cross-platform build systems generator which makes
it easier to build software in a unified manner on a broad set
of platforms:

, Windows, MacOS, AIX, IRIX, , iOS · · ·

CMake has friends softwares that may be used on their own or
together:

CMake: build system generator
CPack: package generator
CTest: systematic test driver
CDash: a dashboard collector

3 / 118CMake tutorial
N

Outlines

Outline of Part I: CMake

1 Basic CMake usage

2 Discovering environment specificities
Handling platform specificities
Working with external packages

3 More CMake scripting
Custom commands
Generated files

4 Advanced CMake usage
Cross-compiling with CMake
Export your project

4 / 118CMake tutorial
N

Outlines

Outline of Part II: CPack

5 CPack: Packaging made easy

6 CPack with CMake

7 Various package generators

5 / 118CMake tutorial
N

Outlines

Outline of Part III: CTest and CDash

8 Systematic Testing

9 CTest submission to CDash

10 References

6 / 118CMake tutorial
N

Outlines

Build what?

Software build system
A software build system is the usage of a [set of] tool[s] for
building software applications.

Why do we need that?

because most softwares consist in several parts that need some
building to put them together,
because softwares are written in various languages that may
share the same building process,
because we want to build the same software for various
computers (PC, Macintosh, Workstation, mobile phones and other PDA,
embbeded computers) and systems (Windows, Linux, *BSD, other Unices
(many), Android, etc. . .)

7 / 118CMake tutorial
N

Outlines

Build what?

Software build system
A software build system is the usage of a [set of] tool[s] for
building software applications.

Why do we need that?
because most softwares consist in several parts that need some
building to put them together,

because softwares are written in various languages that may
share the same building process,
because we want to build the same software for various
computers (PC, Macintosh, Workstation, mobile phones and other PDA,
embbeded computers) and systems (Windows, Linux, *BSD, other Unices
(many), Android, etc. . .)

7 / 118CMake tutorial
N

Outlines

Build what?

Software build system
A software build system is the usage of a [set of] tool[s] for
building software applications.

Why do we need that?
because most softwares consist in several parts that need some
building to put them together,
because softwares are written in various languages that may
share the same building process,

because we want to build the same software for various
computers (PC, Macintosh, Workstation, mobile phones and other PDA,
embbeded computers) and systems (Windows, Linux, *BSD, other Unices
(many), Android, etc. . .)

7 / 118CMake tutorial
N

Outlines

Build what?

Software build system
A software build system is the usage of a [set of] tool[s] for
building software applications.

Why do we need that?
because most softwares consist in several parts that need some
building to put them together,
because softwares are written in various languages that may
share the same building process,
because we want to build the same software for various
computers (PC, Macintosh, Workstation, mobile phones and other PDA,
embbeded computers) and systems (Windows, Linux, *BSD, other Unices
(many), Android, etc. . .)

7 / 118CMake tutorial
N

Outlines

Programming languages

Compiled vs interpreted or what?
Building an application requires the use of some programming
language: Python, Java, C++, Fortran, C, Go, Tcl/Tk, Ruby,
Perl, OCaml,. . .

Pr
og

ra
m

m
in

g
la

ng
ua

ge
s

Python

Perl
OCaml

C++

Fortran
C

interpreter
ob

je
ct

co
de

ex
ec

ut
ab

le

Running
program

?byte-compile?

interprets

compiles links

executes

8 / 118CMake tutorial
N

Outlines

Programming languages

Compiled vs interpreted or what?
Building an application requires the use of some programming
language: Python, Java, C++, Fortran, C, Go, Tcl/Tk, Ruby,
Perl, OCaml,. . .

Pr
og

ra
m

m
in

g
la

ng
ua

ge
s

Python

Perl
OCaml

C++

Fortran
C

interpreter
ob

je
ct

co
de

ex
ec

ut
ab

le

Running
program

?byte-compile?

interprets

compiles links

executes

8 / 118CMake tutorial
N

Outlines

Build systems: several choices

Alternatives
CMake is not the only build system [generator]:

(portable) hand-written Makefiles, depends on make tool.
Apache ant http://ant.apache.org/, dedicated to Java
(almost).
Portable IDE: Eclipse, Code::Blocks, Geany, NetBeans, . . .
GNU Autotools: Autoconf, Automake, Libtool. Produce
makefiles. Needs bourne shell (and M4 macro processor). see
e.g. http://www.gnu.org/software/autoconf/
SCons: http://www.scons.org only depends on python.
Extensible with python.
. . .

9 / 118CMake tutorial
N

http://ant.apache.org/
http://www.gnu.org/software/autoconf/
http://www.scons.org

Outlines

Comparisons and [success] stories

Disclaimer
This presentation is biased. I mean totally.
I am a big CMake fan, I’m contributing to CMake, thus I’m not
impartial at all. But I will be ready to discuss why CMake is
the greatest build system out there :-)

Go and forge your own opinion:
Bare list: http://en.wikipedia.org/wiki/List_of_build_
automation_software

A comparison:
http://www.scons.org/wiki/SconsVsOtherBuildTools

KDE success story (2006): “Why the KDE project switched to
CMake – and how” http://lwn.net/Articles/188693/

10 / 118CMake tutorial
N

http://en.wikipedia.org/wiki/List_of_build_automation_software
http://en.wikipedia.org/wiki/List_of_build_automation_software
http://www.scons.org/wiki/SconsVsOtherBuildTools
http://lwn.net/Articles/188693/

Outlines

CMake/Auto[conf|make] on Ohloh

https://www.ohloh.net/languages/compare

Language comparison of CMake to automake and autoconf
showing the percentage of developers commits that modify a
source file of the respective language.

11 / 118CMake tutorial
N

https://www.ohloh.net/languages/compare

Outlines

CMake/Auto[conf|make] on Google Trend

http://www.google.com/trends

Scale is based on the average worldwide traffic of cmake in all
years.

12 / 118CMake tutorial
N

http://www.google.com/trends

Basic CMake usage

Outline

1 Basic CMake usage

2 Discovering environment specificities
Handling platform specificities
Working with external packages

3 More CMake scripting
Custom commands
Generated files

4 Advanced CMake usage
Cross-compiling with CMake
Export your project

13 / 118CMake tutorial
N

Basic CMake usage

A build system generator
CMake is a generator: it generates native build systems files
(Makefile, IDE project files, . . .),

CMake scripting language (declarative) is used to describe the
build,

The developer edit CMakeLists.txt, invoke CMake but should
never edit the generated files,

CMake may be (automatically) re-invoked by the build system,

14 / 118CMake tutorial
N

Basic CMake usage

The CMake workflow

1 CMake time: CMake is running & processing CMakeLists.txt

2 Build time: the build tool runs and invokes (at least) the compiler

3 Install time: the compiled binaries are installed
i.e. from build area to an install location.

4 CPack time: CPack is running for building package

5 Package Install time: the package (from previous step) is installed

When do things take place?
CMake is a generator so it does not compile (i.e. build)
the sources, the underlying build tool (make, XCode,
Code::Blocks. . .) does.

15 / 118CMake tutorial
N

Basic CMake usage

The CMake workflow
1 CMake time: CMake is running & processing CMakeLists.txt

2 Build time: the build tool runs and invokes (at least) the compiler

3 Install time: the compiled binaries are installed
i.e. from build area to an install location.

4 CPack time: CPack is running for building package

5 Package Install time: the package (from previous step) is installed

When do things take place?
CMake is a generator so it does not compile (i.e. build)
the sources, the underlying build tool (make, XCode,
Code::Blocks. . .) does.

15 / 118CMake tutorial
N

Basic CMake usage

The CMake workflow
1 CMake time: CMake is running & processing CMakeLists.txt

2 Build time: the build tool runs and invokes (at least) the compiler

3 Install time: the compiled binaries are installed
i.e. from build area to an install location.

4 CPack time: CPack is running for building package

5 Package Install time: the package (from previous step) is installed

When do things take place?
CMake is a generator so it does not compile (i.e. build)
the sources, the underlying build tool (make, XCode,
Code::Blocks. . .) does.

15 / 118CMake tutorial
N

Basic CMake usage

The CMake workflow
1 CMake time: CMake is running & processing CMakeLists.txt

2 Build time: the build tool runs and invokes (at least) the compiler

3 Install time: the compiled binaries are installed
i.e. from build area to an install location.

4 CPack time: CPack is running for building package

5 Package Install time: the package (from previous step) is installed

When do things take place?
CMake is a generator so it does not compile (i.e. build)
the sources, the underlying build tool (make, XCode,
Code::Blocks. . .) does.

15 / 118CMake tutorial
N

Basic CMake usage

The CMake workflow
1 CMake time: CMake is running & processing CMakeLists.txt

2 Build time: the build tool runs and invokes (at least) the compiler

3 Install time: the compiled binaries are installed
i.e. from build area to an install location.

4 CPack time: CPack is running for building package

5 Package Install time: the package (from previous step) is installed

When do things take place?
CMake is a generator so it does not compile (i.e. build)
the sources, the underlying build tool (make, XCode,
Code::Blocks. . .) does.

15 / 118CMake tutorial
N

Basic CMake usage

The CMake workflow
1 CMake time: CMake is running & processing CMakeLists.txt

2 Build time: the build tool runs and invokes (at least) the compiler

3 Install time: the compiled binaries are installed
i.e. from build area to an install location.

4 CPack time: CPack is running for building package

5 Package Install time: the package (from previous step) is installed

When do things take place?
CMake is a generator so it does not compile (i.e. build)
the sources, the underlying build tool (make, XCode,
Code::Blocks. . .) does.

15 / 118CMake tutorial
N

Basic CMake usage

The CMake workflow (pictured)

CMakeLists.txt

Source files

Project file(s),
Makefiles, . . .

Generated
Sources files

Object files

Source
package

Binary
package

Installed
package

Installed
files

CMake time

Build time

Install time

CPack time

Package Install time

16 / 118CMake tutorial
N

Basic CMake usage

The CMake workflow (pictured)

CMakeLists.txt

Source files

Project file(s),
Makefiles, . . .

Generated
Sources files

Object files

Source
package

Binary
package

Installed
package

Installed
files

CMake time

Build time

Install time

CPack time

Package Install time

16 / 118CMake tutorial
N

Basic CMake usage

The CMake workflow (pictured)

CMakeLists.txt

Source files

Project file(s),
Makefiles, . . .

Generated
Sources files

Object files

Source
package

Binary
package

Installed
package

Installed
files

CMake time

Build time

Install time

CPack time

Package Install time

16 / 118CMake tutorial
N

Basic CMake usage

The CMake workflow (pictured)

CMakeLists.txt

Source files

Project file(s),
Makefiles, . . .

Generated
Sources files

Object files

Source
package

Binary
package

Installed
package

Installed
files

CMake time

Build time

Install time

CPack time

Package Install time

16 / 118CMake tutorial
N

Basic CMake usage

The CMake workflow (pictured)

CMakeLists.txt

Source files

Project file(s),
Makefiles, . . .

Generated
Sources files

Object files

Source
package

Binary
package

Installed
package

Installed
files

CMake time

Build time

Install time

CPack time

Package Install time

16 / 118CMake tutorial
N

Basic CMake usage

The CMake workflow (pictured)

CMakeLists.txt

Source files

Project file(s),
Makefiles, . . .

Generated
Sources files

Object files

Source
package

Binary
package

Installed
package

Installed
files

CMake time

Build time

Install time

CPack time

Package Install time

16 / 118CMake tutorial
N

Basic CMake usage

Building an executable

Listing 1: Building a simple program
1 cmake minimum required (VERSION 2 . 8)
2 # This p r o j e c t use C source code
3 p r o j e c t (T o t a l l y F r e e C)
4 # bu i l d e xe cu tab l e us ing s p e c i f i e d
5 # l i s t o f sou rce f i l e s
6 add executable (A c r o l i b r e a c r o l i b r e . c)

CMake scripting language is [mostly] declarative. It has
commands which are documented from within CMake:
$ cmake --help-command-list | wc -l

96

$ cmake --help-command add_executable

...

add_executable

Add an executable to the project using the specified source files.

17 / 118CMake tutorial
N

Basic CMake usage

Builtin documentation

CMake builtin doc for ’project’ command
1 $ cmake --help-command project

2 cmake version 2.8.7.20120121-g751713-dirty

3 project

4 Set a name for the entire project.

5
6 project(<projectname> [languageName1 languageName2 ...])

7
8 Sets the name of the project. Additionally this sets the variables

9 <projectName>_BINARY_DIR and <projectName>_SOURCE_DIR to the

10 respective values.

11
12 Optionally you can specify which languages your project supports.

13 Example languages are CXX (i.e. C++), C, Fortran, etc. By default C

14 and CXX are enabled. E.g. if you do not have a C++ compiler, you can

15 disable the check for it by explicitly listing the languages you want

16 to support, e.g. C. By using the special language "NONE" all checks

17 for any language can be disabled.

18 / 118CMake tutorial
N

Basic CMake usage

Generating & building

Building with CMake is easy:
CMake + Unix Makefile

1 $ ls totally-free

2 acrolibre.c CMakeLists.txt

3 $ mkdir build

4 $ cd build

5 $ cmake ../totally-free

6 -- The C compiler identification is GNU 4.6.2

7 -- Check for working C compiler: /usr/bin/gcc

8 -- Check for working C compiler: /usr/bin/gcc -- works

9 ...

10 $ make

11 Scanning dependencies of target Acrolibre

12 [100%] Building C object CMakeFiles/Acrolibre.dir/acrolibre.c.o

13 Linking C executable Acrolibre

14 [100%] Built target Acrolibre

15 $./Acrolibre toulibre

Source tree vs Build tree
Even the most simple project should never mix-up sources with
generated files. CMake supports out-of-source build.

19 / 118CMake tutorial
N

Basic CMake usage

Always build out-of-source

Out-of-source is better
People are lazy (me too) and they think that because building
in source is possible and authorizes less typing they can get
away with it. In-source build is a BAD choice.

Out-of-source build is always better because:

1 Generated files are separate from manually edited ones
(thus you don’t have to clutter you favorite VCS ignore files).

2 You can have several build trees for the same source tree

3 This way it’s always safe to completely delete the build tree in
order to do a clean build

20 / 118CMake tutorial
N

Basic CMake usage

Always build out-of-source

Out-of-source is better
People are lazy (me too) and they think that because building
in source is possible and authorizes less typing they can get
away with it. In-source build is a BAD choice.

Out-of-source build is always better because:
1 Generated files are separate from manually edited ones

(thus you don’t have to clutter you favorite VCS ignore files).

2 You can have several build trees for the same source tree

3 This way it’s always safe to completely delete the build tree in
order to do a clean build

20 / 118CMake tutorial
N

Basic CMake usage

Always build out-of-source

Out-of-source is better
People are lazy (me too) and they think that because building
in source is possible and authorizes less typing they can get
away with it. In-source build is a BAD choice.

Out-of-source build is always better because:
1 Generated files are separate from manually edited ones

(thus you don’t have to clutter you favorite VCS ignore files).

2 You can have several build trees for the same source tree

3 This way it’s always safe to completely delete the build tree in
order to do a clean build

20 / 118CMake tutorial
N

Basic CMake usage

Always build out-of-source

Out-of-source is better
People are lazy (me too) and they think that because building
in source is possible and authorizes less typing they can get
away with it. In-source build is a BAD choice.

Out-of-source build is always better because:
1 Generated files are separate from manually edited ones

(thus you don’t have to clutter you favorite VCS ignore files).

2 You can have several build trees for the same source tree

3 This way it’s always safe to completely delete the build tree in
order to do a clean build

20 / 118CMake tutorial
N

Basic CMake usage

Building program + autonomous library

Conditional build
We want to keep a version of our program that can be compiled
and run without the new Acrodict library and the new version
which uses the library.

We now have the following set of files in our source tree:
acrolibre.c, the main C program

acrodict.h, the Acrodict library header

acrodict.c, the Acrodict library source

CMakeLists.txt, the soon to be updated CMake entry file

21 / 118CMake tutorial
N

Basic CMake usage

Building program + autonomous library

Conditional build
We want to keep a version of our program that can be compiled
and run without the new Acrodict library and the new version
which uses the library.

We now have the following set of files in our source tree:
acrolibre.c, the main C program

acrodict.h, the Acrodict library header

acrodict.c, the Acrodict library source

CMakeLists.txt, the soon to be updated CMake entry file

21 / 118CMake tutorial
N

The main program source

1 #inc lude <s t d l i b . h>
2 #inc lude <s t d i o . h>
3 #inc lude <s t r i n g s . h>
4 #i f d e f USE ACRODICT
5 #inc lude "acrodict.h"

6 #end i f
7 i n t main (i n t argc , char ∗ argv []) {
8
9 cons t char ∗ name ;

10 #i f d e f USE ACRODICT
11 cons t acro I tem t ∗ item ;
12 #end i f
13
14 i f (argc < 2) {
15 f p r i n t f (s tde r r , "%s: you need one

argument\n" , argv [0]) ;
16 f p r i n t f (s tde r r , "%s <name>\n" , argv

[0]) ;
17 e x i t (EXIT FAILURE) ;
18 }
19 name = argv [1] ;
20
21 #i f n d e f USE ACRODICT
22 i f (strcasecmp (name , "toulibre")==0) {
23 p r i n t f ("Toulibre is a french

organization promoting FLOSS

.\n") ;
24 }
25 #else
26 item = ac r od i c t g e t (name) ;
27 i f (NULL!= item) {
28 p r i n t f ("%s: %s\n" , item−>name , item−>

de s c r i p t i o n) ;
29 } e lse i f (item=ac rod i c t ge t app rox (

name)) {
30 p r i n t f ("<%s> is unknown may be you

mean:\n" ,name) ;
31 p r i n t f ("%s: %s\n" , item−>name , item−>

de s c r i p t i o n) ;
32 }
33 #end i f
34 e lse {
35 p r i n t f ("Sorry, I don’t know: <%s>\n

" ,name) ;
36 r e t u r n EXIT FAILURE ;
37 }
38 r e t u r n EXIT SUCCESS ;
39 }

22 / 118CMake tutorial
N

The library source

1 #i f n d e f ACRODICT H
2 #de f ine ACRODICT H
3 t ypede f s t r u c t acroItem {
4 char ∗ name ;
5 char ∗ de s c r i p t i o n ;
6 } acro I tem t ;
7
8 cons t acro I tem t ∗
9 ac r od i c t g e t (cons t char ∗ name) ;

10 #end i f

1 #inc lude <s t d l i b . h>
2 #inc lude <s t r i n g . h>
3 #inc lude "acrodict.h"

4 s t a t i c cons t acro I tem t ac rod i c t [] = {
5 {"Toulibre" , "Toulibre is a french

organization promoting FLOSS" } ,
6 {"GNU" , "GNU is Not Unix" } ,
7 {"GPL" , "GNU general Public License"

} ,
8 {"BSD" , "Berkeley Software

Distribution" } ,
9 {"CULTe" , "Club des Utilisateurs de

Logiciels libres et de gnu/

linux de Toulouse et des

environs" } ,

10 {"Lea" , "Lea-Linux: Linux entre ami(e

)s" } ,
11 {"RMLL" , "Rencontres Mondiales du

Logiciel Libre" } ,
12 {"FLOSS" , "Free Libre Open Source

Software" } ,
13 {"" , "" }} ;
14 cons t acro I tem t ∗
15 ac r od i c t g e t (cons t char ∗ name) {
16 i n t cu r r ent =0;
17 i n t found =0;
18 whi le ((s t r l e n (ac rod i c t [cur r ent] . name

) >0) && ! found) {
19 i f (strcasecmp (name , ac rod i c t [

cu r r ent] . name)==0) {
20 found=1;
21 } e lse {
22 cu r r ent++;
23 }
24 }
25 i f (found) {
26 r e t u r n &(ac rod i c t [cur r ent]) ;
27 } e lse {
28 r e t u r n NULL ;
29 }
30 }

23 / 118CMake tutorial
N

Basic CMake usage

Building a library I
Listing 2: Building a simple program + shared library

1 cmake minimum required (VERSION 2 . 8)
2 p r o j e c t (Tota l l yFree C)
3 add executable (Ac ro l i b r e a c r o l i b r e . c)
4 se t (LIBSRC ac rod i c t . c ac rod i c t . h)
5 add l i b r a ry (ac rod i c t ${LIBSRC})
6 add executable (Ac r od i c t l i b r e a c r o l i b r e . c)
7 t a r g e t l i n k l i b r a r i e s (Ac r od i c t l i b r e ac rod i c t)
8 s e t t a r g e t p r o p e r t i e s (Ac r od i c t l i b r e
9 PROPERTIES COMPILE FLAGS "-DUSE_ACRODICT")

we define a variable (line 4) and build library (line 5)

we compile the source files of a particular target with specific
compiler options (lines 8-9)

we link an executable to our library (line 7)

24 / 118CMake tutorial
N

Basic CMake usage

Building a library II
And it builds...
All in all CMake generates appropriate Unix makefiles which
build all this smoothly.

CMake + Unix Makefile
1 $ make

2 [33%] Building C object CMakeFiles/acrodict.dir/acrodict.c.o

3 Linking C shared library libacrodict.so

4 [33%] Built target acrodict

5 [66%] Building C object CMakeFiles/Acrodictlibre.dir/acrolibre.c.o

6 Linking C executable Acrodictlibre

7 [66%] Built target Acrodictlibre

8 [100%] Building C object CMakeFiles/Acrolibre.dir/acrolibre.c.o

9 Linking C executable Acrolibre

10 [100%] Built target Acrolibre

11 $ ls -F

12 Acrodictlibre* CMakeCache.txt cmake_install.cmake Makefile

13 Acrolibre* CMakeFiles/ libacrodict.so*

25 / 118CMake tutorial
N

Basic CMake usage

Building a library III
And it works...
We get the two different variants of our program, with varying
capabilities.

1 $./Acrolibre toulibre

2 Toulibre is a french organization promoting FLOSS.

3 $./Acrolibre FLOSS

4 Sorry, I don’t know: <FLOSS>

5 $./Acrodictlibre FLOSS

6 FLOSS: Free Libre Open Source Software

$ make help

The following are some of the valid targets

for this Makefile:

... all (the default if no target is provided)

... clean

... depend

... Acrodictlibre

... Acrolibre

... acrodict

...

Generated Makefiles has
several builtin targets besides
the expected ones:

one per target (library or
executable)

clean, all

more to come . . .

26 / 118CMake tutorial
N

Basic CMake usage

User controlled build option

User controlled option
May be our users don’t want the acronym dictionnary support.
We can use CMake OPTION command.

Listing 3: User controlled build option
1 cmake minimum required (VERSION 2 . 8)
2 # This p r o j e c t use C source code
3 p r o j e c t (Tota l l yFree C)
4 # Bui ld op t i on wi th d e f a u l t va lue to ON
5 op t i on (WITH ACRODICT "Include acronym dictionary support" ON)
6 se t (BUILD SHARED LIBS t rue)
7 # bu i l d e xe cu tab l e us ing s p e c i f i e d l i s t o f sou r ce f i l e s
8 add executable (Ac ro l i b r e a c r o l i b r e . c)
9 i f (WITH ACRODICT)

10 se t (LIBSRC ac rod i c t . h ac rod i c t . c)
11 add l i b r a ry (ac rod i c t ${LIBSRC})
12 add executable (Ac r od i c t l i b r e a c r o l i b r e . c)
13 t a r g e t l i n k l i b r a r i e s (Ac r od i c t l i b r e ac rod i c t)
14 s e t t a r g e t p r o p e r t i e s (Ac r od i c t l i b r e PROPERTIES COMPILE FLAGS "-DUSE_ACRODICT")
15 end i f (WITH ACRODICT)

27 / 118CMake tutorial
N

Basic CMake usage

Too much keyboard, time to click? I

CMake comes with severals tools
A matter of choice / taste:

a command line: cmake
a curse-based TUI: ccmake
a QT-based GUI: cmake-gui

Call convention
All tools expect to be called with a single argument which may
be interpreted in 2 different ways.

path to the source tree, e.g.: cmake /path/to/source

path to an existing build tree, e.g.: cmake-gui .

28 / 118CMake tutorial
N

Basic CMake usage

Too much keyboard, time to click? II
ccmake : the curse-based TUI (demo)

Here we can choose to toggle the WITH ACRONYM OPTION.

29 / 118CMake tutorial
N

Basic CMake usage

Too much keyboard, time to click? III
cmake-gui : the QT-based GUI (demo)

Again, we can choose to toggle the WITH ACRONYM OPTION.

30 / 118CMake tutorial
N

Basic CMake usage

Remember CMake is a build generator?

The number of active generators depends on the platform we are
running on Unix, Apple, Windows:

1 Borland Makefiles

2 MSYS Makefiles

3 MinGW Makefiles

4 NMake Makefiles

5 NMake Makefiles JOM

6 Unix Makefiles

7 Visual Studio 10

8 Visual Studio 10 IA64

9 Visual Studio 10 Win64

10 Visual Studio 11

11 Visual Studio 11 Win64

12 Visual Studio 6

13 Visual Studio 7

14 Visual Studio 7 .NET 2003

15 Visual Studio 8 2005

16 Visual Studio 8 2005 Win64

17 Visual Studio 9 2008

18 Visual Studio 9 2008 IA64

19 Visual Studio 9 2008 Win64

20 Watcom WMake

21 CodeBlocks - MinGW Makefiles

22 CodeBlocks - NMake Makefiles

23 CodeBlocks - Unix Makefiles

24 Eclipse CDT4 - MinGW Makefiles

25 Eclipse CDT4 - NMake Makefiles

26 Eclipse CDT4 - Unix Makefiles

27 KDevelop3

28 KDevelop3 - Unix Makefiles

29 XCode

30 Ninja (in development)

31 http://martine.github.com/ninja/

31 / 118CMake tutorial
N

http://martine.github.com/ninja/

Basic CMake usage

Equally simple on other platforms

It is as easy for a windows build, however names for executables
and libraries are computed in a platform specific way.

CMake + MinGW Makefile
1 $ ls totally-free

2 acrodict.h acrodict.c acrolibre.c CMakeLists.txt

3 $ mkdir build-win32

4 $ cd build-win32

5 ...

6 $ make

7 Scanning dependencies of target acrodict

8 [33%] Building C object CMakeFiles/acrodict.dir/acrodict.c.obj

9 Linking C shared library libacrodict.dll

10 Creating library file: libacrodict.dll.a

11 [33%] Built target acrodict

12 Scanning dependencies of target Acrodictlibre

13 [66%] Building C object CMakeFiles/Acrodictlibre.dir/acrolibre.c.obj

14 Linking C executable Acrodictlibre.exe

15 [66%] Built target Acrodictlibre

16 Scanning dependencies of target Acrolibre

17 [100%] Building C object CMakeFiles/Acrolibre.dir/acrolibre.c.obj

18 Linking C executable Acrolibre.exe

19 [100%] Built target Acrolibre

32 / 118CMake tutorial
N

Basic CMake usage

Installing things

Install
Several parts or the software may need to be installed, this is
controlled by the CMake install command.
Remember cmake --help-command install!!

Listing 4: install command examples
1 . . .
2 add executable (Ac ro l i b r e a c r o l i b r e . c)
3 i n s t a l l (TARGETS Ac ro l i b r e DESTINATION bin)
4 i f (WITH ACRODICT)
5 . . .
6 i n s t a l l (TARGETS Ac r od i c t l i b r e ac rod i c t
7 RUNTIME DESTINATION bin
8 LIBRARY DESTINATION l i b
9 ARCHIVE DESTINATION l i b / s t a t i c)

10 i n s t a l l (FILES ac rod i c t . h DESTINATION i n c lude)
11 end i f (WITH ACRODICT)

33 / 118CMake tutorial
N

Basic CMake usage

Controlling installation destination

Use relative DESTINATION

One should always use relative installation DESTINATION
unless you really want to use absolute path like /etc.

Then depending when you install:

At CMake-time set CMAKE INSTALL PREFIX value

$ cmake --help-variable CMAKE_INSTALL_PREFIX

At Install-time use DESTDIR mechanism (Unix Makefiles)

$ make DESTDIR=/tmp/testinstall install

At CPack-time, CPack what? . . . be patient.
At Package-install-time, we will see that later

34 / 118CMake tutorial
N

Basic CMake usage

Controlling installation destination

Use relative DESTINATION

One should always use relative installation DESTINATION
unless you really want to use absolute path like /etc.

Then depending when you install:
At CMake-time set CMAKE INSTALL PREFIX value

$ cmake --help-variable CMAKE_INSTALL_PREFIX

At Install-time use DESTDIR mechanism (Unix Makefiles)

$ make DESTDIR=/tmp/testinstall install

At CPack-time, CPack what? . . . be patient.
At Package-install-time, we will see that later

34 / 118CMake tutorial
N

Basic CMake usage

Controlling installation destination

Use relative DESTINATION

One should always use relative installation DESTINATION
unless you really want to use absolute path like /etc.

Then depending when you install:
At CMake-time set CMAKE INSTALL PREFIX value

$ cmake --help-variable CMAKE_INSTALL_PREFIX

At Install-time use DESTDIR mechanism (Unix Makefiles)

$ make DESTDIR=/tmp/testinstall install

At CPack-time, CPack what? . . . be patient.
At Package-install-time, we will see that later

34 / 118CMake tutorial
N

Basic CMake usage

Controlling installation destination

Use relative DESTINATION

One should always use relative installation DESTINATION
unless you really want to use absolute path like /etc.

Then depending when you install:
At CMake-time set CMAKE INSTALL PREFIX value

$ cmake --help-variable CMAKE_INSTALL_PREFIX

At Install-time use DESTDIR mechanism (Unix Makefiles)

$ make DESTDIR=/tmp/testinstall install

At CPack-time, CPack what? . . . be patient.
At Package-install-time, we will see that later

34 / 118CMake tutorial
N

Basic CMake usage

The CMake workflow (pictured)

CMakeLists.txt

Source files

Project file(s),
Makefiles, . . .

Generated
Sources files

Object files

Source
package

Binary
package

Installed
package

Installed
files

CMake time

Build time

Install time

CPack time

Package Install time

35 / 118CMake tutorial
N

Basic CMake usage

Using CMake variables

CMake variables
They are used by the user to simplify its CMakeLists.txt,
but CMake uses many (˜170+) of them to control/change its
[default] behavior. Try: cmake --help-variables-list.

Inside a CMake script
set (CMAKE INSTALL PREFIX /home/eric/testinstall)
$ cmake --help-command set

On the command line/TUI/GUI
Remember that (beside options) each CMake tool takes a single
argument (source tree or existing build tree)
$ cmake -DCMAKE_INSTALL_PREFIX=/home/eric/testinstall .

36 / 118CMake tutorial
N

Basic CMake usage

The install target

Install target
The install target of the underlying build tool (in our case
make) appears in the generated build system as soon as some
install command are used in the CMakeLists.txt.

1 $ make DESTDIR=/tmp/testinstall install

2 [33%] Built target acrodict

3 [66%] Built target Acrodictlibre

4 [100%] Built target Acrolibre

5 Install the project...

6 -- Install configuration: ""

7 -- Installing: /tmp/testinstall/bin/Acrolibre

8 -- Installing: /tmp/testinstall/bin/Acrodictlibre

9 -- Removed runtime path from "/tmp/testinstall/bin/Acrodictlibre"

10 -- Installing: /tmp/testinstall/lib/libacrodict.so

11 -- Installing: /tmp/testinstall/include/acrodict.h

12 $

37 / 118CMake tutorial
N

Basic CMake usage

Package the whole thing
CPack
CPack is a CMake friend application (detailed later) which
may be used to easily package your software.

Listing 5: add CPack support
1 . . .
2 end i f (WITH ACRODICT)
3 . . .
4 # Near the end o f the CMakeLists . t x t
5 # Chose your CPack gene ra to r
6 se t (CPACK GENERATOR "TGZ")
7 # Setup package v e r s i o n
8 se t (CPACK PACKAGE VERSION MAJOR 0)
9 se t (CPACK PACKAGE VERSION MINOR 1)

10 se t (CPACK PACKAGE VERSION PATCH 0)
11 # ’ ca l l ’ CPack
12 i n c lude (CPack)

$ make package

[33%] Built target acrodict

[66%] Built target Acrodictlibre

[100%] Built target Acrolibre

Run CPack packaging tool...

CPack: Create package using TGZ

CPack: Install projects

CPack: - Run preinstall target for: TotallyFree

CPack: - Install project: TotallyFree

CPack: Create package

CPack: - package: <build-tree>/...

TotallyFree-0.1.0-Linux.tar.gz generated.

$ tar ztvf TotallyFree-0.1.0-Linux.tar.gz

... TotallyFree-0.1.0-Linux/include/acrodict.h

... TotallyFree-0.1.0-Linux/bin/Acrolibre

... TotallyFree-0.1.0-Linux/bin/Acrodictlibre

... TotallyFree-0.1.0-Linux/lib/libacrodict.so

38 / 118CMake tutorial
N

Basic CMake usage

CPack the packaging friend

CPack is a standalone generator
As we will see later on, CPack is standalone application, which
as CMake is a generator.

$ cpack -G ZIP

CPack: Create package using ZIP

CPack: Install projects

CPack: - Run preinstall target for: TotallyFree

CPack: - Install project: TotallyFree

CPack: Create package

CPack: - package: <build-tree>/...

TotallyFree-0.1.0-Linux.zip generated.

$ unzip -t TotallyFree-0.1.0-Linux.zip

Archive: TotallyFree-0.1.0-Linux.zip

testing: To.../include/acrodict.h OK

testing: To.../bin/Acrolibre OK

testing: To.../bin/Acrodictlibre OK

testing: To.../lib/libacrodict.so OK

No errors detected in compressed

data of TotallyFree-0.1.0-Linux.zip.

$ cpack -G RPM

CPack: Create package using RPM

CPack: Install projects

CPack: - Run preinstall target for: TotallyFree

CPack: - Install project: TotallyFree

CPack: Create package

CPackRPM: Will use GENERATED spec file: <build-tree>/...

_CPack_Packages/Linux/RPM/SPECS/totallyfree.spec

CPack: - package: <build-tree>/...

TotallyFree-0.1.0-Linux.rpm generated.

$ rpm -qpl TotallyFree-0.1.0-Linux.rpm

/usr

/usr/bin

/usr/bin/Acrodictlibre

/usr/bin/Acrolibre

/usr/include

/usr/include/acrodict.h

/usr/lib

/usr/lib/libacrodict.so

39 / 118CMake tutorial
N

Basic CMake usage

Didn’t you mentioned testing? I
CTest
CTest is a CMake friend application (detailed later) which may
be used to easily test your software.

Listing 6: add CTest support
1 . . .
2 end i f (WITH ACRODICT)
3 . . .
4 enab l e t e s t i n g ()
5 add t e s t (t ou l i b r e−b u i l t i n
6 Ac ro l i b r e "toulibre")
7 add t e s t (t ou l i b r e−d i c t
8 Ac r od i c t l i b r e "toulibre")
9 add t e s t (FLOSS−d i c t

10 Ac r od i c t l i b r e "FLOSS")
11 add t e s t (FLOSS−f a i l
12 Ac ro l i b r e "FLOSS")

$ make test

Running tests...

Test project <buildtree-prefix>/build

Start 1: toulibre-builtin

1/4 Test #1: toulibre-builtin Passed 0.00 sec

Start 2: toulibre-dict

2/4 Test #2: toulibre-dict........ Passed 0.00 sec

Start 3: FLOSS-dict

3/4 Test #3: FLOSS-dict Passed 0.00 sec

Start 4: FLOSS-fail

4/4 Test #4: FLOSS-fail***Failed 0.00 sec

75% tests passed, 1 tests failed out of 4

Total Test time (real) = 0.01 sec

The following tests FAILED:

4 - FLOSS-fail (Failed)

40 / 118CMake tutorial
N

Basic CMake usage

Didn’t you mentioned testing? II
Tailor success rule
CTest uses the return code in order to get success/failure status,
but one can tailor the success/fail rule.

Listing 7: add CTest support
1 . . .
2 end i f (WITH ACRODICT)
3 . . .
4 enab l e t e s t i n g ()
5 add t e s t (t ou l i b r e−b u i l t i n
6 Ac ro l i b r e "toulibre")
7 add t e s t (t ou l i b r e−d i c t
8 Ac r od i c t l i b r e "toulibre")
9 add t e s t (FLOSS−d i c t

10 Ac r od i c t l i b r e "FLOSS")
11 add t e s t (FLOSS−f a i l
12 Ac ro l i b r e "FLOSS")
13 s e t t e s t s p r o p e r t i e s (FLOSS−f a i l
14 PROPERTIES
15 PASS REGULAR EXPRESSION
16 "Sorry, I don’t know:.*FLOSS")

$ make test

Running tests...

Test project <buildtree-prefix>/build

Start 1: toulibre-builtin

1/4 Test #1: toulibre-builtin Passed 0.00 sec

Start 2: toulibre-dict

2/4 Test #2: toulibre-dict........ Passed 0.00 sec

Start 3: FLOSS-dict

3/4 Test #3: FLOSS-dict Passed 0.00 sec

Start 4: FLOSS-fail

4/4 Test #4: FLOSS-fail Passed 0.00 sec

100% tests passed, 0 tests failed out of 4

Total Test time (real) = 0.01 sec

41 / 118CMake tutorial
N

Basic CMake usage

CTest the testing friend

CTest is a standalone generic test driver
As we will see later on, CTest is standalone application, which
can run a set of test programs.

$ ctest -R toulibre-

Test project <build-tree>/build

Start 1: toulibre-builtin

1/2 Test #1: toulibre-builtin .. Passed 0.00 sec

Start 2: toulibre-dict

2/2 Test #2: toulibre-dict Passed 0.00 sec

100% tests passed, 0 tests failed out of 2

Total Test time (real) = 0.01 sec

$ ctest -R FLOSS-fail -V

Test project <build-tree>

Constructing a list of tests

Done constructing a list of tests

Checking test dependency graph...

Checking test dependency graph end

test 4

Start 4: FLOSS-fail

4: Test command: <build-tree>/Acrolibre "FLOSS"

4: Test timeout computed to be: 9.99988e+06

4: Sorry, I don’t know: <FLOSS>

1/1 Test #4: FLOSS-fail***Failed 0.00 sec

0% tests passed, 1 tests failed out of 1

Total Test time (real) = 0.00 sec

The following tests FAILED:

4 - FLOSS-fail (Failed)

Errors while running CTest

42 / 118CMake tutorial
N

Basic CMake usage

CDash the test results publishing

Dashboard
CTest may help publishing the results of the tests on a CDash
dashboard (http://www.cdash.org/) for easing collective
regression testing. More on this later. . .

http://www.orfeo-toolbox.org/–http://dash.orfeo-toolbox.org/

43 / 118CMake tutorial
N

http://www.cdash.org/
http://www.orfeo-toolbox.org/
http://dash.orfeo-toolbox.org/

Basic CMake usage

Summary

CMake basics
Using CMake basics we can already do a lot a things with
minimal writing.

Write simple build specification file: CMakeLists.txt

Discover compilers (C, C++, Fortran)

Build executable and library (shared or static) in a cross-platform
manner

Package the resulting binaries with CPack

Runs systematic test with CTest and publish them with CDash

44 / 118CMake tutorial
N

Basic CMake usage

Seeking more information or help
There are several places you can go by yourself:

1 Read the FAQ:
http://www.cmake.org/Wiki/CMake_FAQ

2 Read the Wiki:
http://www.cmake.org/Wiki/CMake

3 Ask on the Mailing List:
http://www.cmake.org/cmake/help/mailing.html

4 Browse the built-in help:
cmake --help-xxxxx

45 / 118CMake tutorial
N

http://www.cmake.org/Wiki/CMake_FAQ
http://www.cmake.org/Wiki/CMake
http://www.cmake.org/cmake/help/mailing.html

Discovering environment specificities

Outline

1 Basic CMake usage

2 Discovering environment specificities
Handling platform specificities
Working with external packages

3 More CMake scripting
Custom commands
Generated files

4 Advanced CMake usage
Cross-compiling with CMake
Export your project

46 / 118CMake tutorial
N

Discovering environment specificities

Outline

1 Basic CMake usage

2 Discovering environment specificities
Handling platform specificities
Working with external packages

3 More CMake scripting
Custom commands
Generated files

4 Advanced CMake usage
Cross-compiling with CMake
Export your project

47 / 118CMake tutorial
N

Discovering environment specificities

How to discover system

System/compiler specific variables
Right after the project command CMake has set up a bunch of
variables which can be used to tailor the build in a platform
specific way.

system specific
WIN32 True on windows systems, including win64.
UNIX True for UNIX and UNIX like operating systems.
APPLE True if running on Mac OSX.
CYGWIN True for cygwin.

compiler specific
MSVC True when using Microsoft Visual C
CMAKE COMPILER IS GNU<LANG> True if the <LANG>
compiler is GNU.
MINGW true if the compiler is MinGW.

48 / 118CMake tutorial
N

Discovering environment specificities

Handle system specific code

Some functions like strcasestr (lines 6 and 7) may not be
available on all platforms.

Listing 8: excerpt from acrodict.c
1 cons t acro I tem t ∗ ac rod i c t ge t app rox (cons t char ∗ name) {
2 i n t cu r r ent =0;
3 i n t found =0;
4 #i f d e f GUESS NAME
5 whi le ((s t r l e n (ac rod i c t [cu r r ent] . name) >0) && ! found) {
6 i f ((s t r c a s e s t r (name , ac rod i c t [cu r r ent] . name) !=0) | |
7 (s t r c a s e s t r (ac rod i c t [cu r r ent] . name , name) !=0)) {
8 found=1;
9 } e lse {

10 cu r r ent++;
11 }
12 }
13 i f (found) {
14 r e t u r n &(ac rod i c t [cu r r en t]) ;
15 } e lse
16 #end i f
17 {
18 r e t u r n NULL ;
19 }
20 }

49 / 118CMake tutorial
N

Discovering environment specificities

Use system specific option

1 # Bui ld op t i on wi th d e f a u l t va lue to ON
2 op t i on (WITH ACRODICT "Include acronym dictionary support" ON)
3 i f (NOT WIN32)
4 op t i on (WITH GUESS NAME "Guess acronym name" ON)
5 end i f (NOT WIN32)
6 . . .
7 i f (WITH ACRODICT)
8 # l i s t o f sou r ce s i n our l i b r a r y
9 se t (LIBSRC ac rod i c t . h ac rod i c t . c)

10 i f (WITH GUESS NAME)
11 s e t s o u r c e f i l e s p r o p e r t i e s (ac rod i c t . c PROPERTIES COMPILE FLAGS "-DGUESS_NAME")
12 end i f (WITH GUESS NAME)
13 add l i b r a ry (ac rod i c t ${LIBSRC})
14 . . .

Line 4 defines a CMake option, but not on WIN32 system. Then
on line 11, if the option is set then we pass a source specific
compile flags.
cmake --help-command set source files properties

50 / 118CMake tutorial
N

Discovering environment specificities

System specific in real life

Real [numeric] life project
Real projects (i.e. not the toy of this tutorial) have many parts
of their CMakeLists.txt which deals with system/compiler
specific option/feature.

MuseScore : http://musescore.org
http://mscore.svn.sourceforge.net/viewvc/mscore/trunk/mscore/mscore/

Display CMakeLists.txt from MuseScore
CERTI : https://savannah.nongnu.org/projects/certi/
http://cvs.savannah.gnu.org/viewvc/certi/?root=certi

CMake (of course): http://www.cmake.org
LLVM: http://llvm.org/docs/CMake.html
a lot more . . .

51 / 118CMake tutorial
N

http://musescore.org
http://mscore.svn.sourceforge.net/viewvc/mscore/trunk/mscore/mscore/
https://savannah.nongnu.org/projects/certi/
http://cvs.savannah.gnu.org/viewvc/certi/?root=certi
http://www.cmake.org
http://llvm.org/docs/CMake.html

Discovering environment specificities

What about projectConfig.h file? I

Project config files
Sometimes it’s easier to test for feature and then write a con-
figuration file (config.h, project config.h, . . .). The CMake
way to do that is to:

1 lookup system informations using CMake variable, functions,
macros (built-in or imported) then set various variables,

2 use the defined variable in order to write a template
configuration header file

3 then use configure file in order to produce the actual config
file from the template.

52 / 118CMake tutorial
N

Discovering environment specificities

What about projectConfig.h file? II
Listing 9: Excerpt from CERTI project main CMakeLists.txt

1 # Load Checker macros
2 INCLUDE (CheckFunct ionExists)
3
4 FIND FILE (HAVE STDINT H NAMES s t d i n t . h)
5 FIND FILE (HAVE SYS SELECT H NAMES s e l e c t . h
6 PATH SUFFIXES sys)
7 INCLUDE (Check Inc ludeF i l e)
8 CHECK INCLUDE FILE (time . h HAVE TIME H)
9 FIND LIBRARY (RT LIBRARY r t)

10 i f (RT LIBRARY)
11 SET (CMAKE REQUIRED LIBRARIES ${CMAKE REQUIRED LIBRARIES} ${RT LIBRARY})
12 end i f (RT LIBRARY)
13
14 CHECK FUNCTION EXISTS (c lock get t ime HAVE CLOCK GETTIME)
15 CHECK FUNCTION EXISTS (c l o ck s e t t ime HAVE CLOCK SETTIME)
16 CHECK FUNCTION EXISTS (c l o c k g e t r e s HAVE CLOCK GETRES)
17 CHECK FUNCTION EXISTS (c lock nanos l eep HAVE CLOCK NANOSLEEP)
18 IF (HAVE CLOCK GETTIME AND HAVE CLOCK SETTIME AND HAVE CLOCK GETRES)
19 SET (HAVE POSIX CLOCK 1)
20 ENDIF (HAVE CLOCK GETTIME AND HAVE CLOCK SETTIME AND HAVE CLOCK GETRES)
21 . . .
22 CONFIGURE FILE (${CMAKE CURRENT SOURCE DIR} / con f i g . h . cmake
23 ${CMAKE CURRENT BINARY DIR} / con f i g . h)

53 / 118CMake tutorial
N

Discovering environment specificities

What about projectConfig.h file? III
Excerpt from CERTI config.h.cmake

1 /* define if the compiler has numeric_limits<T> */

2 #cmakedefine HAVE_NUMERIC_LIMITS

3
4 /* Define to 1 if you have the <stdint.h> header file. */

5 #cmakedefine HAVE_STDINT_H 1

6
7 /* Define to 1 if you have the <stdlib.h> header file. */

8 #cmakedefine HAVE_STDLIB_H 1

9
10 /* Define to 1 if you have the <strings.h> header file. */

11 #cmakedefine HAVE_STRINGS_H 1

12 ...

13 /* Name of package */

14 #cmakedefine PACKAGE "@PACKAGE_NAME@"

15
16 /* Define to the address where bug reports for this package should be sent. */

17 #cmakedefine PACKAGE_BUGREPORT "@PACKAGE_BUGREPORT@"

18
19 /* Define to the full name of this package. */

20 #cmakedefine PACKAGE_NAME "@PACKAGE_NAME@"

21
22 /* Define to the full name and version of this package. */

23 #cmakedefine PACKAGE_STRING "@PACKAGE_NAME@-@PACKAGE_VERSION@"

54 / 118CMake tutorial
N

Discovering environment specificities

What about projectConfig.h file? IV
And you get something like:

Excerpt from generated CERTI config.h
1 /* define if the compiler has numeric_limits<T> */

2 #define HAVE_NUMERIC_LIMITS

3
4 /* Define to 1 if you have the <stdint.h> header file. */

5 #define HAVE_STDINT_H 1

6
7 /* Define to 1 if you have the <stdlib.h> header file. */

8 #define HAVE_STDLIB_H 1

9
10 /* Define to 1 if you have the <strings.h> header file. */

11 #define HAVE_STRINGS_H 1

12 ...

13 /* Name of package */

14 /* #undef PACKAGE */

15
16 /* Define to the address where bug reports for this package should be sent. */

17 #define PACKAGE_BUGREPORT "certi-devel@nongnu.org"

18
19 /* Define to the full name of this package. */

20 #define PACKAGE_NAME "CERTI"

21
22 /* Define to the full name and version of this package. */

23 /* #undef PACKAGE_STRING */

55 / 118CMake tutorial
N

Discovering environment specificities

Outline

1 Basic CMake usage

2 Discovering environment specificities
Handling platform specificities
Working with external packages

3 More CMake scripting
Custom commands
Generated files

4 Advanced CMake usage
Cross-compiling with CMake
Export your project

56 / 118CMake tutorial
N

Discovering environment specificities

The find package command I

Finding external package
Project may be using external libraries, program, files
etc. . . Those can be found using the find package command.

Listing 10: using libxml2
1 f ind package (LibXml2)
2 i f (LIBXML2 FOUND)
3 add de f i n i t i o n s (−DHAVE XML ${LIBXML2 DEFINITIONS})
4 i n c l u d e d i r e c t o r i e s (${LIBXML2 INCLUDE DIR})
5 e lse (LIBXML2 FOUND)
6 se t (LIBXML2 LIBRARIES "")
7 end i f (LIBXML2 FOUND)
8 . . .
9 t a r g e t l i n k l i b r a r i e s (MyTarget ${LIBXML2 LIBRARIES})

57 / 118CMake tutorial
N

Discovering environment specificities

The find package command II
Find modules usually defines standard variables (for module XXX)

1 XXX FOUND: Set to false, or undefined, if we haven’t found, or don’t
want to use XXX.

2 XXX INCLUDE DIRS: The final set of include directories listed in one
variable for use by client code.

3 XXX LIBRARIES: The libraries to link against to use XXX. These
should include full paths.

4 XXX DEFINITIONS: Definitions to use when compiling code that uses
XXX.

5 XXX EXECUTABLE: Where to find the XXX tool.
6 XXX LIBRARY DIRS: Optionally, the final set of library directories

listed in one variable for use by client code.

See doc cmake --help-module FindLibXml2

Many modules are provided by CMake (130 as of CMake 2.8.7)

58 / 118CMake tutorial
N

Discovering environment specificities

The find package command III
You may write your own:
http://www.cmake.org/Wiki/CMake:Module_Maintainers

You may find/borrow modules from other projects which use CMake
KDE4:
http://websvn.kde.org/trunk/KDE/kdelibs/cmake/modules/

PlPlot: http://plplot.svn.sourceforge.net/viewvc/plplot/
trunk/cmake/modules/

http://cmake-modules.googlecode.com/svn/trunk/Modules/

probably many more. . .

A module may provide not only CMake variables but new CMake
macros (we will see that later with the MACRO, FUNCTION
CMake language commands)

59 / 118CMake tutorial
N

http://www.cmake.org/Wiki/CMake:Module_Maintainers
http://websvn.kde.org/trunk/KDE/kdelibs/cmake/modules/
http://plplot.svn.sourceforge.net/viewvc/plplot/trunk/cmake/modules/
http://plplot.svn.sourceforge.net/viewvc/plplot/trunk/cmake/modules/
http://cmake-modules.googlecode.com/svn/trunk/Modules/

Discovering environment specificities

The other find xxxx commands I

The find xxx command family
find package is a high level module finding mechanism but
there are lower-level CMake commands which may be used to
write find modules or anything else inside CMakeLists.txt

to find an executable program: find program
to find a library: find library
to find any kind of file: find file
to find a path where a file reside: find path

60 / 118CMake tutorial
N

Discovering environment specificities

The other find xxxx commands II

1 # − Find Prelude comp i l e r
2 # Find the Prelude synchronous language comp i l e r wi th a s s o c i a t ed i n c l u d e s path .
3 # See h t t p : / / www . l i f l . f r / ˜ f o r g e t / p re lude . h tml
4 # This module d e f i n e s
5 # PRELUDE COMPILER , the p re lude comp i l e r
6 # PRELUDE COMPILER VERSION , the v e r s i o n o f the p re lude comp i l e r
7 # PRELUDE INCLUDE DIR , where to f i n d dword . h , e t c .
8 # PRELUDE FOUND, I f f a l s e , Prelude was not found .
9 # On can se t PRELUDE PATH HINT be f o r e us ing f i nd package (Prelude) and the

10 # module wi th use the PATH as a h i n t to f i n d p re ludec .
11 . . .
12 i f (PRELUDE PATH HINT)
13 message (STATUS "FindPrelude: using PATH HINT: ${PRELUDE_PATH_HINT}")
14 e lse ()
15 se t (PRELUDE PATH HINT)
16 end i f ()
17 # FIND PROGRAM twi ce us ing NO DEFAULT PATH on f i r s t sho t
18 f i nd program (PRELUDE COMPILER NAMES pre ludec
19 PATHS ${PRELUDE PATH HINT} PATH SUFFIXES bin
20 NO DEFAULT PATH
21 DOC "Path to the Prelude compiler command ’preludec’")
22 f i nd program (PRELUDE COMPILER NAMES pre ludec
23 PATHS ${PRELUDE PATH HINT} PATH SUFFIXES bin
24 DOC "Path to the Prelude compiler command ’preludec’")

61 / 118CMake tutorial
N

Discovering environment specificities

The other find xxxx commands III
25
26 i f (PRELUDE COMPILER)
27 # get the path where the p re lude comp i l e r was found
28 ge t f i l ename component (PRELUDE PATH ${PRELUDE COMPILER} PATH)
29 # remove b in
30 ge t f i l ename component (PRELUDE PATH ${PRELUDE PATH} PATH)
31 # add path to PRELUDE PATH HINT
32 l i s t (APPEND PRELUDE PATH HINT ${PRELUDE PATH})
33 execu te p rocess (COMMAND ${PRELUDE COMPILER} −ve r s i on
34 OUTPUT VARIABLE PRELUDE COMPILER VERSION
35 OUTPUT STRIP TRAILING WHITESPACE)
36 end i f (PRELUDE COMPILER)
37
38 f i n d pa t h (PRELUDE INCLUDE DIR NAMES dword . h
39 PATHS ${PRELUDE PATH HINT} PATH SUFFIXES l i b / pre lude
40 DOC "The Prelude include headers")
41 . . .
42 # handle the QUIETLY and REQUIRED arguments and se t PRELUDE FOUND to TRUE i f
43 # a l l l i s t e d v a r i a b l e s are TRUE
44 i n c lude (FindPackageHandleStandardArgs)
45 FIND PACKAGE HANDLE STANDARD ARGS (PRELUDE
46 REQUIRED VARS PRELUDE COMPILER PRELUDE INCLUDE DIR)

62 / 118CMake tutorial
N

Discovering environment specificities

Advanced use of external package I

Installed External package
The previous examples suppose that you have the package you
are looking for on your host.

you did install the runtime libraries
you did install eventual developer libraries, headers and tools

What if the external packages:
are only available as source (tarball, VCS repositories, . . .)

use a build system (autotools or CMake or . . .)

63 / 118CMake tutorial
N

Discovering environment specificities

Advanced use of external package II
ExternalProject Add

The ExternalProject.cmake CMake module defines a high-
level macro which does just that:

1 download/checkout source
2 update/patch
3 configure
4 build
5 install (and test)

. . . an external project

$ cmake --help-module ExternalProject

64 / 118CMake tutorial
N

More CMake scripting

Outline

1 Basic CMake usage

2 Discovering environment specificities
Handling platform specificities
Working with external packages

3 More CMake scripting
Custom commands
Generated files

4 Advanced CMake usage
Cross-compiling with CMake
Export your project

65 / 118CMake tutorial
N

More CMake scripting

The different CMake “modes”
Normal mode: the mode used when processing CMakeLists.txt

Command mode: cmake -E <command>, command line mode which
offers basic command in a portable way:

works on all supported CMake platforms. I.e. you don’t want to
rely on shell or native command interpreter capabilities.

Process scripting mode: cmake -P <script>, used to execute a
CMake script which is not a CMakeLists.txt.

Not all CMake commands are scriptable!!

Wizard mode: cmake -i, interactive equivalent of the Normal
mode.

66 / 118CMake tutorial
N

More CMake scripting

The different CMake “modes”
Normal mode: the mode used when processing CMakeLists.txt

Command mode: cmake -E <command>, command line mode which
offers basic command in a portable way:
works on all supported CMake platforms. I.e. you don’t want to
rely on shell or native command interpreter capabilities.

Process scripting mode: cmake -P <script>, used to execute a
CMake script which is not a CMakeLists.txt.

Not all CMake commands are scriptable!!

Wizard mode: cmake -i, interactive equivalent of the Normal
mode.

66 / 118CMake tutorial
N

More CMake scripting

The different CMake “modes”
Normal mode: the mode used when processing CMakeLists.txt

Command mode: cmake -E <command>, command line mode which
offers basic command in a portable way:
works on all supported CMake platforms. I.e. you don’t want to
rely on shell or native command interpreter capabilities.

Process scripting mode: cmake -P <script>, used to execute a
CMake script which is not a CMakeLists.txt.
Not all CMake commands are scriptable!!

Wizard mode: cmake -i, interactive equivalent of the Normal
mode.

66 / 118CMake tutorial
N

More CMake scripting

Command mode

Just try:
list of command mode commands

1 $ cmake -E

2 CMake Error: cmake version 2.8.7

3 Usage: cmake -E [command] [arguments ...]

4 Available commands:

5 chdir dir cmd [args]... - run command in a given directory

6 compare_files file1 file2 - check if file1 is same as file2

7 copy file destination - copy file to destination (either file or directory)

8 copy_directory source destination - copy directory ’source’ content to directory ’destination’

9 copy_if_different in-file out-file - copy file if input has changed

10 echo [string]... - displays arguments as text

11 echo_append [string]... - displays arguments as text but no new line

12 environment - display the current environment

13 make_directory dir - create a directory

14 md5sum file1 [...] - compute md5sum of files

15 remove [-f] file1 file2 ... - remove the file(s), use -f to force it

16 remove_directory dir - remove a directory and its contents

17 rename oldname newname - rename a file or directory (on one volume)

18 tar [cxt][vfz][cvfj] file.tar file/dir1 file/dir2 ... - create a tar archive

19 time command [args] ... - run command and return elapsed time

20 touch file - touch a file.

21 touch_nocreate file - touch a file but do not create it.

22 Available on UNIX only:

23 create_symlink old new - create a symbolic link new -> old

67 / 118CMake tutorial
N

More CMake scripting

CMake scripting

Overview of CMake language
CMake is a declarative language which contains 90+
commands. It contains general purpose constructs: set ,unset,
if , elseif ,else , endif, foreach, while, break

Remember:
1 $ cmake --help-command-list

2 $ cmake --help-command <command-name>

3 $ cmake --help-command message

4 cmake version 2.8.7

5 message

6 Display a message to the user.

7 message([STATUS|WARNING|AUTHOR_WARNING|FATAL_ERROR|SEND_ERROR]

8 "message to display" ...)

9 The optional keyword determines the type of message:

10 (none) = Important information

11 STATUS = Incidental information

12 WARNING = CMake Warning, continue processing

13 AUTHOR_WARNING = CMake Warning (dev), continue processing

14 SEND_ERROR = CMake Error, continue but skip generation

15 FATAL_ERROR = CMake Error, stop all processing

68 / 118CMake tutorial
N

More CMake scripting

Higher level commands as well
file manipulation with file : READ, WRITE, APPEND,
RENAME, REMOVE, MAKE DIRECTORY

advanced files operations: GLOB, GLOB RECURSE file name in a
path, DOWNLOAD, UPLOAD

working with path: file (TO CMAKE PATH /TO NATIVE PATH ...),
get filename component
execute an external process (with stdout, stderr and return code
retrieval): execute process
builtin list manipulation command: list with sub-commands
LENGTH, GET, APPEND, FIND, APPEND, INSERT,
REMOVE ITEM, REMOVE AT, REMOVE DUPLICATES REVERSE, SORT

string manipulation: string , upper/lower case conversion, length,
comparison, substring, regular expression match, . . .

69 / 118CMake tutorial
N

More CMake scripting

Portable script for building CMake I

As an example of what can be done with pure CMake script
(script mode) here is a script for building CMake package using a
previously installed CMake.

1 # Simple cmake s c r i p t which may be used to bu i l d
2 # cmake f rom au t oma t i c a l l y downloaded source
3 #
4 # cd tmp /
5 # cmake −P CMake−au tobu i ld−v2 . cmake
6 # you should end up wi th a
7 # tmp / cmake−x . y . z sou r ce t r e e
8 # tmp / cmake−x . y . z−bu i l d bu i l d t r e e
9 # con f i g u r e and compi led t ree , us ing the t a r b a l l found on Kitware .

10
11 cmake minimum required (VERSION 2 . 8)
12 se t (CMAKE VERSION "2.8.7")
13 se t (CMAKE FILE PREFIX "cmake-${CMAKE_VERSION}")
14 se t (CMAKE REMOTE PREFIX "http://www.cmake.org/files/v2.8/")
15 se t (CMAKE FILE SUFFIX ".tar.gz")
16 se t (CMAKE BUILD TYPE "Debug")
17 se t (CPACK GEN "TGZ")
18

70 / 118CMake tutorial
N

More CMake scripting

Portable script for building CMake II
19 se t (LOCAL FILE "./${CMAKE_FILE_PREFIX}${CMAKE_FILE_SUFFIX}")
20 se t (REMOTE FILE "${CMAKE_REMOTE_PREFIX}${CMAKE_FILE_PREFIX}${CMAKE_FILE_SUFFIX}")
21
22 message (STATUS "Trying to autoinstall CMake version ${CMAKE_VERSION} using ${

REMOTE_FILE} file...")
23
24 message (STATUS "Downloading...")
25 i f (EXISTS ${LOCAL FILE})
26 message (STATUS "Already there: nothing to do")
27 e lse (EXISTS ${LOCAL FILE})
28 message (STATUS "Not there, trying to download...")
29 f i l e (DOWNLOAD ${REMOTE FILE} ${LOCAL FILE}
30 TIMEOUT 600
31 STATUS DL STATUS
32 LOG DL LOG
33 SHOWPROGRESS)
34 l i s t (GET DL STATUS 0 DL NOK)
35 i f ("${DL_LOG}" MATCHES "404 Not Found")
36 se t (DL NOK 1)
37 end i f ("${DL_LOG}" MATCHES "404 Not Found")
38 i f (DL NOK)
39 # we s h a l l remove the f i l e because i t i s c r ea t ed
40 # with an i n a pp r o p r i a t e con t en t
41 f i l e (REMOVE ${LOCAL FILE})
42 message (SEND ERROR "Download failed: ${DL_LOG}")

71 / 118CMake tutorial
N

More CMake scripting

Portable script for building CMake III
43 e lse (DL NOK)
44 message (STATUS "Download successful.")
45 end i f (DL NOK)
46 end i f (EXISTS ${LOCAL FILE})
47
48 message (STATUS "Unarchiving the file")
49 execu te p rocess (COMMAND ${CMAKECOMMAND} −E ta r zxv f ${LOCAL FILE}
50 RESULT VARIABLE UNTAR RES
51 OUTPUT VARIABLE UNTAROUT
52 ERROR VARIABLE UNTAR ERR
53)
54 message (STATUS "CMake version ${CMAKE_VERSION} has been unarchived in ${

CMAKE_CURRENT_SOURCE_DIR}/${CMAKE_FILE_PREFIX}.")
55
56 message (STATUS "Configuring with CMake (build type=${CMAKE_BUILD_TYPE})...")
57 f i l e (MAKE DIRECTORY ${CMAKE FILE PREFIX}−bu i l d)
58 execu te p rocess (COMMAND ${CMAKECOMMAND} −DCMAKE BUILD TYPE=${CMAKE BUILD TYPE} −

DBUILD QtDialog :BOOL=ON . . / ${CMAKE FILE PREFIX}
59 WORKING DIRECTORY ${CMAKE FILE PREFIX}−bu i l d
60 RESULT VARIABLE CONFIG RES
61 OUTPUT VARIABLE CONFIG OUT
62 ERROR VARIABLE CONFIG ERR
63 TIMEOUT 200)
64
65 message (STATUS "Building with cmake --build ...")

72 / 118CMake tutorial
N

More CMake scripting

Portable script for building CMake IV
66 execu te p rocess (COMMAND ${CMAKECOMMAND} −−bu i l d .
67 WORKING DIRECTORY ${CMAKE FILE PREFIX}−bu i l d
68 RESULT VARIABLE CONFIG RES
69 OUTPUT VARIABLE CONFIG OUT
70 ERROR VARIABLE CONFIG ERR)
71
72 message (STATUS "Create package ${CPACK_GEN} with CPack...")
73 execu te p rocess (COMMAND ${CMAKECPACKCOMMAND} −G ${CPACK GEN}
74 WORKING DIRECTORY ${CMAKE FILE PREFIX}−bu i l d
75 RESULT VARIABLE CONFIG RES
76 OUTPUT VARIABLE CONFIG OUT
77 ERROR VARIABLE CONFIG ERR)
78 message (STATUS "CMake version ${CMAKE_VERSION} has been built in ${

CMAKE_CURRENT_SOURCE_DIR}/${CMAKE_FILE_PREFIX}.")
79 s t r i n g (REGEX MATCH "CPack: - package:(.*)generated" PACKAGES "${CONFIG_OUT}")
80 message (STATUS "CMake package(s) are: ${CMAKE_MATCH_1}")

73 / 118CMake tutorial
N

More CMake scripting

Build specific commands
create executable or library: add executable, add library
add compiler/linker definitions/options: add definition ,
include directories , target link libraries
powerful installation specification: install
probing command: try compile, try run
fine control of various properties: set target properties ,
set source files properties , set directory properties ,
set tests properties : 190+ different properties may be used.

$ cmake --help-property-list

$ cmake --help-property COMPILE_FLAGS

74 / 118CMake tutorial
N

More CMake scripting

Outline

1 Basic CMake usage

2 Discovering environment specificities
Handling platform specificities
Working with external packages

3 More CMake scripting
Custom commands
Generated files

4 Advanced CMake usage
Cross-compiling with CMake
Export your project

75 / 118CMake tutorial
N

More CMake scripting

What are CMake targets?

CMake target
Many times in the documentation you may read about CMake
target. A target is something that CMake should build (i.e.
generate something enabling the building of the target).
A CMake target has dependencies and properties.

1 Executable are targets: add executable
2 Libraries are targets: add library
3 There exist some builtin targets: install, clean, package, . . .

4 You may create custom targets: add custom target

76 / 118CMake tutorial
N

More CMake scripting

Target dependencies and properties I

A CMake target has dependencies and properties.

Dependencies
Most of the time, source dependencies are computed from target
specifications using CMake builtin dependency scanner (C,
C++, Fortran) whereas library dependencies are inferred via
target link libraries specification.

If this is not enough then one can use add dependencies, or some
properties.

77 / 118CMake tutorial
N

More CMake scripting

Target dependencies and properties II
Properties
Properties may be attached to either target or source file (or
even test). They may be used to tailor prefix or suffix to be
used for libraries, compile flags, link flags, linker language,
shared libraries version, . . .

see : set target properties or set source files properties
Sources vs Targets
Properties set to a target like COMPILE FLAGS are used for
all sources of the concerned target. Properties set to a source
are used for the source file itself (which may be involved in
several targets).

78 / 118CMake tutorial
N

More CMake scripting

Custom targets and commands

Custom
Custom targets and custom commands are a way to create
target which may be used to execute arbitrary command at
Build-time.

for target : add custom target
for command : add custom command, in order to add some
custom build step to another (existing) target.

This is usually for: generating source files (Flex, Bison) or other
files derived from source like embedded documentation (Doxygen),
. . .

79 / 118CMake tutorial
N

More CMake scripting

Outline

1 Basic CMake usage

2 Discovering environment specificities
Handling platform specificities
Working with external packages

3 More CMake scripting
Custom commands
Generated files

4 Advanced CMake usage
Cross-compiling with CMake
Export your project

80 / 118CMake tutorial
N

More CMake scripting

Generated files

List all the sources
CMake advocates to specify all the source files explicitly (this
do not use file (GLOB ...)) This is the only way to keep robust
dependencies. Moreover you usually already need to do that
when using a VCS (cvs, subversion, git, hg,. . .).

However some files may be generated during the build (using
add custom xxx) in this case you must tell CMake that they are
GENERATED files using:

1 s e t s o u r c e f i l e s p r o p e r t i e s (${SOME GENERATED FILES}
2 PROPERTIES GENERATED TRUE)

81 / 118CMake tutorial
N

More CMake scripting

The CMake workflow (pictured)

CMakeLists.txt

Source files

Project file(s),
Makefiles, . . .

Generated
Sources files

Object files

Source
package

Binary
package

Installed
package

Installed
files

CMake time

Build time

Install time

CPack time

Package Install time

82 / 118CMake tutorial
N

More CMake scripting

Example I

1 ### Handle Source gene ra t i on f o r task f i l e pa r se r
2 i n c l u d e d i r e c t o r i e s (${CMAKE CURRENT SOURCE DIR})
3 f ind package (LexYacc)
4 se t (YACC SRC ${CMAKE CURRENT SOURCE DIR} / l smc t a s k f i l e s y n t a x . yy)
5 se t (YACC OUT PREFIX ${CMAKE CURRENT BINARY DIR} / y . tab)
6 se t (YACC WANTED OUT PREFIX ${CMAKE CURRENT BINARY DIR} / l smc t a s k f i l e s y n t a x)
7 se t (LEX SRC ${CMAKE CURRENT SOURCE DIR} / l smc t a s k f i l e t o k e n s . l l)
8 se t (LEX OUT PREFIX ${CMAKE CURRENT BINARY DIR} / l smc t a s k f i l e t o k en s y y)
9 se t (LEX WANTED OUT PREFIX ${CMAKE CURRENT BINARY DIR} / l smc t a s k f i l e t o k e n s)

10
11 #Exec Lex
12 add custom command (
13 OUTPUT ${LEX WANTED OUT PREFIX} . c
14 COMMAND ${LEX PROGRAM} ARGS −l −o${LEX WANTED OUT PREFIX} . c ${LEX SRC}
15 DEPENDS ${LEX SRC}
16)
17 se t (GENERATED SRCS ${GENERATED SRCS} ${LEX WANTED OUT PREFIX} . c)
18 #Exec Yacc
19 add custom command (
20 OUTPUT ${YACC WANTED OUT PREFIX} . c ${YACC WANTED OUT PREFIX} . h
21 COMMAND ${YACC PROGRAM} ARGS ${YACC COMPAT ARG} −d ${YACC SRC}
22 COMMAND ${CMAKECOMMAND} −E copy ${YACC OUT PREFIX} . h ${YACC WANTED OUT PREFIX} . h
23 COMMAND ${CMAKECOMMAND} −E copy ${YACC OUT PREFIX} . c ${YACC WANTED OUT PREFIX} . c
24 DEPENDS ${YACC SRC}

83 / 118CMake tutorial
N

More CMake scripting

Example II
25)
26 se t (GENERATED SRCS ${GENERATED SRCS}
27 ${YACC WANTED OUT PREFIX} . c ${YACC WANTED OUT PREFIX} . h)
28 # Te l l CMake t ha t some f i l e are generated
29 s e t s o u r c e f i l e s p r o p e r t i e s (${GENERATED SRCS} PROPERTIES GENERATED TRUE)
30
31 # I n h i b i t c omp i l e r warning f o r LEX/YACC generated f i l e s
32 # Note t ha t the i n h i b i t i o n i s COMPILER dependent . . .
33 # GNU CC s p e c i f i c warning s top
34 i f (CMAKE COMPILER IS GNUCC)
35 message (STATUS "INHIBIT Compiler warning for LEX/YACC generated files")
36 SET SOURCE FILES PROPERTIES (${YACC WANTED OUT PREFIX} . c ${YACC WANTED OUT PREFIX} . h
37 PROPERTIES COMPILE FLAGS "-w")
38
39 SET SOURCE FILES PROPERTIES (${LEX WANTED OUT PREFIX} . c
40 PROPERTIES COMPILE FLAGS "-w")
41 end i f (CMAKE COMPILER IS GNUCC)
42 . . .
43 se t (LSCHED SRC
44 lsmc dependency . c l smc core . c l sm c u t i l s . c
45 l smc t ime . c l sm c t a s k f i l e p a r s e r . c
46 ${GENERATED SRCS})
47 add l i b r a r y (lsmc ${LSCHED SRC})

84 / 118CMake tutorial
N

Advanced CMake usage

Outline

1 Basic CMake usage

2 Discovering environment specificities
Handling platform specificities
Working with external packages

3 More CMake scripting
Custom commands
Generated files

4 Advanced CMake usage
Cross-compiling with CMake
Export your project

85 / 118CMake tutorial
N

Advanced CMake usage

Outline

1 Basic CMake usage

2 Discovering environment specificities
Handling platform specificities
Working with external packages

3 More CMake scripting
Custom commands
Generated files

4 Advanced CMake usage
Cross-compiling with CMake
Export your project

86 / 118CMake tutorial
N

Advanced CMake usage

Cross-compiling

Definition: Cross-compiling
Cross-compiling is when the host system, the one the compiler
is running on, is not the same as the target system, the one
the compiled program will be running on.

CMake can handle cross-compiling using Toolchain see
http://www.cmake.org/Wiki/CMake_Cross_Compiling.

1 mkdir build-win32

2 cd build-win32

3 cmake -DCMAKE_TOOLCHAIN_FILE=../totally-free/Toolchain-cross-mingw32-linux.cmake ../totally-free/

Demo

87 / 118CMake tutorial
N

http://www.cmake.org/Wiki/CMake_Cross_Compiling

Advanced CMake usage

Linux to Win32 Toolchain example

1 # the name o f the t a r g e t ope ra t i ng system
2 SET (CMAKE SYSTEM NAME Windows)
3 # Choose an app r op r i a t e comp i l e r p r e f i x
4 # f o r c l a s s i c a l mingw32 see h t t p : / / www . mingw . org /
5 #se t (COMPILER PREFIX ” i586−mingw32msvc ”)
6 # f o r 32 or 64 b i t s mingw−w64 see h t t p : / / mingw−w64 . s o u r c e f o r g e . net /
7 se t (COMPILER PREFIX "i686-w64-mingw32")
8 #se t (COMPILER PREFIX ” x86 64−w64−mingw32 ”
9

10 # which comp i l e r s to use f o r C and C++
11 f i nd program (CMAKE RC COMPILER NAMES ${COMPILER PREFIX}−windres)
12 #SET(CMAKE RC COMPILER ${COMPILER PREFIX}−windres)
13 f i nd program (CMAKE C COMPILER NAMES ${COMPILER PREFIX}−gcc)
14 #SET(CMAKE C COMPILER ${COMPILER PREFIX}−gcc)
15 f i nd program (CMAKE CXX COMPILER NAMES ${COMPILER PREFIX}−g++)
16 #SET(CMAKE CXX COMPILER ${COMPILER PREFIX}−g++)
17
18 # here i s the t a r g e t env i ronment l o ca t ed
19 SET (USER ROOT PATH /home / erk / erk−win32−dev)
20 SET (CMAKE FIND ROOT PATH / usr / ${COMPILER PREFIX} ${USER ROOT PATH})
21 # ad j u s t the d e f a u l t behav iou r o f the FIND XXX () commands :
22 # search headers and l i b r a r i e s i n the t a r g e t env i ronment , sea rch
23 # programs in the hos t env i ronment
24 se t (CMAKE FIND ROOT PATHMODE PROGRAM NEVER)
25 se t (CMAKE FIND ROOT PATH MODE LIBRARY ONLY)
26 se t (CMAKE FIND ROOT PATH MODE INCLUDE ONLY)

88 / 118CMake tutorial
N

Advanced CMake usage

Outline

1 Basic CMake usage

2 Discovering environment specificities
Handling platform specificities
Working with external packages

3 More CMake scripting
Custom commands
Generated files

4 Advanced CMake usage
Cross-compiling with CMake
Export your project

89 / 118CMake tutorial
N

Advanced CMake usage

Exporting/Import your project

Export/Import to/from others
CMake can help project using CMake as a build system to
export/import targets to/from other project using CMake as a
build system.

No more time for that today sorry, see:
http://www.cmake.org/Wiki/CMake/Tutorials/Exporting_

and_Importing_Targets

90 / 118CMake tutorial
N

http://www.cmake.org/Wiki/CMake/Tutorials/Exporting_and_Importing_Targets
http://www.cmake.org/Wiki/CMake/Tutorials/Exporting_and_Importing_Targets

CPack: Packaging made easy

Outline

5 CPack: Packaging made easy

6 CPack with CMake

7 Various package generators

91 / 118CMake tutorial
N

CPack: Packaging made easy

Introduction

A Package generator
In the same way as CMake generates build files, CPack
generates packager files.

Archive generators
[ZIP,TGZ,. . .] (All platforms)
DEB, RPM (Linux)
Cygwin Source or Binary
(Windows/Cygwin)
NSIS (Windows, Linux)
DragNDrop, Bundle,
OSXX11 (MacOS)

92 / 118CMake tutorial
N

CPack with CMake

Outline

5 CPack: Packaging made easy

6 CPack with CMake

7 Various package generators

93 / 118CMake tutorial
N

CPack with CMake

The CMake workflow (pictured)

CMakeLists.txt

Source files

Project file(s),
Makefiles, . . .

Generated
Sources files

Object files

Source
package

Binary
package

Installed
package

Installed
files

CMake time

Build time

Install time

CPack time

Package Install time

94 / 118CMake tutorial
N

CPack with CMake

The CPack application

CPack standalone
CPack is a standalone application which behavior is driven by
a configuration file e.g. CPackConfig.cmake. This file is a
CMake language script which defines CPACK XXXX variables:
the config parameters of the CPack run.

CPack with CMake
When CPack is used to package a project built with CPack
then the CPack configuration is usually generated by CMake
by including CPack.cmake in the main CMakeLists.txt:
include(CPack)

95 / 118CMake tutorial
N

CPack with CMake

CPack variables in CMakeLists.txt

When used with CMake, one writes something like this in
CMakeLists.txt:

1 se t (CPACK GENERATOR "TGZ")
2 i f (WIN32)
3 l i s t (APPEND CPACK GENERATOR "NSIS")
4 e l s e i f (APPLE)
5 l i s t (APPEND CPACK GENERATOR "Bundle")
6 end i f (WIN32)
7 se t (CPACK SOURCE GENERATOR "ZIP;TGZ")
8 se t (CPACK PACKAGE VERSION MAJOR 0)
9 se t (CPACK PACKAGE VERSION MINOR 1)

10 se t (CPACK PACKAGE VERSION PATCH 0)
11 i n c lude (CPack)

This will create CPackSourceConfig.cmake and
CPackConfig.cmake in the build tree and will bring you the
package and package source built-in targets.

96 / 118CMake tutorial
N

CPack with CMake

A CPack config file I

A CPack config file looks like this one:
1 # This f i l e w i l l be c on f i g u r e d to con ta i n v a r i a b l e s f o r CPack .
2 # These v a r i a b l e s shou ld be se t i n the CMake l i s t f i l e o f the
3 # p r o j e c t be f o r e CPack module i s i n c l uded .
4 . . .
5 SET (CPACK BINARY BUNDLE "")
6 SET (CPACK BINARY CYGWIN "")
7 SET (CPACK BINARY DEB "")
8 . . .
9 SET (CPACK BINARY ZIP "")

10 SET (CPACK CMAKE GENERATOR "Unix Makefiles")
11 SET (CPACK GENERATOR "TGZ")
12 SET (CPACK INSTALL CMAKE PROJECTS "/home/erk/erkit/CMakeTutorial/

examples/build;TotallyFree;ALL;/")
13 SET (CPACK INSTALL PREFIX "/usr/local")
14 SET (CPACKMODULE PATH "")
15 SET (CPACK NSIS DISPLAY NAME "TotallyFree 0.1.0")

97 / 118CMake tutorial
N

CPack with CMake

A CPack config file II
16 SET (CPACK NSIS INSTALLER ICON CODE "")
17 SET (CPACK NSIS INSTALL ROOT "$PROGRAMFILES")
18 SET (CPACK NSIS PACKAGE NAME "TotallyFree 0.1.0")
19 SET (CPACK OUTPUT CONFIG FILE "/home/erk/erkit/CMakeTutorial/

examples/build/CPackConfig.cmake")
20 SET (CPACK PACKAGE DEFAULT LOCATION "/")
21 SET (CPACK PACKAGE DESCRIPTION FILE "/home/erk/CMake/cmake-Verk-

HEAD/share/cmake-2.8/Templates/CPack.GenericDescription.txt

")
22 SET (CPACK PACKAGE DESCRIPTION SUMMARY "TotallyFree built using

CMake")
23 SET (CPACK PACKAGE FILE NAME "TotallyFree -0.1.0-Linux")
24 SET (CPACK PACKAGE INSTALL DIRECTORY "TotallyFree 0.1.0")
25 SET (CPACK PACKAGE INSTALL REGISTRY KEY "TotallyFree 0.1.0")
26 SET (CPACK PACKAGE NAME "TotallyFree")
27 SET (CPACK PACKAGE RELOCATABLE "true")
28 SET (CPACK PACKAGE VENDOR "Humanity")
29 SET (CPACK PACKAGE VERSION "0.1.0")

98 / 118CMake tutorial
N

CPack with CMake

A CPack config file III
30 SET (CPACK RESOURCE FILE LICENSE "/home/erk/CMake/cmake-Verk-HEAD

/share/cmake-2.8/Templates/CPack.GenericLicense.txt")
31 SET (CPACK RESOURCE FILE README "/home/erk/CMake/cmake-Verk-HEAD/

share/cmake-2.8/Templates/CPack.GenericDescription.txt")
32 SET (CPACK RESOURCE FILE WELCOME "/home/erk/CMake/cmake-Verk-HEAD

/share/cmake-2.8/Templates/CPack.GenericWelcome.txt")
33 SET (CPACK SET DESTDIR "OFF")
34 SET (CPACK SOURCE CYGWIN "")
35 SET (CPACK SOURCE GENERATOR "TGZ;TBZ2;TZ")
36 SET (CPACK SOURCE OUTPUT CONFIG FILE "/home/erk/erkit/

CMakeTutorial/examples/build/CPackSourceConfig.cmake")
37 SET (CPACK SOURCE TBZ2 "ON")
38 SET (CPACK SOURCE TGZ "ON")
39 SET (CPACK SOURCE TZ "ON")
40 SET (CPACK SOURCE ZIP "OFF")
41 SET (CPACK SYSTEM NAME "Linux")
42 SET (CPACK TOPLEVEL TAG "Linux")

99 / 118CMake tutorial
N

CPack with CMake

CPack running steps I
For a CMake enabled project one can run CPack in two ways:

1 use the build tool to run targets: package or package source

2 invoke CPack manually from within the build tree e.g.:
$ cpack -G RPM

Currently cpack has [almost] no builtin documentation support
besides cpack --help (work is underway though), thus the best
CPack documentation is currently found on the Wiki:

http://www.cmake.org/Wiki/CMake:CPackConfiguration

http://www.cmake.org/Wiki/CMake:CPackPackageGenerators

http://www.cmake.org/Wiki/CMake:

Component_Install_With_CPack

100 / 118CMake tutorial
N

http://www.cmake.org/Wiki/CMake:CPackConfiguration
http://www.cmake.org/Wiki/CMake:CPackPackageGenerators
http://www.cmake.org/Wiki/CMake:Component_Install_With_CPack
http://www.cmake.org/Wiki/CMake:Component_Install_With_CPack

CPack with CMake

CPack running steps II
Whichever way you call it, the CPack steps are:

1 cpack command starts and parses arguments etc. . .

2 it reads CPackConfig.cmake (usually found in the build tree) or
the file given as an argument to --config command line option.

3 it iterates over the generators list found in CPACK GENERATOR (or
from -G command line option). For each generator:

3 (re)sets CPACK GENERATOR to the one currently being iterated over
3 includes the CPACK PROJECT CONFIG FILE
3 installs the project into CPack private location (using DESTDIR)
3 calls the generator and produces the package(s) for that generator

101 / 118CMake tutorial
N

CPack with CMake

CPack running steps III
cpack command line example

1 $ cpack -G "TGZ;RPM"

2 CPack: Create package using TGZ

3 CPack: Install projects

4 CPack: - Run preinstall target for: TotallyFree

5 CPack: - Install project: TotallyFree

6 CPack: Create package

7 CPack: - package: <...>/build/TotallyFree-0.1.0-Linux.tar.gz generated.

8 CPack: Create package using RPM

9 CPack: Install projects

10 CPack: - Run preinstall target for: TotallyFree

11 CPack: - Install project: TotallyFree

12 CPack: Create package

13 CPackRPM: Will use GENERATED spec file: <...>/build/_CPack_Packages/Linux/RPM/SPECS/totallyfree.spec

14 CPack: - package: <...>/build/TotallyFree-0.1.0-Linux.rpm generated.

15 $

102 / 118CMake tutorial
N

CPack with CMake

CPack running steps IV
make package example

1 $ make package

2 [33%] Built target acrodict

3 [66%] Built target Acrodictlibre

4 [100%] Built target Acrolibre

5 Run CPack packaging tool...

6 CPack: Create package using TGZ

7 CPack: Install projects

8 CPack: - Run preinstall target for: TotallyFree

9 CPack: - Install project: TotallyFree

10 CPack: Create package

11 CPack: - package: <...>/build/TotallyFree-0.1.0-Linux.tar.gz generated.

Rebuild project
In the make package case CMake is checking that the project
does not need a rebuild.

103 / 118CMake tutorial
N

CPack with CMake

CPack running steps V
make package source example

1 $ make package_source

2 make package_source

3 Run CPack packaging tool for source...

4 CPack: Create package using TGZ

5 CPack: Install projects

6 CPack: - Install directory: <...>/totally-free

7 CPack: Create package

8 CPack: - package: <...>/build/TotallyFree-0.1.0-Source.tar.gz generated.

9 CPack: Create package using TBZ2

10 CPack: Install projects

11 CPack: - Install directory: <...>/totally-free

12 CPack: Create package

13 CPack: - package: <...>/build/TotallyFree-0.1.0-Source.tar.bz2 generated.

14 CPack: Create package using TZ

15 CPack: Install projects

16 CPack: - Install directory: <...>/totally-free

17 CPack: Create package

18 CPack: - package: <...>/build/TotallyFree-0.1.0-Source.tar.Z generated.

104 / 118CMake tutorial
N

CPack with CMake

The CPack workflow (pictured)

Source
Tree

Build
Tre

e
CPack

Installed files

CMakeLists.txt

Source files

CPackConfig.cmake

CPackSourceConfig.cmake

Source
package

Binary
package

Installed
package

CMake time

Build time

Install time (from CPack)

CPack time

Package Install time

105 / 118CMake tutorial
N

CPack with CMake

The CPack workflow (pictured)

Source
Tree

Build
Tre

e
CPack

Installed files

CMakeLists.txt

Source files

CPackConfig.cmake

CPackSourceConfig.cmake

Source
package

Binary
package

Installed
package

CMake time

Build time

Install time (from CPack)

CPack time

Package Install time

105 / 118CMake tutorial
N

CPack with CMake

The CPack workflow (pictured)

Source
Tree

Build
Tre

e

CPack
Installed files

CMakeLists.txt

Source files

CPackConfig.cmake

CPackSourceConfig.cmake

Source
package

Binary
package

Installed
package

CMake time

Build time

Install time (from CPack)

CPack time

Package Install time

105 / 118CMake tutorial
N

CPack with CMake

The CPack workflow (pictured)

Source
Tree

Build
Tre

e

CPack
Installed files

CMakeLists.txt

Source files

CPackConfig.cmake

CPackSourceConfig.cmake

Source
package

Binary
package

Installed
package

CMake time

Build time

Install time (from CPack)

CPack time

Package Install time

105 / 118CMake tutorial
N

CPack with CMake

The CPack workflow (pictured)

Source
Tree

Build
Tre

e

CPack
Installed files

CMakeLists.txt

Source files

CPackConfig.cmake

CPackSourceConfig.cmake

Source
package

Binary
package

Installed
package

CMake time

Build time

Install time (from CPack)

CPack time

Package Install time

105 / 118CMake tutorial
N

CPack with CMake

The CPack workflow (pictured)

Source
Tree

Build
Tre

e
CPack

Installed files

CMakeLists.txt

Source files

CPackConfig.cmake

CPackSourceConfig.cmake

Source
package

Binary
package

Installed
package

CMake time

Build time

Install time (from CPack)

CPack time

Package Install time

105 / 118CMake tutorial
N

CPack with CMake

The CPack workflow (pictured)

Source
Tree

Build
Tre

e
CPack

Installed files

CMakeLists.txt

Source files

CPackConfig.cmake

CPackSourceConfig.cmake

Source
package

Binary
package

Installed
package

CMake time

Build time

Install time (from CPack)

CPack time

Package Install time

105 / 118CMake tutorial
N

CPack with CMake

The CPack workflow (pictured)

Source
Tree

Build
Tre

e
CPack

Installed files

CMakeLists.txt

Source files

CPackConfig.cmake

CPackSourceConfig.cmake

Source
package

Binary
package

Installed
package

CMake time

Build time

Install time (from CPack)

CPack time

Package Install time

105 / 118CMake tutorial
N

CPack with CMake

Source vs Binary Generators

CPack does not really distinguish “source” from “binaries”!!

CPack source package
The CPack configuration file is: CPackSourceConfig.cmake.
The CPack source generator is essentially packaging directories
with install, exclude and include rules.

CPack binary package
The CPack configuration file is: CPackConfig.cmake. More-
over CPack knows that a project is built with CMake and
inherits many properties from the install rules found in the
project.

106 / 118CMake tutorial
N

Various package generators

Outline

5 CPack: Packaging made easy

6 CPack with CMake

7 Various package generators

107 / 118CMake tutorial
N

Various package generators

Archive Generators

A family of generators
The archive generators is a family of generators which is sup-
ported on all CMake supported platforms through libarchive:
http://code.google.com/p/libarchive/.

STGZ Self extracting Tar GZip compression

TBZ2 Tar BZip2 compression

TGZ Tar GZip compression

TZ Tar Compress compression

ZIP Zip archive

108 / 118CMake tutorial
N

http://code.google.com/p/libarchive/

Various package generators

Linux-friendly generators
Tar-kind archive generators
Binary RPM: only needs rpmbuild to work.
Binary DEB: works on any Linux distros.

CPack vs native tools
One could argue “why using CPack for building .deb or .rpm”.
The primary target of CPack RPM and DEB generators are
people who are NOT professional packager. Those people can
get a clean package without too much effort and get better
package than a bare TAR archive.

No official packaging replacement
Those generators are no replacement for official packaging
tools.

109 / 118CMake tutorial
N

Various package generators

Windows-friendly generators
Zip archive generator

NullSoft System Installer generator
(http://nsis.sourceforge.net/
Support component installation, produce nice GUI installer.

MSI installer requested:
http://public.kitware.com/Bug/view.php?id=11575.

Cygwin: Binary and Source generators.

110 / 118CMake tutorial
N

http://nsis.sourceforge.net/
http://public.kitware.com/Bug/view.php?id=11575

Various package generators

MacOS-friendly generators

Tar-kind archive generators
DragNDrop
PackageMaker

Bundle

OSXX11

Don’t ask me
I’m not a MacOS user and I don’t know them. Go and read the
Wiki or ask on the ML.
http://www.cmake.org/Wiki/CMake:

CPackPackageGenerators

http://www.cmake.org/cmake/help/mailing.html

111 / 118CMake tutorial
N

http://www.cmake.org/Wiki/CMake:CPackPackageGenerators
http://www.cmake.org/Wiki/CMake:CPackPackageGenerators
http://www.cmake.org/cmake/help/mailing.html

Various package generators

Packaging Components I
CMake+CPack installation components?
Sometimes you want to split the installer into components.

1 Use COMPONENT argument in your install rules (in the
CMakeLists.txt),

2 Add some more [CPack] information about how to group
components,

3 Choose a component-aware CPack generator

4 Choose the behavior (1 package file per component, 1 package file
per group, etc. . .)

5 Possibly specify generator specific behavior in
CPACK PROJECT CONFIG FILE

6 Run CPack.

112 / 118CMake tutorial
N

Various package generators

Packaging Components II
demo with ComponentExample

More detailed documentation here:
http://www.cmake.org/Wiki/CMake:Component_Install_With_CPack

Component aware generator
Not all generators do support component
(i.e. they are MONOLITHIC)
Some produce a single package file containing all components.
(e.g. NSIS)
Others produce several package files containing one or several
components.
(e.g. ArchiveGenerator, RPM, DEB)

113 / 118CMake tutorial
N

http://www.cmake.org/Wiki/CMake:Component_Install_With_CPack

Systematic Testing

Outline

8 Systematic Testing

9 CTest submission to CDash

10 References

114 / 118CMake tutorial
N

CTest submission to CDash

Outline

8 Systematic Testing

9 CTest submission to CDash

10 References

115 / 118CMake tutorial
N

CTest submission to CDash

More to come on CTest/CDash

Sorry...out of time!!
CMake and its friends are so much fun and powerful that I ran
out of time to reach a detailed presentation of CTest/CDash,
stay tuned for next time. . .

In the meantime:
Go there: http://www.cdash.org

Open your own (free) Dashboard: http://my.cdash.org/

CDash 2.0 should be released in the next few weeks (mid-february)

A course on CMake/CTest/CDash in Lyon on April, 2 2012
(http://formations.kitware.fr)

116 / 118CMake tutorial
N

http://www.cdash.org
http://my.cdash.org/
http://formations.kitware.fr

References

Outline

8 Systematic Testing

9 CTest submission to CDash

10 References

117 / 118CMake tutorial
N

References

References I

CDash home page, Feb. 2011.
http://www.cdash.org.

CMake home page, Feb. 2012.
http://www.cmake.org.

CMake Wiki, Feb. 2012.
http://www.cmake.org/Wiki/CMake.

Development/CMake on KDE TechBase, Feb. 2012.
http://techbase.kde.org/Development/CMake.

Ken Martin and Bill Hoffman.
Mastering CMake: A Cross-Platform Build System.
Kitware, Inc., 5th edition edition, 2010.
ISBN-13 978-1930934221.

118 / 118CMake tutorial
N

http://www.cdash.org
http://www.cmake.org
http://www.cmake.org/Wiki/CMake
http://techbase.kde.org/Development/CMake

	CMake
	Basic CMake usage
	Discovering environment specificities
	Handling platform specificities
	Working with external packages

	More CMake scripting
	Custom commands
	Generated files

	Advanced CMake usage
	Cross-compiling with CMake
	Export your project

	CPack
	CPack: Packaging made easy
	CPack with CMake
	Various package generators

	CTest and CDash
	Systematic Testing
	CTest submission to CDash
	References

