/** * MIT License * Copyright (c) 2021 EMU Electronic AG (https://www.emuag.ch/). All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ /** * decodeUplink is called by TheThingsNetwork * we use our parsePayload() for decoding * * @param {*} input * @returns object containing decoded payload * { * "Active Energy Export T1": { * "unit": "Wh", * "value": 0 * }, * "Active Energy Export T2": { * "unit": "Wh", * "value": 0 * }, * "Active Energy Import T1": { * "unit": "Wh", * "value": 4000 * }, * "Active Energy Import T2": { * "unit": "Wh", * "value": 0 * }, * "Reactive Energy Export T1": { * "unit": "varh", * "value": 0 * }, * "Reactive Energy Export T2": { * "unit": "varh", * "value": 0 * }, * "Reactive Energy Import T1": { * "unit": "varh", * "value": 0 * }, * "Reactive Energy Import T2": { * "unit": "varh", * "value": 0 * }, * "medium": { * "desc": "Electricity", * "type": 1 * }, * "readoutInterval": 900, * "timeStamp": 1635499020, * "timestamp": { * "unit": "seconds", * "value": 1635499020 * } */ function decodeUplink(input) { data = input.bytes; //uplink with only 2 bytes is only status update, ignore it if(data.length<=2){ return {}; } var obj = {}; //check CRC-8 which resides at the end crc8Received = data[data.length - 1]; dataToCheck = []; for(var i = 0; i < data.length - 1; i++){ dataToCheck.push(data[i]); } if (crc8_encode(dataToCheck).toString(16) === crc8Received.toString(16)) { //crc-8 seems ok, } else { obj.warnings = ['crc-8 wrong']; //perhaps decide to stop further processing if crc-8 is wrong } //first 4 bytes are allways the timestamp, this is the timestamp from the datalogger var timeStamp = getUint32(data); obj.data = parsePayload(data); //for TTN we strip unused information for(var property in obj.data){ delete obj.data[property].cfgdescription; delete obj.data[property].cfgtariff; delete obj.data[property].cfgunit; delete obj.data[property].cfgorder; delete obj.data[property].order; } obj.data.timeStamp = timeStamp; obj.data.medium = { "type": 1, "desc": "Electricity" }; return obj; } /** * Decode is called by Chirpstack * @param {*} fPort * @param {*} data * @param {*} variables * @returns object containing decoded payload * * { * "Active Energy Import T1": { * "unit": "Wh", * "cfgdescription": 3, * "cfgunit": 1, * "cfgtariff": 1, * "order": 3, * "value": 1809 * }, * "Active Energy Import T2": { * "unit": "Wh", * "cfgdescription": 3, * "cfgunit": 1, * "cfgtariff": 2, * "order": 4, * "value": 128 * }, * "Active Energy Export T1": { * "unit": "Wh", * "cfgdescription": 5, * "cfgunit": 1, * "cfgtariff": 1, * "order": 5, * "value": 1149 * }, * "Active Energy Export T2": { * "unit": "Wh", * "cfgdescription": 5, * "cfgunit": 1, * "cfgtariff": 2, * "order": 6, * "value": 17794 * }, * "Reactive Energy Import T1": { * "unit": "varh", * "cfgdescription": 10, * "cfgunit": 5, * "cfgtariff": 1, * "order": 7, * "value": 1864 * }, * "Reactive Energy Import T2": { * "unit": "varh", * "cfgdescription": 10, * "cfgunit": 5, * "cfgtariff": 2, * "order": 8, * "value": 2600 * }, * "Reactive Energy Export T1": { * "unit": "varh", * "cfgdescription": 13, * "cfgunit": 5, * "cfgtariff": 1, * "order": 9, * "value": 338 * }, * "Reactive Energy Export T2": { * "unit": "varh", * "cfgdescription": 13, * "cfgunit": 5, * "cfgtariff": 2, * "order": 10, * "value": 9661 * }, * "timeStamp": 1635499800, * "medium": { * "type": 1, * "desc": "Electricity" * }, * "readoutInterval": 900 * } */ function Decode(fPort, data, variables) { //uplink with only 2 bytes is only status update, ignore it if (data.length <= 2) { return {}; } var obj = {}; //check CRC-8 which resides at the end crc8Received = data[data.length - 1]; dataToCheck = []; for(var i = 0; i < data.length - 1; i++){ dataToCheck.push(data[i]); } if (crc8_encode(dataToCheck).toString(16) === crc8Received.toString(16)) { //crc-8 seems ok, } else { obj.warnings = ['crc-8 wrong']; //perhaps decide to stop further processing if crc-8 is wrong } //first 4 bytes are allways the timestamp, this is the timestamp from the datalogger var timeStamp = getUint32(data); obj = parsePayload(data); obj.timeStamp = timeStamp; //add a human readable timestamp to the payload var meterDate = new Date(timeStamp * 1000); var options = { timeZone:'Europe/Berlin', weekday: 'short', year: 'numeric', month: 'short', day: 'numeric', hour:'numeric', minute:'numeric', second:'numeric'}; obj.timeStampReadable = meterDate.toLocaleString('de-CH',options); obj.medium = { "type": 1, "desc": "Electricity" }; //Default readout-interval is allways 15 minutes obj.readoutInterval = (15 * 60); //15 Min * 60 Sec //you can overwrite the readout-interval when defining variables for this meter if(variables !== null && variables.readoutInterval !== null){ obj.readoutInterval = variables.readoutInterval; } return obj; } /** * encodeDownlink is called by TheThingsNetwork * @param {*} data Object containing configuration * @returns binary data */ function encodeDownlink(data){ /** * Example JSON-Object for Timestamp, Energy 0x03-0x0A * { * "fPort": 1, * "timeInterval": 15, * "sndAck": true, * "startReJoin": false, * "portIsActive": true, * "values": [ * 1, * 3, * 4, * 5, * 6, * 7, * 8, * 9, * 10 * ] * } * */ //fPort must be defined else define it if (data.data.fPort === null || data.data.fPort === undefined){ data.data.fPort = 1; } fPort = data.data.fPort; bytes = []; //just call the Encode function bytes = Encode(fPort, data.data, {}); return {fPort: fPort, bytes: bytes}; } /** * decodeDownlink is used by TheThingsNetwork * @param {*} input binary data containing configuration * @returns data object containing decoded configuration */ function decodeDownlink(input) { var data = {}; data.fPort = input.fPort; if(input.bytes.length > 3){ var i = 0; data.timeInterval = Number(getInt16([input.bytes[i++], input.bytes[i++]])); configFlag = input.bytes[i++]; //sndAck activated ? if (configFlag & 0x02) { data.sndAck = true; } else { data.sndAck = false; } //start a rejoin after receiving this uplink ? if (configFlag & 0x04) { data.startReJoin = true; } else { data.startReJoin = false; } //is this uplink on this port activated ? if (configFlag & 0x08) { data.portIsActive = true; } else { data.portIsActive = false; } data.values = [] for (i; i < input.bytes.length - 1; ++i) { data.values.push(Number(getUint8(input.bytes[i]))); } } return data; } /** * Encode is called by Chirpstack * @param {*} fPort * @param {*} data Object containing configuration * @param {*} variables * @returns binary data */ function Encode(fPort, data, variables) { /** * Example JSON-Object for Timestamp, Energy 0x03-0x0A * { * "fPort": 1, * "timeInterval": 15, * "sndAck": true, * "startReJoin": false, * "portIsActive": true, * "values": [ * 1, * 3, * 4, * 5, * 6, * 7, * 8, * 9, * 10 * ] * } * */ bytes = []; //make sure the time is valid and between 1 and 65535! data.timeInterval = Math.min(data.timeInterval, 0xFFFF); data.timeInterval = Math.max(data.timeInterval,1 ); //push second byte to first position bytes.push(data.timeInterval & 0X00FF); //push first byte to second pposition bytes.push(data.timeInterval >> 8); var configFlags = 0x00; //Send Acknowledge for each Uplink back if (data.sndAck) { configFlags |= 0x02; } //Start Re-Join if (data.startReJoin) { configFlags |= 0x04; } //Enable this port so it sends data if (data.portIsActive) { configFlags |= 0x08; } //Push the config flag on the stack bytes.push(configFlags); for(var i=0; i< data.values.length; i++) { bytes.push(data.values[i]); } //apply crc-8 crc8 = crc8_encode(bytes); bytes.push(crc8); return bytes; } /** * read 1 byte of data an convert it to an Uint8 * @param {*} data * @returns */ function getUint8(data) { var value = data >>> 0; return value; } function flip(n) { var x = []; n = Number(n); //will work only for positive numbers var single = n.toString(2).split(""); for(var i = 0; i> 7 == 1){ return flip(data); } var value = data >>> 0; return value; } /** * read 2 bytes of data an convert it to an Int16 * @param {*} data * @returns */ function getInt16(data) { value = (data[1] << 8 | data[0]); return value; } /** * read 2 bytes of data an convert it to an Uint16 * @param {*} data * @returns */ function getUint16(data) { value = (data[1] << 8 | data[0]) >>> 0; return value; } /** * read 4 bytes of data an convert it to an Int32 * @param {*} data * @returns */ function getInt32(data) { value = (data[3] << 24 | data[2] << 16 | data[1] << 8 | data[0]); return value; } /** * * read 4 bytes of data an convert it to an Uint32 * @param {*} data * @returns */ function getUint32(data) { value = (data[3] << 24 | data[2] << 16 | data[1] << 8 | data[0]) >>> 0; return value; } /** * read 8 bytes of data an convert it to an Int64 * @param {*} data * @returns */ function getInt64(data) { //JS can't handle bitwise operation with more than 32bit ! //so this won't work //if Chirpstack will use another javascript engine we could use typearray's var value = Number((data[7] << 56 | data[6] << 48 | data[5] << 40 | data[4] << 32 | data[3] << 24 | data[2] << 16 | data[1] << 8 | data[0])); return value; } /** * * read 8 bytes of data an convert it to an Uint32 * @param {*} data * @returns */ function getUint64(data) { //JS can't handle bitwise operation with more than 32bit ! //so this won't work //if Chirpstack will use another javascript engine we could use typearray's value = Number((data[7] << 56 | data[6] << 48 | data[5] << 40 | data[4] << 32 | data[3] << 24 | data[2] << 16 | data[1] << 8 | data[0]) >>> 0); return value; } function getBCD(data) { var bcd = ""; for(var i=0; i< data.length; i++) { bcd = bcd + "" + data[i]; } return bcd; } function getASCII(data) { var ascii = ""; for(var i=0; i< data.length; i++) { entry = getUint8(data[i]); if (entry != 0x00) { ascii = ascii + String.fromCharCode(entry.toString()); } } return ascii; } /** * parses the variable data and returns an object * * a value is identified by its id * * @param {*} obj * @param {*} data */ function parsePayload(data){ var dataTypes = []; //be sure to fill the complete array //if we receive an invalid datatype we skip the rest of the data for (i = 0; i < 256; i++) { dataTypes[i] = {'len': 255,'description': 'invalid data-type'}; } //the "order" is assigned according to the entry dataTypes[0x00]={'len':4,'description':'data-logger-index','dataType':'Uint32'}; dataTypes[0x01]={'len':4,'description':'timestamp','dataType':'Uint32','unit':'seconds'}; dataTypes[0x02]={'len':4,'description':'timestamp-previous','dataType':'Uint32','unit':'seconds'}; dataTypes[0x03]={'len':4,'description':'ActiveEnergyImportT1','dataType':'Uint32','unit':'Wh','cfgdescription':3,"cfgunit":1,'cfgtariff':1}; dataTypes[0x04]={'len':4,'description':'ActiveEnergyImportT2','dataType':'Uint32','unit':'Wh','cfgdescription':3,"cfgunit":1,'cfgtariff':2}; dataTypes[0x05]={'len':4,'description':'ActiveEnergyExportT1','dataType':'Uint32','unit':'Wh','cfgdescription':5,"cfgunit":1,'cfgtariff':1}; dataTypes[0x06]={'len':4,'description':'ActiveEnergyExportT2','dataType':'Uint32','unit':'Wh','cfgdescription':5,"cfgunit":1,'cfgtariff':2}; dataTypes[0x07]={'len':4,'description':'ReactiveEnergyImportT1','dataType':'Uint32','unit':'varh','cfgdescription':10,"cfgunit":5,'cfgtariff':1}; dataTypes[0x08]={'len':4,'description':'ReactiveEnergyImportT2','dataType':'Uint32','unit':'varh','cfgdescription':10,"cfgunit":5,'cfgtariff':2}; dataTypes[0x09]={'len':4,'description':'ReactiveEnergyExportT1','dataType':'Uint32','unit':'varh','cfgdescription':13,"cfgunit":5,'cfgtariff':1}; dataTypes[0x0A]={'len':4,'description':'ReactiveEnergyExportT2','dataType':'Uint32','unit':'varh','cfgdescription':13,"cfgunit":5,'cfgtariff':2}; dataTypes[0x0B]={'len':4,'description':'ActivePowerL123','dataType':'Int32','unit':'W','cfgdescription':25,"cfgunit":13}; dataTypes[0x0C]={'len':4,'description':'ActivePowerL1','dataType':'Int32','unit':'W','cfgdescription':25,"cfgunit":13,'cfgphase':1}; dataTypes[0x0D]={'len':4,'description':'ActivePowerL2','dataType':'Int32','unit':'W','cfgdescription':25,"cfgunit":13,'cfgphase':2}; dataTypes[0x0E]={'len':4,'description':'ActivePowerL3','dataType':'Int32','unit':'W','cfgdescription':25,"cfgunit":13,'cfgphase':3}; dataTypes[0x0F]={'len':4,'description':'CurrentL123','dataType':'Int32','unit':'mA','cfgdescription':31,"cfgunit":28}; dataTypes[0x10]={'len':4,'description':'CurrentL1','dataType':'Int32','unit':'mA','cfgdescription':31,"cfgunit":28,'cfgphase':1}; dataTypes[0x11]={'len':4,'description':'CurrentL2','dataType':'Int32','unit':'mA','cfgdescription':31,"cfgunit":28,'cfgphase':2}; dataTypes[0x12]={'len':4,'description':'CurrentL3','dataType':'Int32','unit':'mA','cfgdescription':31,"cfgunit":28,'cfgphase':3}; dataTypes[0x13]={'len':4,'description':'CurrentN','dataType':'Int32','unit':'mA','cfgdescription':31,"cfgunit":28,'cfgphase':4}; dataTypes[0x14]={'len':4,'description':'VoltageL1-N','dataType':'Int32','unit':'V/10','unit_calculated':'V','factor':0.1,'fixed':1,'cfgdescription':30,"cfgunit":26,'cfgphase':1}; dataTypes[0x15]={'len':4,'description':'VoltageL2-N','dataType':'Int32','unit':'V/10','unit_calculated':'V','factor':0.1,'fixed':1,'cfgdescription':30,"cfgunit":26,'cfgphase':2}; dataTypes[0x16]={'len':4,'description':'VoltageL3-N','dataType':'Int32','unit':'V/10','unit_calculated':'V','factor':0.1,'fixed':1,'cfgdescription':30,"cfgunit":26,'cfgphase':3}; dataTypes[0x17]={'len':1,'description':'PowerfactorL1','dataType':'Int8','unit':'Cos','factor':0.01,'fixed':2,'cfgdescription':32,"cfgunit":31,'cfgphase':1}; dataTypes[0x18]={'len':1,'description':'PowerfactorL2','dataType':'Int8','unit':'Cos','factor':0.01,'fixed':2,'cfgdescription':32,"cfgunit":31,'cfgphase':2}; dataTypes[0x19]={'len':1,'description':'PowerfactorL3','dataType':'Int8','unit':'Cos','factor':0.01,'fixed':2,'cfgdescription':32,"cfgunit":31,'cfgphase':3}; dataTypes[0x1A]={'len':2,'description':'Frequency','dataType':'Int16','unit':'Hz','factor':0.1,'fixed':1,'cfgdescription':33,"cfgunit":32}; dataTypes[0x1B]={'len':4,'description':'ActivePoweraverage','dataType':'Int32','unit':'W',"cfgunit":13,}; dataTypes[0x1C]={'len':4,'description':'ActiveEnergyImportT1kWh','dataType':'Uint32','unit':'kWh','cfgdescription':3,"cfgunit":2,'cfgtariff':1}; dataTypes[0x1D]={'len':4,'description':'ActiveEnergyImportT2kWh','dataType':'Uint32','unit':'kWh','cfgdescription':3,"cfgunit":2,'cfgtariff':2}; dataTypes[0x1E]={'len':4,'description':'ActiveEnergyExportT1kWh','dataType':'Uint32','unit':'kWh','cfgdescription':5,"cfgunit":2,'cfgtariff':1}; dataTypes[0x1F]={'len':4,'description':'ActiveEnergyExportT2kWh','dataType':'Uint32','unit':'kWh','cfgdescription':5,"cfgunit":2,'cfgtariff':2}; dataTypes[0x20]={'len':4,'description':'ReactiveEnergyImportT1kvarh','dataType':'Uint32','unit':'kvarh','cfgdescription':10,"cfgunit":6,'cfgtariff':1}; dataTypes[0x21]={'len':4,'description':'ReactiveEnergyImportT2kvarh','dataType':'Uint32','unit':'kvarh','cfgdescription':10,"cfgunit":6,'cfgtariff':2}; dataTypes[0x22]={'len':4,'description':'ReactiveEnergyExportT1kvarh','dataType':'Uint32','unit':'kvarh','cfgdescription':13,"cfgunit":6,'cfgtariff':1}; dataTypes[0x23]={'len':4,'description':'ReactiveEnergyExportT2kvarh','dataType':'Uint32','unit':'kvarh','cfgdescription':13,"cfgunit":6,'cfgtariff':2}; dataTypes[0x24]={'len':8,'description':'ActiveEnergyImportT164bit','dataType':'uInt64','unit':'Wh','cfgdescription':3,"cfgunit":1,'cfgtariff':1}; dataTypes[0x25]={'len':8,'description':'ActiveEnergyImportT264bit','dataType':'uInt64','unit':'Wh','cfgdescription':3,"cfgunit":1,'cfgtariff':2}; dataTypes[0x26]={'len':8,'description':'ActiveEnergyExportT164bit','dataType':'uInt64','unit':'Wh','cfgdescription':5,"cfgunit":1,'cfgtariff':1}; dataTypes[0x27]={'len':8,'description':'ActiveEnergyExportT264bit','dataType':'uInt64','unit':'Wh','cfgdescription':5,"cfgunit":1,'cfgtariff':2}; dataTypes[0x28]={'len':8,'description':'ReactiveEnergyImportT164bit','dataType':'uInt64','unit':'varh','cfgdescription':10,"cfgunit":5,'cfgtariff':1}; dataTypes[0x29]={'len':8,'description':'ReactiveEnergyImportT264bit','dataType':'uInt64','unit':'varh','cfgdescription':10,"cfgunit":5,'cfgtariff':2}; dataTypes[0x2A]={'len':8,'description':'ReactiveEnergyExportT164bit','dataType':'uInt64','unit':'varh','cfgdescription':13,"cfgunit":5,'cfgtariff':1}; dataTypes[0x2B]={'len':8,'description':'ReactiveEnergyExportT264bit','dataType':'uInt64','unit':'varh','cfgdescription':13,"cfgunit":5,'cfgtariff':2}; dataTypes[0xF0]={'len':1,'description':'errorcode','dataType':'ErrorCode'}; dataTypes[0xF1]={'len':4,'description':'serial-number','dataType':'MeterSerial'}; dataTypes[0xF2]={'len':4,'description':'factor-number','dataType':'MeterSerial'}; dataTypes[0xF3]={'len':2,'description':'current-transformerprimary','dataType':'Uint16',"cfgunit":72,}; dataTypes[0xF4]={'len':2,'description':'current-transformersecondary','dataType':'Uint16',"cfgunit":72,}; dataTypes[0xF5]={'len':2,'description':'voltage-transformerprimary','dataType':'Uint16',"cfgunit":72,}; dataTypes[0xF6]={'len':2,'description':'voltage-transformersecondary','dataType':'Uint16',"cfgunit":72,}; dataTypes[0xF7]={'len':1,'description':'meter-typ','dataType':'Uint8'}; dataTypes[0xF8]={'len':4,'description':'MIDyear','dataType':'BCD',}; dataTypes[0xF9]={'len':4,'description':'factoryyear','dataType':'BCD',}; dataTypes[0xFA]={'len':4,'description':'firmwareversion','dataType':'ASCII'}; dataTypes[0xFB]={'len':4,'description':'mid-Version','dataType':'ASCII'}; dataTypes[0xFC]={'len':4,'description':'manufacturer','dataType':'ASCII'}; dataTypes[0xFD]={'len':4,'description':'hw-index','dataType':'ASCII'}; dataTypes[0xFE]={'len':4,'description':'systemtime','dataType':'Uint32'}; var obj = {}; var i = 4; //the first 4 bytes is allways the timestamp //the last byte is the crc-code so ignore this one while (i < (data.length - 1)) { //extract signature byte indexOfDataType = data[i]; dataType = dataTypes[indexOfDataType]; i++; //also save the sort-order value dataType.order = indexOfDataType; switch (dataType.dataType) { case 'Int8': dataType.value = Number(getInt8([data[i++]])); break; case 'Uint8': dataType.value = Number(getUint8([data[i++]])); break; case 'Int16': dataType.value = Number(getInt16([data[i++], data[i++]])); break; case 'Uint16': dataType.value = Number(getUint16([data[i++], data[i++]])); break; case 'Uint32': dataType.value = Number(getUint32([data[i++], data[i++], data[i++], data[i++]])); break; case 'Int32': dataType.value = Number(getInt32([data[i++], data[i++], data[i++], data[i++]])); break; case 'uInt64': dataType.value = Number(getUint64([data[i++], data[i++], data[i++], data[i++], data[i++], data[i++], data[i++], data[i++]])); break; case 'Int64': dataType.value = Number(getInt64([data[i++], data[i++], data[i++], data[i++], data[i++], data[i++], data[i++], data[i++]])); break; case 'MeterSerial': dataType.value = ('0' + Number(getUint8([data[i++]])).toString(16)).slice(-2); dataType.value = ('0' + Number(getUint8([data[i++]])).toString(16)).slice(-2) + dataType.value; dataType.value = ('0' + Number(getUint8([data[i++]])).toString(16)).slice(-2) + dataType.value; dataType.value = ('0' + Number(getUint8([data[i++]])).toString(16)).slice(-2) + dataType.value; break; case 'BCD': dataType.value = getBCD([data[i++], data[i++], data[i++], data[i++]]); break; case 'ASCII': dataType.value = getASCII([data[i++], data[i++], data[i++], data[i++]]); break; case 'ErrorCode': dataType.value = Number(getUint8([data[i++]])); //also encode the error dataType.TimeChanged = dataType.value & 0x01 ? true : false; dataType.CTRatioChange = dataType.value & 0x02 ? true : false; dataType.VTRatioChange = dataType.value & 0x04 ? true : false; dataType.ImpulseWidthChange = dataType.value & 0x08 ? true : false; dataType.ImpulseRatioChange = dataType.value & 0x10 ? true : false; dataType.PowerFail = dataType.value & 0x20 ? true : false; dataType.LogbookFull = dataType.value & 0x80 ? true : false; break; default: break; } //if we have a factor apply it but keep the old value if (dataType.factor && !isNaN(dataType.factor)) { var fixed = 0; if (dataType.fixed && !isNaN(dataType.fixed)) { fixed = dataType.fixed; } //save the value which was sent by the meter (perhaps needed later) dataType.value_raw = dataType.value; //calculate the new value using the factor dataType.value = Number((dataType.value * dataType.factor).toFixed(fixed)); } obj[dataType.description] = dataType; //remove all unused infos like dataType, description, len delete dataType.len; delete dataType.description; delete dataType.dataType; delete dataType.factor; delete dataType.fixed; } return obj; } function crc8_encode(data) { var xorOut = 0x0000; var table = [ 0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B, 0x12, 0x15, 0x38, 0x3F, 0x36, 0x31, 0x24, 0x23, 0x2A, 0x2D, 0x70, 0x77, 0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65, 0x48, 0x4F, 0x46, 0x41, 0x54, 0x53, 0x5A, 0x5D, 0xE0, 0xE7, 0xEE, 0xE9, 0xFC, 0xFB, 0xF2, 0xF5, 0xD8, 0xDF, 0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD, 0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B, 0x82, 0x85, 0xA8, 0xAF, 0xA6, 0xA1, 0xB4, 0xB3, 0xBA, 0xBD, 0xC7, 0xC0, 0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2, 0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4, 0xED, 0xEA, 0xB7, 0xB0, 0xB9, 0xBE, 0xAB, 0xAC, 0xA5, 0xA2, 0x8F, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A, 0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C, 0x35, 0x32, 0x1F, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0D, 0x0A, 0x57, 0x50, 0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42, 0x6F, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7D, 0x7A, 0x89, 0x8E, 0x87, 0x80, 0x95, 0x92, 0x9B, 0x9C, 0xB1, 0xB6, 0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4, 0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2, 0xEB, 0xEC, 0xC1, 0xC6, 0xCF, 0xC8, 0xDD, 0xDA, 0xD3, 0xD4, 0x69, 0x6E, 0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C, 0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A, 0x43, 0x44, 0x19, 0x1E, 0x17, 0x10, 0x05, 0x02, 0x0B, 0x0C, 0x21, 0x26, 0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34, 0x4E, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5C, 0x5B, 0x76, 0x71, 0x78, 0x7F, 0x6A, 0x6D, 0x64, 0x63, 0x3E, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B, 0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D, 0x14, 0x13, 0xAE, 0xA9, 0xA0, 0xA7, 0xB2, 0xB5, 0xBC, 0xBB, 0x96, 0x91, 0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83, 0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5, 0xCC, 0xCB, 0xE6, 0xE1, 0xE8, 0xEF, 0xFA, 0xFD, 0xF4, 0xF3 ]; var crc = 0x0000; for (var j = 0; j < data.length; j++) { crc = table[crc ^ data[j]]; } return (crc ^ xorOut) & 0xFFFF; }