
VIM: The Basic Part

Caleb Jhones

8 September 2016

A bit of history

• Begun by Bram Moolenaar in the late 80s as a port of the
Stevie editor (on the 80s Amiga computers)

• Publicly released in 1991, and has been continually updated
ever since

• ’Vim’ originally stood for ’Vi IMitation’. This was later
changed to ’Vi IMproved’ when vim’s functionality surpassed
that of its predicessor

A bit of history

• Begun by Bram Moolenaar in the late 80s as a port of the
Stevie editor (on the 80s Amiga computers)

• Publicly released in 1991, and has been continually updated
ever since

• ’Vim’ originally stood for ’Vi IMitation’. This was later
changed to ’Vi IMproved’ when vim’s functionality surpassed
that of its predicessor

Why use vim?

• Because it’s the best plaintext editor available! (please don’t
hurt me) (emacs users, I’m looking at you)

• In reality, either will work very well. I prefer vim because:
• All commonly-used commands are single (or sometimes two)

keystrokes
• If you’re using a standard keyboard layout, the control key can

be inconvenient to reach
• Modal editing (more on this later)
• Mainly, it’s what I started learning, and have grown to like

• Brace yourselves.... if you’ve never used vim before, what
follows will be like a fire-hose. I’m partly intending this to be
a reference for you all, so don’t worry about absorbing
everything right now

Why use vim?

• Because it’s the best plaintext editor available!

(please don’t
hurt me) (emacs users, I’m looking at you)

• In reality, either will work very well. I prefer vim because:
• All commonly-used commands are single (or sometimes two)

keystrokes
• If you’re using a standard keyboard layout, the control key can

be inconvenient to reach
• Modal editing (more on this later)
• Mainly, it’s what I started learning, and have grown to like

• Brace yourselves.... if you’ve never used vim before, what
follows will be like a fire-hose. I’m partly intending this to be
a reference for you all, so don’t worry about absorbing
everything right now

Why use vim?

• Because it’s the best plaintext editor available! (please don’t
hurt me)

(emacs users, I’m looking at you)

• In reality, either will work very well. I prefer vim because:
• All commonly-used commands are single (or sometimes two)

keystrokes
• If you’re using a standard keyboard layout, the control key can

be inconvenient to reach
• Modal editing (more on this later)
• Mainly, it’s what I started learning, and have grown to like

• Brace yourselves.... if you’ve never used vim before, what
follows will be like a fire-hose. I’m partly intending this to be
a reference for you all, so don’t worry about absorbing
everything right now

Why use vim?

• Because it’s the best plaintext editor available! (please don’t
hurt me) (emacs users, I’m looking at you)

• In reality, either will work very well. I prefer vim because:
• All commonly-used commands are single (or sometimes two)

keystrokes
• If you’re using a standard keyboard layout, the control key can

be inconvenient to reach
• Modal editing (more on this later)
• Mainly, it’s what I started learning, and have grown to like

• Brace yourselves.... if you’ve never used vim before, what
follows will be like a fire-hose. I’m partly intending this to be
a reference for you all, so don’t worry about absorbing
everything right now

Why use vim?

• Because it’s the best plaintext editor available! (please don’t
hurt me) (emacs users, I’m looking at you)

• In reality, either will work very well. I prefer vim because:

• All commonly-used commands are single (or sometimes two)
keystrokes

• If you’re using a standard keyboard layout, the control key can
be inconvenient to reach

• Modal editing (more on this later)
• Mainly, it’s what I started learning, and have grown to like

• Brace yourselves.... if you’ve never used vim before, what
follows will be like a fire-hose. I’m partly intending this to be
a reference for you all, so don’t worry about absorbing
everything right now

Why use vim?

• Because it’s the best plaintext editor available! (please don’t
hurt me) (emacs users, I’m looking at you)

• In reality, either will work very well. I prefer vim because:
• All commonly-used commands are single (or sometimes two)

keystrokes

• If you’re using a standard keyboard layout, the control key can
be inconvenient to reach

• Modal editing (more on this later)
• Mainly, it’s what I started learning, and have grown to like

• Brace yourselves.... if you’ve never used vim before, what
follows will be like a fire-hose. I’m partly intending this to be
a reference for you all, so don’t worry about absorbing
everything right now

Why use vim?

• Because it’s the best plaintext editor available! (please don’t
hurt me) (emacs users, I’m looking at you)

• In reality, either will work very well. I prefer vim because:
• All commonly-used commands are single (or sometimes two)

keystrokes
• If you’re using a standard keyboard layout, the control key can

be inconvenient to reach

• Modal editing (more on this later)
• Mainly, it’s what I started learning, and have grown to like

• Brace yourselves.... if you’ve never used vim before, what
follows will be like a fire-hose. I’m partly intending this to be
a reference for you all, so don’t worry about absorbing
everything right now

Why use vim?

• Because it’s the best plaintext editor available! (please don’t
hurt me) (emacs users, I’m looking at you)

• In reality, either will work very well. I prefer vim because:
• All commonly-used commands are single (or sometimes two)

keystrokes
• If you’re using a standard keyboard layout, the control key can

be inconvenient to reach
• Modal editing (more on this later)

• Mainly, it’s what I started learning, and have grown to like

• Brace yourselves.... if you’ve never used vim before, what
follows will be like a fire-hose. I’m partly intending this to be
a reference for you all, so don’t worry about absorbing
everything right now

Why use vim?

• Because it’s the best plaintext editor available! (please don’t
hurt me) (emacs users, I’m looking at you)

• In reality, either will work very well. I prefer vim because:
• All commonly-used commands are single (or sometimes two)

keystrokes
• If you’re using a standard keyboard layout, the control key can

be inconvenient to reach
• Modal editing (more on this later)
• Mainly, it’s what I started learning, and have grown to like

• Brace yourselves.... if you’ve never used vim before, what
follows will be like a fire-hose. I’m partly intending this to be
a reference for you all, so don’t worry about absorbing
everything right now

Why use vim?

• Because it’s the best plaintext editor available! (please don’t
hurt me) (emacs users, I’m looking at you)

• In reality, either will work very well. I prefer vim because:
• All commonly-used commands are single (or sometimes two)

keystrokes
• If you’re using a standard keyboard layout, the control key can

be inconvenient to reach
• Modal editing (more on this later)
• Mainly, it’s what I started learning, and have grown to like

• Brace yourselves.... if you’ve never used vim before, what
follows will be like a fire-hose. I’m partly intending this to be
a reference for you all, so don’t worry about absorbing
everything right now

Modal editing

• In more GUI-dependent text editors, you need to use the
mouse very often (for moving the cursor, selecting file menus,
&c). It also depends on things like arrow keys and modifier
keys (Shift, Control, Alt, &c)

• This means you need to move your hands away from the
home row, which is slow and annoying

• Vim removes these problems by being driven completely using
a keyboard (rather than a keyboard and mouse), and making
only sparing use of modifier keys

• This is possible using modes. Each key on the keyboard does
something different in each mode, meaning you have many
possible functions of each key, beyond simply typing that
letter into a file

Modal editing

• In more GUI-dependent text editors, you need to use the
mouse very often (for moving the cursor, selecting file menus,
&c). It also depends on things like arrow keys and modifier
keys (Shift, Control, Alt, &c)

• This means you need to move your hands away from the
home row, which is slow and annoying

• Vim removes these problems by being driven completely using
a keyboard (rather than a keyboard and mouse), and making
only sparing use of modifier keys

• This is possible using modes. Each key on the keyboard does
something different in each mode, meaning you have many
possible functions of each key, beyond simply typing that
letter into a file

Modal editing

• In more GUI-dependent text editors, you need to use the
mouse very often (for moving the cursor, selecting file menus,
&c). It also depends on things like arrow keys and modifier
keys (Shift, Control, Alt, &c)

• This means you need to move your hands away from the
home row, which is slow and annoying

• Vim removes these problems by being driven completely using
a keyboard (rather than a keyboard and mouse), and making
only sparing use of modifier keys

• This is possible using modes. Each key on the keyboard does
something different in each mode, meaning you have many
possible functions of each key, beyond simply typing that
letter into a file

Modal editing

• In more GUI-dependent text editors, you need to use the
mouse very often (for moving the cursor, selecting file menus,
&c). It also depends on things like arrow keys and modifier
keys (Shift, Control, Alt, &c)

• This means you need to move your hands away from the
home row, which is slow and annoying

• Vim removes these problems by being driven completely using
a keyboard (rather than a keyboard and mouse), and making
only sparing use of modifier keys

• This is possible using modes. Each key on the keyboard does
something different in each mode, meaning you have many
possible functions of each key, beyond simply typing that
letter into a file

Modal editing

• In more GUI-dependent text editors, you need to use the
mouse very often (for moving the cursor, selecting file menus,
&c). It also depends on things like arrow keys and modifier
keys (Shift, Control, Alt, &c)

• This means you need to move your hands away from the
home row, which is slow and annoying

• Vim removes these problems by being driven completely using
a keyboard (rather than a keyboard and mouse), and making
only sparing use of modifier keys

• This is possible using modes. Each key on the keyboard does
something different in each mode, meaning you have many
possible functions of each key, beyond simply typing that
letter into a file

Modes

• Normal (sometimes called command) mode:
• No text in the bottom left corner of your console window
• Used to get to other modes, for cursor movement,

copy/pasting, saving, etc...
• This is where you begin when you open a vim window
• To return here from other modes, press the Esc key

Modes

• Normal (sometimes called command) mode:
• No text in the bottom left corner of your console window
• Used to get to other modes, for cursor movement,

copy/pasting, saving, etc...
• This is where you begin when you open a vim window
• To return here from other modes, press the Esc key

Modes

• Insert mode:
• Normal mode is great. But this is a text editor, and I want to

type!

• From normal mode, press i to get to insert mode
• You are now able to edit files! Type away to your heart’s

content!

Modes

• Insert mode:
• Normal mode is great. But this is a text editor, and I want to

type!
• From normal mode, press i to get to insert mode
• You are now able to edit files! Type away to your heart’s

content!

Modes

• Visual mode:
• From normal mode, press v
• You can now select text one character or (partial) line at a

time using your cursor

• Visual line mode:
• From normal mode, press V (captial V)
• Now you can select text one (whole) line at a time

• Visual block mode:
• From normal mode, press Ctrl+v
• Now select using h, j, k, and l in blocks (hence the name)
• Using Shift+i, you can insert text at the beginning of your

selection (see example)

Modes

• Visual mode:
• From normal mode, press v
• You can now select text one character or (partial) line at a

time using your cursor

• Visual line mode:
• From normal mode, press V (captial V)
• Now you can select text one (whole) line at a time

• Visual block mode:
• From normal mode, press Ctrl+v
• Now select using h, j, k, and l in blocks (hence the name)
• Using Shift+i, you can insert text at the beginning of your

selection (see example)

Modes

• Visual mode:
• From normal mode, press v
• You can now select text one character or (partial) line at a

time using your cursor

• Visual line mode:
• From normal mode, press V (captial V)
• Now you can select text one (whole) line at a time

• Visual block mode:
• From normal mode, press Ctrl+v
• Now select using h, j, k, and l in blocks (hence the name)
• Using Shift+i, you can insert text at the beginning of your

selection (see example)

Basic commands, from normal mode

• h, j, k, and l move the cursor left, down, up, and right,
respectively

• i puts you into insert mode, right where the cursor is

• a puts you into insert mode, one character to the right of the
cursor

• A puts you into insert mode at the end of the current line

• o inserts a line below the current line, and puts you into insert
mode on that line

• O (captial O) is the same as lower-case o, but a line above

Basic commands, from normal mode

• h, j, k, and l move the cursor left, down, up, and right,
respectively

• i puts you into insert mode, right where the cursor is

• a puts you into insert mode, one character to the right of the
cursor

• A puts you into insert mode at the end of the current line

• o inserts a line below the current line, and puts you into insert
mode on that line

• O (captial O) is the same as lower-case o, but a line above

Basic commands, from normal mode

• h, j, k, and l move the cursor left, down, up, and right,
respectively

• i puts you into insert mode, right where the cursor is

• a puts you into insert mode, one character to the right of the
cursor

• A puts you into insert mode at the end of the current line

• o inserts a line below the current line, and puts you into insert
mode on that line

• O (captial O) is the same as lower-case o, but a line above

Basic commands, from normal mode

• h, j, k, and l move the cursor left, down, up, and right,
respectively

• i puts you into insert mode, right where the cursor is

• a puts you into insert mode, one character to the right of the
cursor

• A puts you into insert mode at the end of the current line

• o inserts a line below the current line, and puts you into insert
mode on that line

• O (captial O) is the same as lower-case o, but a line above

Basic commands, from normal mode

• h, j, k, and l move the cursor left, down, up, and right,
respectively

• i puts you into insert mode, right where the cursor is

• a puts you into insert mode, one character to the right of the
cursor

• A puts you into insert mode at the end of the current line

• o inserts a line below the current line, and puts you into insert
mode on that line

• O (captial O) is the same as lower-case o, but a line above

Basic commands, from normal mode

• dd will delete an entire line, and yy will copy an entire line
(whichever line the cursor is on)

• x deletes the character under the cursor. X deletes the
character before the cursor

• p will paste whatever is in the buffer currently
• How do you put something into the paste buffer? With x, dd,

or yy! These also function as what you would think of as cut
and copy

Basic commands, from normal mode

• dd will delete an entire line, and yy will copy an entire line
(whichever line the cursor is on)

• x deletes the character under the cursor. X deletes the
character before the cursor

• p will paste whatever is in the buffer currently
• How do you put something into the paste buffer? With x, dd,

or yy! These also function as what you would think of as cut
and copy

Basic commands, from normal mode

• u can be used to undo, and Ctrl+r to redo

• w moves the cursor forward by one word at a time, and b

moves it back

• gg moves the cursor to the top of the file

• G moves the cursor to the bottom of the file

Basic commands, from normal mode

• u can be used to undo, and Ctrl+r to redo

• w moves the cursor forward by one word at a time, and b

moves it back

• gg moves the cursor to the top of the file

• G moves the cursor to the bottom of the file

Basic commands, from normal mode

• u can be used to undo, and Ctrl+r to redo

• w moves the cursor forward by one word at a time, and b

moves it back

• gg moves the cursor to the top of the file

• G moves the cursor to the bottom of the file

Saving, loading, quitting

• So we’re finally done with editing our file, and we want to
save. Or maybe we decided we didn’t need the edits we made
afterall

• Type :w from normal mode to save the file (you can do this
at any point in the edit process)

• :q will exit vim, without saving. If you have unsaved edits, it
will warn you of this and not exit

• :q! exits silently and without saving. Only use this if you
really don’t want your file changes!

• Lastly, these can be strung together to save and quit, i.e.
:wq. There is also :x, which does the same thing

Saving, loading, quitting

• So we’re finally done with editing our file, and we want to
save. Or maybe we decided we didn’t need the edits we made
afterall

• Type :w from normal mode to save the file (you can do this
at any point in the edit process)

• :q will exit vim, without saving. If you have unsaved edits, it
will warn you of this and not exit

• :q! exits silently and without saving. Only use this if you
really don’t want your file changes!

• Lastly, these can be strung together to save and quit, i.e.
:wq. There is also :x, which does the same thing

Saving, loading, quitting

• So we’re finally done with editing our file, and we want to
save. Or maybe we decided we didn’t need the edits we made
afterall

• Type :w from normal mode to save the file (you can do this
at any point in the edit process)

• :q will exit vim, without saving. If you have unsaved edits, it
will warn you of this and not exit

• :q! exits silently and without saving. Only use this if you
really don’t want your file changes!

• Lastly, these can be strung together to save and quit, i.e.
:wq. There is also :x, which does the same thing

Other cool tricks

• Use gg=G to retab an entire file (as vim sees appropriate! Not
always correct, sadly)

• You can also just use == to do a single line

• You can auto-complete any word that vim has already seen in
the file by using Ctrl+p

• You can also run shell commands straight from vim
(particularly useful for things like make). Type :!<your

command> and it will be run in your shell

Other cool tricks

• Use gg=G to retab an entire file (as vim sees appropriate! Not
always correct, sadly)

• You can also just use == to do a single line

• You can auto-complete any word that vim has already seen in
the file by using Ctrl+p

• You can also run shell commands straight from vim
(particularly useful for things like make). Type :!<your

command> and it will be run in your shell

Other cool tricks

• Use gg=G to retab an entire file (as vim sees appropriate! Not
always correct, sadly)

• You can also just use == to do a single line

• You can auto-complete any word that vim has already seen in
the file by using Ctrl+p

• You can also run shell commands straight from vim
(particularly useful for things like make). Type :!<your

command> and it will be run in your shell

Other cool tricks

• Use gg=G to retab an entire file (as vim sees appropriate! Not
always correct, sadly)

• You can also just use == to do a single line

• You can auto-complete any word that vim has already seen in
the file by using Ctrl+p

• You can also run shell commands straight from vim
(particularly useful for things like make). Type :!<your

command> and it will be run in your shell

Now for Jack

