
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Stored : A Distributed Immutable Blob
Store

Author: Thomas de Zeeuw (2599441)

1st supervisor: Animesh Trivedi
2nd reader: Alexandru Iosup

A thesis submitted in fulfilment of the requirements for
the joint VU-UvA Master of Science degree in Computer Science

December 11, 2020

Abstract

In today’s computing a lot of data is stored: storage is getting cheaper, indi-
vidual files are getting larger and the volume of data stored is increasing. [1]
predicts that the data stored globally will grow from 33 Zettabytes in 2018 to
175 Zettabytes by 2025.

To store and use this data more efficiently new databases changed from the
commonly used relational (SQL) model to purpose-designed models. These
new databases explore different structures to store and expose data, examples
include key-value, wide-column and graph databases.

However there is another axis on which data can be differentiated: mutable
versus immutable data. This immutability of data provides opportunities that
stores designed mutable data can’t take advantage of. Stored is a distributed
immutable blob store designed to take advantage of the opportunities that
immutability provides.

Stored is evaluated and compared against Redis and etcd. However the results
are not conclusive enough to say that taking advantages of the immutable data
properties leads to a faster or simpler distributed data store.

Contents

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Problem Statement . 1
1.2 Research Questions . 2
1.3 The Case For Stored . 3
1.4 Contributions Made . 4
1.5 Thesis Outline . 4

2 Design 6
2.1 Overview . 6
2.2 System Properties . 7
2.3 Assumptions . 7
2.4 Limitations . 7
2.5 Distributed Design Decisions . 8
2.6 Request Handling . 9

2.6.1 Inserting Blobs . 9
2.6.2 Reading Blobs . 9
2.6.3 Deleting Blobs . 9

3 Implementation 11
3.1 Assumptions . 11
3.2 Limitations . 11
3.3 Overview . 12

3.3.1 Single Node . 12
3.3.2 Achieving Causal Ordering . 14

3.4 Storage Layer . 14
3.4.1 On-Disk Representation . 14

ii

CONTENTS

3.4.2 Storage Durability . 16
3.4.3 In-Memory Representation . 16

3.5 Processes . 18
3.5.1 Startup . 19
3.5.2 Inserting Blobs . 20
3.5.3 Handling Coordinator Failure While Inserting Blobs 23
3.5.4 Reading Blobs . 24
3.5.5 Deleting Blobs . 26
3.5.6 Handling Coordinator Failure While Deleting Blobs 28
3.5.7 Compacting . 30
3.5.8 Validating . 31
3.5.9 Recovery . 31
3.5.10 Shutdown . 31

4 Evaluation 33
4.1 Experimental Setup . 33

4.1.1 Stored Setup . 35
4.1.2 Redis Setup . 35
4.1.3 etcd Setup . 36
4.1.4 Store Overview . 37

4.2 Limitations . 37
4.3 RQ1 Simpler Design . 38
4.4 RQ2 Performance . 39

4.4.1 Single Node Latency . 39
4.4.2 Single Node Throughput . 43
4.4.3 Discussion . 44

4.5 RQ3 Scalability . 44
4.5.1 Multiple Nodes Latency . 45
4.5.2 Multiple Nodes Throughput . 49
4.5.3 Discussion . 50

5 Discussion & Future Work 51
5.1 Experience . 51

5.1.1 Using Rust . 52
5.2 Encountered Problems . 52

5.2.1 DAS5 Storage Performance . 54
5.2.2 Benchmarking Other Stores . 54

5.3 Future Work . 55
5.4 Future Work Stored . 55

iii

CONTENTS

5.4.1 Partitioning . 55
5.4.2 Optimise Reading Blobs . 56
5.4.3 Heph Improvements . 56

6 Related work 58
6.1 Immutable Stores . 58
6.2 Mutable Stores . 59

7 Conclusion 62

References 63

Glossary 72

iv

List of Figures

2.1 Example of Stored ’s fully connected peer network for five nodes. 8

3.1 Stored architecture (showing two nodes). 13
3.2 On-disk representation. 15
3.3 In-memory representation. 17
3.4 Inserting a blob. 21
3.5 Handling coordinator failure when inserting a blob. 24
3.6 Reading a blob. 25
3.7 Deleting a blob. 27
3.8 Handling coordinator failure when deleting a blob. 29

4.1 Insert latencies using 20 kB blobs. 40
4.2 Insert latencies using 10 MB blobs. 41
4.3 Read latencies using 20 kB blobs. 42
4.4 Read latencies using 10 MB blobs. 42
4.5 Total throughput during load stage. 43
4.6 Total throughput during run stage. 43
4.7 Insert latencies using 20 kB blobs. 45
4.8 Insert latencies using 10 MB blobs. 47
4.9 Read latencies using 20 kB blobs. 47
4.10 Read latencies using 10 MB blobs. 48
4.11 Total throughput during load stage. 49
4.12 Total throughput during run stage. 49

v

List of Tables

3.1 Index entry fields. 15

4.1 Overview of the stores. 37
4.2 Insert latencies using 20 kB blobs. 39
4.3 Insert latencies using 10 MB blobs. 40
4.4 Read latencies using 20 kB blobs. 41
4.5 Read latencies using 10 MB blobs. 42
4.6 Insert latencies using 20 kB blobs. 45
4.7 Insert latencies using 10 MB blobs. 46
4.8 Read latencies using 20 kB blobs. 47
4.9 Read latencies using 10 MB blobs. 48

6.1 Comparison of mutable data stores. 61

vi

Chapter 1

Introduction

1.1 Problem Statement

In today’s computing a lot of data is stored: storage is getting cheaper, individual files are
getting larger (e.g. higher resolution images and videos) and the volume of data stored is
also increasing as more users make extensive use of online services. [1] predicts that the
data stored globally will grow from 33 Zettabytes in 2018 to 175 Zettabytes by 2025.

To store and use this data more efficiently new databases changed from the commonly
used relational (SQL) model to different purpose-designed models. These new databases,
often referred to as NoSQL [2] databases, explore different structures to store and expose
data. Column stores are an example of such a NoSQL database. Column stores store data
in columns rather than rows (which is usually the case for SQL databases) to efficiently
retrieve a single property from many entities, rather then retrieving all/most properties
of a single entity (common in SQL). A well known implementation of a column store is
Cassandra [3]. A radically different model is that of Graph stores, such as Neo4j [4].
The model exposed by graph stores allows for more efficient storing and using of relations
between objects, e.g. the relation between two people on a social media website. A last
example is a key-value store, such as Redis [5], which exposes a simpler model compared
to SQL. It only allows storing values at a key location, not supporting structured data or
complex access patterns to the data.1

However there is another axis on which data can be differentiated: mutable versus im-
mutable data. Some data is inherently immutable, examples include images and videos
(stored on social media websites or on services like Netflix or YouTube) and source code
for library managers (such as Cargo [6] and npm [7]). This immutability of data provides
various opportunities that stores designed for dealing with mutable data can’t take advan-

1Note that Redis has grown beyond a simple key-value store and now supports more complex structures
and access operations.

1

1. INTRODUCTION

tage of. This thesis explores opportunities and the design space of immutable distributed
storage.

1.2 Research Questions

The main research question for this thesis is: does taking advantage of the immutable
property of data lead to a better distributed (immutable) data store? Since this a very
broad question it will be split into three questions.
First, RQ1 does taking advantage of the immutable property of data lead to a simpler

design of a distributed (immutable) data store? I theorise that using the immutable prop-
erty of data leads to a simpler design of a distributed store. When using mutable data
there needs to be some kind of coordination/consensus between operations (such storing
data at a certain location, be it a key or table row) to ensure strong data consistency.
Two commonly used algorithms for distributed consensus are Paxos [8] and Raft [9], both
are considered complex to implement.1 I theorise that immutable data stores can use a
simpler algorithm to implement consensus, while maintaining similar performance and the
same consistency guarantees.
A store can also choose to be weak or eventual consistent, meaning that the order in

which events are visible to the clients is not consistent. However this thesis (and prototype)
implements a strongly consistent store as the author is of the opinion that pushing the
consistency difficulties to the application layer is a bad idea, also see papers such as [10,
11]. Furthermore weak consistency is often chosen for performance reasons, something
immutable data could help with as per the next research question.
The second research question is: RQ2 does a distributed store designed for immutable data

perform better than stores designed for mutable data? Here the term perform better need
additional clarification, for this question I’ll be looking at two performance characteristics
of a store: latency and throughput. I theorise that a store designed for immutable data can
reduce the amount of blocking/locking/coordination in (all kinds of) operations, allowing
for more parallelism.
The third research question is: RQ3 does a distributed store designed for immutable data

scale better than stores designed for mutable data? Although similar to the second question
about performance this looks at the store from a scalability perspective. This question
looks at if adding nodes to the store reduces the performance of individual operations, e.g.
what is the performance (as measured in RQ2) of a store operation for the store with three
nodes compared to five or ten nodes. The hypothesis being that the latency would increase
(need to coordinate/reach consensus with more nodes), but the throughput would increase
(more nodes to handle the requests).

1In fact Raft was created because “Paxos is quite difficult to understand” [9].

2

1.3 The Case For Stored

1.3 The Case For Stored

To answer the research questions I needed to compare a data store designed for muta-
ble data to a store designed for immutable data. There are many stores available that
are designed for mutable storage, some of which are are mentioned in the related work
chapter 6. However there weren’t that many immutable data stores. Facebook’s f4 [12]
is a distributed immutable blob store, however it is proprietary software and thus wasn’t
available to me. LinkedIn’s Ambry [13] is open source, but is desgined LinkedIn’s Petabyte
(PB) scale. Finally I found Ringo [14], which claims to have a similar design to Amazon’s
Dynamo [15], but is unmaintained as the last commit was twelve years old at the time
of writing. None of these stores were a good match to answer the research questions. In
agreement with my supervisor we decided that I would design and build a prototype to
answer the research questions, making this thesis an experimental system research thesis.
To lend some credibility to the usefulness of an immutable blob store I refer to LinkedIn’s

Ambry [13] and Facebook’s f4 [12], both are distributed immutable blob stores that work
at PB scale. Both Ambry and f4 have different kind of nodes (e.g. front-end and storage
nodes), which makes sense for their designed scale, but do make them harder to deploy.1

However there are also use cases that don’t deploy at a PB scale, but could use a immutable
data store. For these use cases there is no small-medium scale store that can easily be
deployed, using a single binary and a simple configuration, similar to what Redis [5] or
PostgreSQL [16] offer in the mutable store space. Examples of those use cases include:

• Library or container registries, such as Cargo [6], npm [7] or Docker Hub [17]. These
registries store libraries (source code) or containers images that must be immutable.
If you need version x of a library you always want the same version to ensure your
code works correctly. These kind of registries see a read heavy (99%+) workload.2

The size distribution of the uploaded content is not available, however for libraries
this is generally under 100 kB.3

• Hosting static files such as videos or images. Not all websites operate at the scale
of Facebook or LinkedIn, but many have user uploaded static images (e.g. to show
with a user’s profile). For these kinds of applications the workload is also read heavy,
e.g. Ambry claims >95% read traffic [13]. The sizes of these files vary greatly.

1Compared to deployments consisting of a single binary. For example there is no question of how many
front-end vs. storage nodes are needed.

2npmjs.com currently supports 1.3 million packages (insert requests) versus 75 billion downloads a
month (read requests) [18]. crates.io has over 4.5 billion downloads (read), with just over 300 thousand
published crates (including all versions, insert requests) [6]. Both figures indicate a workload of 99%+ read
operations.

3The is an assumption made by the author based on using both npm and crates.io.

3

1. INTRODUCTION

• Machine learning data sets. The data sets used in machine learning are immutable
(while the system is learning), but these sets are not always at a PB scale. The
read/write ratio for this kind of workload vary depending on the learning implemen-
tation.

This thesis targets those GB-TB scale use cases,1 building a distributed immutable blob
store (prototype).

1.4 Contributions Made

The main contributions made in this thesis are the following.
First, this thesis shows that there is potential in considering the mutable/immutable

aspect of data when optimising and improving stores, similar to how graph databases or
key-value stores are optimised for the structure of the data they store. This idea is not
new, but this thesis shows there is potential of additional benefits (such as performance)
at small to medium scale, where stores such as f4 [12] and Ambry [13] already did this for
larger scale stores. However this thesis does not provide conclusive evidence that designing
for immutable data makes for a better2 store, the evaluation results were not good enough
for that.
Second, the prototype Stored . Stored is a prototype created to evaluate the research

questions described in section 1.2. The code is open source and available at [19].
Third, as a part of Stored I developed the Heph framework. Heph is an actor framework

for the Rust programming language [20] based on asynchronous functions. It is also open
source and available at [21].

1.5 Thesis Outline

This thesis continues with the following chapters:

• Chapter 2 gives an overview and description of the design of Stored .

• Chapter 3 describes Storeds implementation in detail.

• Chapter 4 evaluates Stored , describing the experiments and results used to answer
the research questions described in section 1.2.

• Chapter 5 contains some further discussions and an experience report of my thesis.
It also discusses future work in both immutability (in data stores) and Stored .

1The prototype should also work at a smaller and larger scales, but those scales are not the focus of
the prototype.

2For a definition of “better” see section 1.2

4

1.5 Thesis Outline

• Chapter 6 discusses related work.

• Chapter 7 finishes the thesis with a conclusion.

5

Chapter 2

Design

This chapter describes the design of Stored . It starts with an overview and general descrip-
tion of the store, followed by the desired system properties, assumptions and limitations of
the design. Next are the design decisions regarding the distributed functionally, followed
by a description of the supported kinds of requests. Chapter 3 describes how this design
is actually implemented in the Stored prototype.

2.1 Overview

Stored is a distributed, immutable blob store, it supports three requests: inserting, reading
and deleting Binary Large OBjects (or blobs), a single entity seen an opaque sequence of
bytes. Clients can store blobs by providing the bytes that make up the blob. Stored will
calculate a key for the blob, which is returned to the client as response. Reading or deleting
the blob is as simple as providing the key returned by the store request.

In key-value stores the client can specify the key for the value stored, however writing to
a key once and never being able to modify it would require the client to determine some
kind of scheme to generate unique keys. Stored instead generates the key for the client. I
decided on using the SHA-512 (as specified in FIPS 180-4 [22]) checksum of the blob. Using
SHA-512 has two advantages. First, SHA-512 is a deterministic algorithm ensuring that
the same blob won’t be stored twice, as that would be a waste of storage space. Second,
since the key is a checksum of the blob it can be used to validate the correctness of the
blob, catching corruptions on disk and in transit.

Clients interact with Stored using HTTP/1.1. I choose HTTP because it’s a well known
and widely used protocol. Furthermore it helps with deployment of Stored as any existing
HTTP tool (of which there are many) can be used with Stored . For example PostgreSQL
[16] has its own custom protocol for clients, however this means that if a proxy is required
it needs to be purpose build software, e.g. PgBouncer [23]. For Stored any existing HTTP

6

2.2 System Properties

proxy can be used, such as nginx [24] or HAProxy [25].

2.2 System Properties

I decided that Stored should be strongly consistent. This means that all nodes are in a
consistent state; if a blob is available on one node it should be available on all nodes. To
achieve strong consistency it’s required to use synchronous replication. Compared to weak
consistent or eventual consistent stores this means that there is no “gap” (in time) in which
the blob is available on one node, but not on another. With asynchronous replication, if
the node that accepted (and responded to) the insert request crashes in this “gap”, the blob
would be lost. Another argument for providing a strongly consistent interface is simplicity
for the clients, e.g. Google’s Spanner was changed to a stronger consistency based on
developer experience [10].
Ambry and f4 don’t have the same properties as Stored . Both stores replicate to mul-

tiple (geographically dispersed) data centres adding latency the replication process. For
performance reasons both stores use asynchronous replication. Asynchronous replication
does prevent both stores from achieving strong consistency. Stored doesn’t improve the
performance of multi datacentre replication, but it’s not targeting this use case.

2.3 Assumptions

The design of Stored has a single assumption. All nodes can be connected to all other
nodes to create a fully connected network. Note that the implementation of Stored has
more assumptions.

2.4 Limitations

Like most designs Stored has a number of limitations in its design I would like to mention
upfront. For simplicity I decided that all nodes need to store all blobs. This has two
implications.
First, it means that the storage requirement grows with the number of nodes it uses. In

most cases this is overkill once more than three nodes are used as having a blob stored in
three different locations is usually seen as acceptable.1 Stored wastes a lot of disk space
storing all blobs, but this does reduce complexity. Because solving this limitation doesn’t
answer any of the research questions I decided not to solve it. Possible solutions to this
limitation are discussed in section 5.4.

1Both Ambry and f4 store blobs in three data centres [12, 13].

7

2. DESIGN

Second, as all nodes store all blobs, all of them need to participate in and commit to the
consensus algorithm. The consensus algorithm is required to keep all nodes in a consistent
state, see section 2.2. As all nodes need to partake and commit to consensus, this means a
single peer failure will block all insert and delete requests. Like with the excessive storage
usage, solving this limitation doesn’t help answering the research questions, so I decided
not to solve it. Section 5.4 describes possible solutions to this limitation.

2.5 Distributed Design Decisions

For simplicity I decided that each node must be connected to all other nodes, creating
a fully connected network as shown in figure 2.1. Requiring a fully connected network
simplifies the implementation as each node can directly communicate with all other nodes.

Figure 2.1: Example of Stored ’s fully connected peer network for five nodes.

To ensure all nodes remain in a consistent state we need to achieve consensus between
nodes, for which we need a consensus algorithm. There are many options available, such
as Paxos [8], Raft [9] and Two Phase Commit (2PC) [26]. I decided to go with the Two
Phase Commit (2PC) protocol because of its simplicity. However the 2PC protocol has a
number of known limitations.
One of these limitations is that it uses a single node as coordinator, through which

all insert and delete requests must go through. This coordinator thus becomes a single
point of failure. However as long as causal ordering [27, 28] can be maintained on all
requests this isn’t required, allowing multiple coordinators to process insert and delete
requests concurrently.1 Stored imposes causal ordering on all requests at node level and
uses multiple concurrent coordinators.
Another limitation is that its a blocking algorithm, locking out all others queries (a single

1Section 3.3.2 in the implementation chapter describes how Stored achieves causal ordering for all
requests. Putting this information in this design chapter would involve too many implementation details.

8

2.6 Request Handling

run of the 2PC algorithm) while the coordinator runs a query. However since we can use
multiple concurrent coordinators, as per above, this is isn’t a problem.

2.6 Request Handling

Stored supports three kinds of requests: inserting, reading and deleting blobs, all are
described in the following sections. Note that these sections only give a high-level overview,
a detailed description of the implementation (including handling failures) is provided in
section 3.5.

2.6.1 Inserting Blobs

Inserting blobs has a very simple API: a HTTP POST request to the /blob URL, with the
blob provided as HTTP body. The requests is processed following the steps below.

1. The node accepting the request stores the blob locally, checking if its not already
stored.

2. The node that accepted the request, now acting as coordinator for the 2PC query,
asks all others nodes to store the blob.

3. Once all nodes agree to store the blob they all commit to storing it, making it
available for reading.

4. Finally a response is returned to the client, which includes the Location HTTP
header with the URL where the blob can now be accessed.

2.6.2 Reading Blobs

Reading a blob can be done by sending a HTTP GET request to the /blob/$key URL,
where the $key was returned by the insert request in the Location header. The blob is
retrieved from local storage and returned to the user. Note that in the implementation
causal order is still maintained even though no peer communication is involved, the details
of this are described in section 3.3.2.

2.6.3 Deleting Blobs

Deleting blobs can be done by sending a HTTP DELETE request to the /blob/$key URL,
where the $key was returned by the insert request in the Location header. The request is
processed in a similar way as that of an insert request.

1. The node accepting the request prepares its local storage, checking if a blob is stored
at the key location.

9

2. DESIGN

2. The node that accepted the request, now acting as coordinator for the 2PC query,
asks all others nodes to prepare their local storage to delete the blob.

3. Once all nodes agree to delete the blob they all commit to deleting it, making it
unavailable for reading.

4. Finally a response is returned to the client.

10

Chapter 3

Implementation

This chapter describes the implementation of Stored , which is based on the design found
in chapter 2. It starts with the assumptions made in the implementation, followed by the
limitations. After that a high-level overview is given of the implementation, as well as a
detailed description of the storage layer. Finally all processes are described in detail in the
last sections of this chapter.

3.1 Assumptions

In the design of Stored I’ve made a single assumption: all nodes can be connected to all
other nodes. However the implementation of Stored makes some more assumptions.
First, it assumes that all nodes respond to network requests within some bounded time.

If the node does not respond within this bounded time they are considered as failing/failed
and will vote to fail (abort) the 2PC query.
Second, it assumes that the file system is correctly implemented according to its manual.

For example Stored relies on fdatasync(2) to flush data and the file’s length to disk and
survive power failures. If the file system fails to do this, without returning an error, Stored
will not be able to recover from power failures and deliver on its fault tolerance promises.1

3.2 Limitations

Currently Stored only runs on Unix OSes with a focus on Linux, but it could be ported to
non-Unix OSes such as Windows.
A bigger limitation is the dependency on the OS and its page policy/usage. The im-

plementation makes heavy use of mmap(2) (see section 3.4.3), which depends on the OS

1Note that in the past fsync(2) has had it share of issues [29], I believe this problem should be solved
in the OS/file system, not in all applications using them, and are thus out-of-scope for Stored .

11

3. IMPLEMENTATION

for caching of and optimal write-back to the data file. This introduces undeterminism in
both reading and inserting blobs. To alleviate this Stored uses madvise(2) to inform the
OS about the intended usage of the mapped memory pages, but this doesn’t remove the
limitation.

3.3 Overview

Stored can run in one of two modes: stand-alone mode or distributed mode. If Stored is
only running on a single node, i.e. not connected to any other nodes, it’s running stand-
alone mode. In stand-alone mode the consensus algorithm will not run as only one node
determines what is and isn’t in the store, thus no consensus is needed.
When Stored is running in distributed mode it will be running on two or more nodes,

all running the same binary. Each node is connected to all other nodes, creating a fully
connected network. Once two nodes are connected they consider each other as peers.

3.3.1 Single Node

Figure 3.1 shows an overview of the architecture of Stored at node level. Stored is build
on Heph [21], an actor framework I’ve build in the Rust programming language [20]. Heph
(and thus Stored) uses the actor model [30], in which an actor is the main component. An
actor can receive messages from its own inbox, in response to which it can do computation
on its local memory, create more actors and send messages. Because actors can only modify
their own private state it doesn’t need to synchronise (by using locks or atomic instructions
etc.) on this memory [31].
Each node has a single database actor that is responsible for serialising access to the

storage layer. The database actor is implemented as a synchronous actor in the Heph
actor framework, meaning it runs on its own thread and uses blocking operations for disk
I/O. The database actor has unique access to the database files so it uses no locking or
any other kind of synchronisation itself.
The decision to make a single actor (thread) control the access to the database files and

related in-memory structures is based on two factors. First, it simplifies the implementa-
tion. Actors that accept incoming client requests (see below) use asynchronous network
I/O, mixing that with blocking I/O is pitfall for poor performance.1 For example a seem-
ingly simple system call such as open(2) can still block the thread [34]. This means I

1Note that although asynchronous disk I/O exists it has a number of problems. For example aio, the
POSIX interface for asynchronous I/O, is implemented in user-space (glibc) on Linux [32] and only works
with O_DIRECT, bypassing OS cache. More problems are described in the introductory paper of io_uring
[33], a new Linux interface for asynchronous I/O. io_uring looks promising, but I decided against using
it because it’s Linux only and requires a new kernel version (5.1+), which was not commonly deployed at
time of starting work on Stored .

12

3.3 Overview

Figure 3.1: Stored architecture (showing two nodes).

would have to add some kind of off-loading for the blocking I/O. Replacing this with
a (non-blocking) Remote Procedure Call (RPC) simplifies the implementation. Second,
there are a number of stores that only use a single thread for disk access, showing that
using single thread for disk access is not a limiting factor: [35, 36, 37].

I did not have enough time to properly evaluate the performance implication of
the decision make a single actor control the access to the datastore files.

Incoming HTTP requests are handled by a HTTP actor, of which one is started for each
incoming TCP connection. On a single TCP connection multiple HTTP requests can be
send as HTTP pipelining is supported. The HTTP actor is an asynchronous actor, meaning
that it runs on a thread multiplexed with other asynchronous actors, sometimes referred
to as a coroutine or green thread. To not block other actors it only uses asynchronous I/O

13

3. IMPLEMENTATION

for handling the HTTP requests. All HTTP actors have a communication channel to the
database actor, allowing them to communicate (sending messages, RPC etc.) with the
database actor.
Finally each node runs zero or more consensus actors that act as a participant in the

2PC algorithm. A new consensus actor is started each time the 2PC algorithm is started by
a coordinator and requests participation of the node. The consensus actor behaves similar
to the HTTP actor, but handles requests on behalf of its peers rather than its clients (the
end-users of Stored).

3.3.2 Achieving Causal Ordering

As described in section 2.5 of the design chapter, to support multiple concurrent 2PC
coordinators it is required to ensure causal ordering [27, 28] for all requests. In Stored
this is achieved by using the order in which the database actor receives messages from its
inbox.
To demonstrate (but not proof) the correctness of causal ordering consider the following

example. Let us have three nodes: A, B & C. In parallel nodes A and B receive an insert
request for the same blob, the desired result of which is that we only insert the blob once
with all nodes agreeing on it’s metadata (such as the created at timestamp). Both node
A and B follow the process as described in section 3.5.2, assuming the processes ran in
parallel at some point both nodes want to commit to their version of the blob. This is
where the order of the database actor’s inbox comes in to ensure causal ordering. The
database actor receives the messages to commit to inserting the blob in some order, as it
can only receive a single message at a time. This ensures that the first received query will
succeeded and the second message will fail (as the blob is already inserted at that point),
providing us with causal ordering of the two insert requests.

3.4 Storage Layer

The database on disk is controlled by a single database actor as described previously.
It uses no locking or other synchronisation methods as that is not required as it’s only
accessed from a single thread.

3.4.1 On-Disk Representation

The database is split into two files on disk (stable storage): the data file and the index
file. The idea of splitting the storing of blobs (values) from the keys in different files is
taken from the paper WiscKey: Separating Keys from Values in SSD-conscious Storage by
Lanyue Lu et al [38]. Figure 3.2 shows the layout of the two files on disk.

14

3.4 Storage Layer

Figure 3.2: On-disk representation.

The index file keeps metadata about the blobs stored in the datastore. The index file
starts with “magic” bytes, which serves as a sanity check to ensure we’ve opened a correct
index file. Next it contains zero or more entries (88 bytes each), each one describing the
metadata of a single blob. Each entry contains the fields described in table 3.1.

key The SHA-512 checksum of the blob (64 bytes), used to read or delete the blob.
offset Offset into the data file (8 bytes), which is the starting point of the blob.
length The length of the blob (4 bytes), together with the offset this gives the range

of bytes (in the data file) that make up the blob.
time Either the ‘created at’ time or the ‘deleted at’ time (12 bytes). The time is

inserted as an unsigned 64 bit integer representing the number of seconds since
Unix epoch (Jan 1970) and an unsigned 32 bit integer representing the sub-
second nanoseconds. There are 1 billion nanoseconds in a second, which can
be represented using only 30 bits, which leaves two bits unused. One of those
bits is used to indicate whether it’s a ‘created at’ or ‘deleted at’ time. The
other bit is used to indicate that the blob is no longer stored in the data file,
this is used when the blob is deleted and the blob’s bytes are removed from
the data file.

Table 3.1: Index entry fields.

In the data file the bytes that make up all the blobs are stored. Just like the index file
it starts with “magic” bytes. After that the data file contains no metadata or structure of
any kind as all of that is stored in the index file, it’s just all blobs appended in a single file.
The index file determines what blobs are actually in the datastore, this means that even

though a blob might be in the data file it doesn’t mean that those blobs are accessible. As
a result the data file might contains bytes that are not used, for example when a blob’s
bytes are added to the data file, but is never committed (e.g. in case of a crash) and thus
no index entry is ever created. The index file always has the final say in what blobs are
and aren’t in the datastore.

15

3. IMPLEMENTATION

Neither the data or index file is encrypted. This is a deliberate choice as if encryption
is wanted it should be applied to the entire disk, and thus falls out of scope for Stored . In
the author’s opinion encryption is a task of the file system, not individual programs.

3.4.2 Storage Durability

Inserting a blob to the datastore is a two step process, following a similar structure found
in the 2PC algorithm. This two step process ensures the blob is durably stored on disk.
The first step is adding the blob to the data file. This is done by allocating additional

space in the data file (if needed) using fallocate(2) (or ftruncate(2) on OSes that don’t
support fallocate(2)). For performance reasons we allocate at least 65kB of data so we
don’t have to allocate additional space for each (small) blob inserted. After the additional
space is allocated it’s mapped into memory using mmap(2) and the blob is copied to this
file-backed mmap area. Finally we start the syncing process by calling msync(MS_ASYNC),1

but don’t wait for it to complete. If Stored would crash at this point the blob would not
be in the datastore as there would be no index entry pointing to this blob.
Stored has an optimisation for inserting blobs larger than a single page (commonly 4kB).

Instead of reading the entire blob into memory from a client socket and then copying it to
the mmap-ed area, it creates a pre-allocated mmap-area for the blob to be written into. The
actor handling the client’s request, e.g. the HTTP actor, can than read from the socket
directly into this pre-allocated mmap-ed area backed by the data file. This avoids a copy of
the blob in user-space.
The second step of inserting a blob is creating the index entry for the blob. This starts

with syncing the blob, already written to the file-backed mmap area in step one, to disk
using msync(MS_SYNC), waiting for it to complete. Next an index entry is written using
write(2) and synced using fdatasync(2). At this point the blob is durability stored,
accessible even after a crash.

3.4.3 In-Memory Representation

The in-memory representation of Stored is shown in figure 3.3. At the top is the Storage
structure, which holds two HashMaps (found in Rust’s standard library), one for the stored
blobs and one for the uncommitted blobs, and the Data and Index structures. The database
actor has unique access to this structure, this way no locking or any kind of synchronisation
is required to access it.
The Data structure holds one or more mmap-ed areas backed by the data file and the

file descriptor of the data file. At startup the entire data file is mapped into memory
using mmap(2). Once more blobs are added the data file is grown using fallocate(2) (as

1On Linux, at the time of writing this, this is a no-op.

16

3.4 Storage Layer

Figure 3.3: In-memory representation.

described previously) and the additional space is also mapped in memory. If however the
current area can’t be grown, i.e. if the page after our mmap-ed area is already used, we
need to create another area for the unmapped bytes (leaving the original area in place).

Mapping all blobs in memory has the advantage of not needing to keep all blobs in
memory, as that would limit the amount of blobs we can store. The OS will only load the
pages from disk (reading the data file) when they are accessed, evicting them when they
are not accessed. This allows Stored to use the OS cache for both reading and writing
without having to deal with all the complexities of that itself.

But this also has a disadvantage: non-determinism of accessing the memory mapped
blobs as the blob might not be in memory. If a blob is accessed that is not loaded into
memory, it causes a page fault and forces the OS to read the blob from disk, blocking the
thread from further execution, before continuing.

To minimise page faults Stored uses madvise(2) to inform the OS about the memory
usage of the blobs. However this doesn’t fully remove the disadvantage as it’s just an
advice and the OS is free to ignore it, or with high contention the OS might not be able
read data from disk fast enough to avoid page faults.

The HashMap of stored blobs maps keys (the SHA-512 checksum of the blob) to a Blob

17

3. IMPLEMENTATION

structure. The Blob structure acts as “smart pointer”1 to create a slice2 to the bytes that
make up the blob in the Blob’s structure memory mappings, using the information stored
in the index file. This allows users of the Blob structure, e.g. the HTTP actor, to pretend
the blob is completely in memory and use simple system calls such write(2) to write the
blob to a socket. Furthermore it doesn’t require a lot of memory as the OS can evict
memory pages Stored doesn’t use, i.e. pages where blobs are stored that aren’t accessed.

The second Hashmap maps keys to the uncommitted blobs. At startup this will be empty.
An entry is added to this map once a blob is added to the data file, but not yet committed
(and thus not yet accessible). An uncommitted blob contains the key, the offset in the
data file and blob’s length, everything needed to create an index entry when committing.

Finally there is the Index structure which holds the index file descriptor. At startup it
is used to create the stored blobs Hashmap. When committing insert or delete requests an
index entry is written to this file, as described in section 3.4.2.

3.5 Processes

This section will describe all processes of Stored , including how Stored handles faults
in those processes. For processes that handle client requests I’ve created diagrams to
show how the request is handled by Stored . An example of such a diagram is figure 3.4
(inserting blobs, found in section 3.5.2). On the left of the diagram there will be a HTTP
client which represents a Stored client, connecting over HTTP. On the same height there
are multiple actors which are part of Stored . The arrows between the different actors
represent communication between actors. The rounded boxes surrounding these actors
indicate on what node an actor is running, highlighting communication between actors on
the same node and communication between nodes.

In a process there are various paths shown by the different colours in the diagrams.
The black arrows show the successful path. The blue arrows show an alternative, but still
successful, path, for example when inserting a blob: what happens if the blob is already
stored. Finally the red arrows show what happens in case of faults, a red cross indicates a
crashed actor. If an alternative or erroneous path is taken, the successful path is no longer
followed.

Each process consists of multiple steps which are numbered, starting at 1. Some step
numbers have a alphabetical extension, this indicates that the two steps happen concur-
rently, for example steps ‘1a’ and ‘1b’ are run concurrently.

1Rust terminology to indicate a type can behave as a pointer, but isn’t as simple as an integer repre-
senting a memory address.

2A dynamically sized array.

18

3.5 Processes

3.5.1 Startup

Stored starts with opening the database files and starting a single database actor (per
node) which is in control of them. The stored blobs HashMap is filled based on the index
entries in the index file, as described in section 3.4.3.
Next Stored needs to create the fully connected network of its peers, as shown in figure

2.1, and synchronise the blobs that are stored. To create the fully connected network
Stored will connect to all the peer specified in the configuration. However to support
expanding and shrinking networks while running, i.e. dynamic horizontal scaling, we’ll ask
each peer to share its known peers and connect to those also and ask those for known peers
etc. This makes adding more nodes to the network easier, as its not necessary to know all
currently running peers while starting. Providing a single (running) peer address in the
configuration is enough to create the fully connected network.
After a node is fully connected (connected to all peers) it starts the synchronisation

process, which ensures that the set of all blobs that are stored (and possibly deleted again)
is the same on this node as it is on all its peers. During this process the node will be
fully functional when it comes to peer interaction, i.e. it will partake in 2PC algorithm
queries such as used in inserting and deleting processes, to ensure we don’t miss inserting
or deleting any blobs. However it will not respond to client requests, as the node is not in
a consistent state yet.
In the first step of the synchronisation process all known keys are requested from all

peers, putting them all in a single set. A key is 64 bytes, so with 10 million (10,000,000)
blobs stored (including removed blobs) requesting all known keys requires 640 megabytes
(10 million * 64 bytes) of data per node.
Next this set of known stored blobs (by the peers) is compared to the blobs stored locally

(on disk). Any blobs stored locally but not in the set of known blobs are shared with the
peers, requesting that they store the blob. This is required for the recovery process after
a full system failure where the known peers are started later (perhaps automatically) from
a clean slate. Note that because we keep track of deleted blobs we don’t overwrite deleted
blobs, undoing the deletion.
All blobs in the known set that are missing locally are requested from the peers. For

this a simple partitioning scheme is used (N missing blobs / M peers), but this is far from
optional. A better (future) solution would be to provide the length of the blob, along with
the key, and use this to make better decision about splitting the workload among the peers.
It could be the case that we’re asking for a blob from a peer that is not fully synchronised,
if this is the case we simply ask another peer for the blob.
Finally once the node is fully synchronised the HTTP server is started to process HTTP

requests coming from clients. Note that the creating of the fully connected network and the
synchronisation only happen in distributed mode, in stand-alone mode the HTTP server

19

3. IMPLEMENTATION

is started immediately.

3.5.2 Inserting Blobs

Section 2.6.1 has high-level overview of the inserting process, this section will describe the
process in more detail, including the alternative and erroneous paths. Figure 3.4 shows the
process of how Stored inserts a blob, the introductory paragraphs in section 3.5 describes
how to interpret the figure. To keep the figure readable failing of coordinating node (the
node that accepts the insert request) isn’t included, instead this is described separately in
the next section 3.5.3.
The process begins with a client submitting a HTTP POST request which contains the

blob to insert. This request is accepted by a HTTP actor, of which one is started for each
TCP connection created between a client and Stored .
In the second step the HTTP actor sends a add blob request to the database actor. As

described in section 3.4.2, inserting blobs is done in two phases at the storage layer. First
the database actor appends the blob to the data file. Second, it ensures the data is fully
synced to disk and adds a new entry to the index file, ensuring the index entry is also fully
synced to disk. Only after those two phases are completed a blob is stored in the datastore
and accessible. However we don’t execute the second phase in this step, phase two is done
in step 12 of the inserting process. After the blob is added to the data file the database
actor returns an insert query that can be used to complete phase two of inserting the blob,
this is done is step 3. Note that the blob is not yet in the datastore, it’s not accessible yet.
Shown with the blue steps 3 and 4 is what happens if the blob is already stored in the

database. Instead of returning an insert query in step 3, the database actor returns a
message that the blob is already stored. Next in step 4 (blue) the HTTP actor returns an
OK HTTP response. Note that ‘created at’ time of the blob remains unchanged as nothing
was written to disk.
Shown with the red steps 3 and 4 is what happens if the database actor fails to append

the blob to the data file, or for some other reason fails. The HTTP actor will detect that
the database actor failed and responds with a HTTP server error to the client and closes
the connection.
In step 4, following the normal process again, the HTTP actor starts the Two-phase

commit (2PC) protocol [26], in which itself acts as coordinator and all peers are partici-
pants. Each participant starts a consensus actor which handles the coordinator’s messages.
First it requests the blob from the coordinator and adds the blob to the data file, as the
coordinator node already did in steps 2 and 3. The consensus actor relays this request to
the database in step 5. Once the blob is written to disk the database actor returns a insert
query in step 6. Once the consensus actor receives the insert query from the database actor
it will vote to commit to inserting the blob in the 2PC protocol, this is step 7b. In step 7a,

20

3.5 Processes

Figure 3.4: Inserting a blob.

21

3. IMPLEMENTATION

which happens concurrently with step 7b, the HTTP actor implicitly also votes to commit
to inserting the blob.

Shown with the blue steps 6-8 is what happens if the blob is inserted between the first
time we checked in step 2 and when we checked checked in step 5. If one of the participants
detects the blob is already inserted, in step 6 (blue), it means the blob is inserted on all
nodes (because all nodes store all blobs and are strongly consistent). The HTTP actor
aborts the 2PC query and will return an OK HTTP response, similar to what happened
in step 4 (blue). The bytes of the blob will be inaccessible and will later be reused if the
database is compacted, this is described in section 3.5.7.

Shown with the red steps 6-7b is what happens if one of the participants fails. Similar
to step 3 (red), if the database actor on one of the peers fails it will be detected by the
consensus actor in step 6 (red) using timeouts. The consensus actor will than respond to
the HTTP actor with a vote to abort the 2PC query. Of course the consensus actor can
also crash, in this case the consensus actor will not respond at all, for this we also have a
timeout which will count as a vote to abort, as shown in step 7b (red).

Depending on the votes for the 2PC query, it will be aborted or committed. If any
participant voted to abort the 2PC query it will be retried by the HTTP actor, going back
to step 4 as shown by step 8 (red). The 2PC protocol is retried three times before giving
up completely and returning a server error to the client.

At this point the limitations of the design show itself: a single peer can block all inserting
(and deleting) processes, furthermore the disk usage increases linearly with the number of
nodes. These limitations were discussed section 2.4.

If all participants vote to commit to the 2PC query the HTTP actor will send a message
to all participants to commit to the 2PC query in step 8. In this message the timestamp
at which the blob was officially created is provided to ensure this is the same for all
participants. Note that the validity of this timestamp has no influence on the correctness
of the process. In step 9 all consensus actors will concurrently commit to the insert query
by sending it to the database actor (on their own node). The database actor (on each
node) will add a new entry to the index file, ensuring it and the blob in the data file is
fully synced to disk, as described in section 3.4.2. Only at this point is the blob stored in
the database and is it accessible. After the index entry is created the database actor will
reply to the consensus actor that the blob is committed. The consensus actor will relay
this information to the HTTP actor in step 11.

Shown with the blue step 10 is that the blob could already be stored between step 5
(when the peers checked if the blob was stored before adding it to the data file) and step 9.
If one of the participants detects the blob is already stored it will not commit to inserting
the blob. Instead the consensus actor will inform the HTTP actor a blob is already stored
in step 11 (blue). The HTTP actor will collect the acknowledgements like normal and will

22

3.5 Processes

respond with an OK HTTP response in step 12 (blue), but it will use the already stored
blob.
The red steps 10 and 11 show what happens if the database or consensus actor fails, in

either case it will be voted to abort the 2PC query. The HTTP actor will then retry the
2PC query in step 12 (red).
Once the HTTP actor, acting as coordinator, received an acknowledgement of commit-

ment from all participants, itself will commit to inserting the blob in steps 12 and 13. It
will then send a committed message to all consensus actors (see section 3.5.3 why this is
required) and return an OK HTTP response in step 15.
As before, it could be that the blob is already inserted when committing it in step 12.

Shown with the blue steps 13 and 14 is that the HTTP actor will respond with an OK
HTTP response, but it will use the already stored blob.
Finally the committing to storage could also go wrong, as indicated by red steps 13 and

14, in which case the HTTP actor will return a HTTP server error.

3.5.3 Handling Coordinator Failure While Inserting Blobs

Figure 3.5 shows the same process for inserting blobs as figure 3.4, hiding certain steps
and instead showing what happens if the node acting as coordinator in the 2PC algorithm
fails. The numbering for the steps showing the successful path are kept the same as in
figure 3.4, as a result the red steps create its own order in some cases.
There are a number of cases that can occur if the coordinator node fails. If the coordina-

tor fails before step 4 (starting the 2PC protocol) we don’t have to do anything special as
the 2PC algorithm hasn’t started. The connection to the client will be (forcefully) closed
and the client will see this as an error, this is shown in step 4 (red). The result is that the
blob is not inserted.
If the coordinator fails after step 4, but before step 8 (committing of the 2PC query)

in the process, the 2PC query will be aborted. The participants will detect that the
coordinator has crashed (using timeouts) and will abort the 2PC query as shown in red
steps 6 and 7. Like in the previous case: the client will be disconnected and will see this
as an error as shown in step 5 (red). The blob is not inserted.
What happens if the coordinator crashes after committing to the 2PC query in step 8

is more complicated. It could be that some of the participants have received a commit
message, but others have not. In this case we need finish the second phase of the 2PC
protocol using the participants alone. Once a participant detects that the coordinator has
crashed it will share this information with all other participants, and whether or not the
coordinator send a message to commit to the 2PC query (red steps 11 and 12). If no
participants received a message to commit the 2PC query, it will be aborted, as shown by
red step 13. From the client perspective it will be if the request failed in an earlier stage

23

3. IMPLEMENTATION

Figure 3.5: Handling coordinator failure when inserting a blob.

of the process, similar to the second case (failing between steps 4 and 8).
If one or more participants committed to the query they share this with all the other

participants (red steps 13 and 14), which will also commit to the query as shown by red
steps 15 and 16. The result will be that the blob is inserted, but the client will not be
informed (as the connection to it has already been disconnected).
This shows why step 14 (of the successful path), the coordinator letting the participant

know it’s committed to the 2PC query, is needed. This is an indication that all nodes, the
coordinator and all participants, are committed to the query and that the above described
“participant consensus” is not needed.

3.5.4 Reading Blobs

Figure 3.6 shows the process of how Stored reads a blob from disk. The reading process
is very simple and doesn’t require communication with any peers. It starts with a client
sending a HTTP GET request, which is accepted by a HTTP actor. The HTTP actor
than sends a request to the database actor to get the blob in step 2. If the blob is stored in
the database its returned by the database actor in step 3, which the HTTP actor relays to

24

3.5 Processes

the client in the form of an OK HTTP response in step 4. Note when the database actor
returns a blob it doesn’t read the entire blob into memory, as described in the storage
section 3.4. It maps the blob into memory using mmap(2) and uses madvise(2) to inform
the OS we intend to read the memory pages.

Figure 3.6: Reading a blob.

Shown in blue steps 3 and 4 (the first pair) is what happens if the blob is not stored in
the database. The database actors returns this message to the HTTP actor which than
responds to the client with a Not Found HTTP response, indicating the blob is not stored.

A secondary path shown by blue steps 3 and 4 (the second pair) shows what happens if
the blob was previously stored, but later deleted. In this case the HTTP actor returns a
Gone HTTP respond to the client. This allows the client to differentiate from ‘blob was
never stored’ and ‘blob was deleted’.

Finally the red steps 3 and 4 show what happens if the database actor crashes or otherwise
fails to respond to the HTTP actor. The HTTP actor detects that the database actor failed
and will respond with a server error HTTP response to the client.

Similarly to the inserting process, if at any point in the process the node crashes the
client will be disconnected and will see this as an error.

25

3. IMPLEMENTATION

3.5.5 Deleting Blobs

The process of deleting a blob is similarly structured as that of inserting a blob, as shown
in figure 3.4 and described in section 3.5.2. Figure 3.7 shows the process of deleting a blob.
Handling of coordinator failure is described in the next section 3.5.6.
Like in the inserting process, the deleting process begins with a client submitting a

HTTP request. The HTTP request method must be DELETE and the key is contained in
the URL (part of the HTTP request). This request is accepted and processed by a HTTP
actor.
Deleting blobs, like inserting blobs, is also a two phase process at the storage layer. First

the deleting process must be prepared, ensuring the blob is stored. In the second phase the
index entry of the blob is marked as deleted and the changes to the index file are synced to
disk. The bytes that make up the blob are unchanged, meaning the data file is untouched
in the deleting process. The blob’s bytes are removed asynchronously in the compacting
process, described in section 3.5.7.
In the second step the HTTP actor sends a prepare storage request to the database

actor, the first phase of the process described above. The preparation will ensure the blob
is stored and returns a delete query in step 3. Note that at this point the blob is still
accessible.
Shown with the two blue steps 3 is what happens if the blob was never stored, or is already

deleted. The database actor returns a message that the blob is not stored (anymore). In
the two blue steps 4 the HTTP actor receives this message and returns a Not Found (blob
was never stored) or Gone (blob was already deleted) response to the client.
Shown with the red steps 3 and 4 is what happens if the database actor fails. The HTTP

actor will detect that the database actor failed and returns a server error to the client and
closes the connection.
Next in step 4 the HTTP actor starts the Two-phase commit (2PC) protocol, in which

itself acts as coordinator and all peers are participants. Each participant starts a consensus
actor which prepares the storage to delete the blob in steps 5 and 6, same as the coordinator
already did in steps 2 and 3.
Once the consensus actor receives the delete query from the database actor it will vote

to commit to deleting the blob in the 2PC protocol, this is step 7b. In step 7a the HTTP
actor implicitly votes to commit.
Shown with the blue steps 6-8 is what happens if the blob is deleted between the first

time we checked in step 2 and in step 5. If one of the peers detects the blob is already
deleted, in step 6 (blue), it means the blob is deleted on all nodes (as Stored is strongly
consistent). The HTTP actor aborts the 2PC query and will return a Gone response,
similar to what happened in step 4 (blue).
Shown with the red steps 6-7b is what happens if one of the peers fails. Similar to step

26

3.5 Processes

Figure 3.7: Deleting a blob.

27

3. IMPLEMENTATION

3 (red), if the database actor on one of the peer fails it will be detected by the consensus
actor in step 6 (red). The consensus actor will than respond to the HTTP actor with a
vote to abort the 2PC query. Of course the consensus actor can also crash, in this case
the consensus actor will not respond at all, for this we have a timeout which will count as
a vote to abort as shown in step 7b (red). Depending on the votes the 2PC query will be
retried or committed.
If any participant voted to abort the 2PC query it will be retried by the HTTP actor,

going back to step 4 as shown by step 8 (red). The 2PC protocol is retried three times
before giving up completely and returning a server error to the client.
If all participants vote to commit to the 2PC query the HTTP actor will send a message

to all participants to commit to the 2PC query in step 8. In this message the timestamp at
which the blob was deleted is provided to ensure this is the same for all peers. In steps 9, 10
and 11 the consensus actor will commit to the 2PC query and return an acknowledgement
to the HTTP actor.
Shown with the blue steps 10 and 11 the blob could already be deleted between step 5 and

steps 9. If one of the participants detects the blob is already deleted it will not overwrite
the index entry with a new date, instead the old date will be used. The participant will
still acknowledge the commitment to coordinator as the end result is the same (the blob is
deleted). The HTTP actor will collect the acknowledgements like normal and will respond
with a Gone HTTP response in step 11/12 (blue).
The red steps 10 and 11 show what happens if the database or consensus actor fails, in

either case it will be voted to abort the 2PC query. The HTTP actor will then retry the
2PC query in step 12 (red).
Once all participants are committed the coordinator will commit to the delete query in

steps 12 and 13.
As before, it could be that the blob is already deleted when committing it in step 12.

Shown with the blue steps 13 and 14 is that the HTTP actor will respond with an Gone
HTTP response, but it will uses the timestamp from the previous deletion (not overwriting
it).
Finally the committing to storage could also go wrong, as indicated by red steps 13 and

14, in which case the HTTP actor will return a HTTP server error.
Finally the coordinator will share with the participants it is committed (step 14) and

respond with a Gone HTTP response to the client in step 15.

3.5.6 Handling Coordinator Failure While Deleting Blobs

Figure 3.8 shows the same process for deleting blobs as figure 3.7, hiding certain steps and
instead showing what happens if the node acting as coordinator in the 2PC query fails.
The numbering for the steps showing the successful path are kept the same as in figure

28

3.5 Processes

3.7, as a result the red steps create its own order in some cases. Note that this essentially
the same as section 3.5.3, but with “insert” replaced with “delete”.

Figure 3.8: Handling coordinator failure when deleting a blob.

There are a number of cases that can occur if the coordinator node fails. If the coordina-
tor fails before step 4 (starting the 2PC protocol) we don’t have to do anything special as
the 2PC algorithm hasn’t started. The connection to the client will be (forcefully) closed
and the client will see this as an error, this is shown in step 4 (red). The result is that the
blob is not deleted.
If the coordinator fails after step 4, but before step 8 (committing of the 2PC query)

in the process, the 2PC query will be aborted. The participants will detect that the
coordinator has failed and will abort the 2PC query as shown in red steps 6 and 7. Like
in the previous case: the client will be disconnected and will see this as an error as shown
in step 5 (red). The blob is not deleted.
What happens if the coordinator crashes after committing to the 2PC query in step 8

is more complicated. It could be that some of the participants have received a commit
message, but others have not. In this case we need finish the second phase of the 2PC
protocol using the participants alone. Once a participant detects that the coordinator has

29

3. IMPLEMENTATION

crashed it will share this information with the all other participants, and whether or not
the coordinator send a message to commit to the 2PC query (red steps 11 and 12). If no
participants received a message to commit the 2PC query, it will be aborted, as shown by
red step 13. From the client perspective it will be if the request failed in an earlier stage
of the process, similar to the second case (failing between steps 4 and 8).
If however one or more participants committed to the query they share this with all the

other participants (red steps 13 and 14), which will also commit to the query as shown by
red steps 15 and 16. The result will be that the blob is deleted, but the client will not be
informed (as the connection to it has already been disconnected).

3.5.7 Compacting

As described in section 3.5.5, for performance reasons the bytes that make up a blob aren’t
removed from the data file. This means that the data file grows infinitely, even if blobs
are deleted. To prevent this infinite growth the storage on disk can be compacted. In this
process all bytes that do not have an index entry pointing to them, i.e. all blobs that were
never committed or blobs that were deleted, will be removed and the data file size will be
reduced.
A quick version of the compacting process can be done by scanning all index entries and

looking for entries that are deleted, but still have a non-zero offset (into the data file). This
indicates that the bytes that make up the blob are still in place, as the deleting process
only marks the index entry as deleted and doesn’t touch the offset. The first step is setting
the deleted blob index entry’s offset to zero. Next we need to find a blob at the end of
the data file that fits nicely into this gap we created (were the deleted blob was previously
stored). After finding such a blob we copy it into the gap and sync it to disk, leaving the
original bytes in place. If we don’t find a blob that fits the existing space we leave the
bytes to be compacted in the longer version (see below). We then update the copied blob
index entry, changing the offset to the new location (and syncing it to disk). Finally we
can remove the bytes of the moved blob, freeing up space at the end of the data file. This
allows use to truncate the file safely without losing data.
A longer version of the compacting process also looks at bytes which have no index entry

at all, e.g. blobs that were never committed. For the process Stored needs to create ranges
of unused bytes into which blobs can be moved. We start with a range which covers the
entire data file, i.e. starting at byte 0 and ending at the end of the file. Next we loop
over all index entries: for deleted blobs we set the index’s offset and length to zero, for the
other entries (for stored blobs) we remove the range of bytes (that make up to blob) from
the to be removed range (which covered the entire file previously). After looping over all
index entries we should be left with a list of ranges with unused bytes. Depending on the
size of unused bytes we can choose to move blobs, like we did in the quick version above,

30

3.5 Processes

or we can move up all blobs rather then just filling the unused gap.

This currently is not implemented in the prototype.

3.5.8 Validating

Using the SHA-512 checksum of the blob as key not only gives us a deterministic way to
create the key, but it also gives a way to check the validity of the blob itself, both in transit
and on disk. Clients can use the key to validate the blob when reading and inserting the
blob. Stored also checks the blob when communicating between peers.
Blobs stored on disk are validated using the same method. Stored simply iterates over

the stored blobs, reading each from disk, creating the SHA-512 checksum for each and
comparing the checksum to the blob’s key. For all corrupted blobs their index entry will
be invalided (index removed, not blob marked as deleted) and the blob will be requested
from a peer when synchronising blobs on startup (see section 3.5.1).

Validating blobs on disk is not implemented in the prototype.

3.5.9 Recovery

There are two scenarios from which Stored needs to be able to recover: server crashes and
network interruptions.
Once a crashed server is restarted it will run a full synchronisation, as described in

section 3.5.1. After the startup procedure Stored should be fully functional again. But
during the crash we could be writing to database files, for this reason the storage layer is
designed and implemented to be fault tolerant, as described in 3.4.2. This relies on the
assumption, as mentioned in section 3.1, that the file system functions as documented.
The process of dealing with network interruptions is similar to that of crash recovery.

After two peers are reconnected (after disconnecting) the peer synchronisation1 runs to
ensure both nodes have the blobs that are inserted/deleted in the time they were discon-
nected from one another. However currently during network interruptions all 2PC queries
will fail, meaning that blobs can not be inserted or deleted, but can be still be read.

3.5.10 Shutdown

Shutting down Stored starts with sending the process a signal such as SIGTERM or SIGQUIT.
This signal is relayed to the HTTP and peer listener actors, shutting them both down.
Existing HTTP connections, and the actors that handle them, will shutdown once the
other side disconnects or after roughly two minutes once it times out. The database

1Peer synchronisation is the same synchronisation process as described in section 3.5.1, but only with
the peer that was disconnected rather then all peers.

31

3. IMPLEMENTATION

actor is shutdown once all references to it are dropped, which are held by the HTTP and
consensus actors. Once all actors are stopped the Heph runtime stops itself.

32

Chapter 4

Evaluation

As previously mentioned this thesis is an experimental system research thesis, for which I
made a prototype, implemented following the design described in chapter 2. This chapter
shows how the prototype, Stored , was evaluated to answer the three research questions
described in section 1.2.
RQ1 looks at the simplicity of the design of distributed data store, for which I found

no standardised way to evaluate the simplicity of a design of a distributed data store. As
such I can only argue it informally, which I’ve done in section 4.3.
The other two research questions, RQ1 and RQ2, look at the performance and scalability

of a data store, for which I did find various standardised benchmarks. I decided on using
the Yahoo! Cloud Serving Benchmark (YCSB) [39, 40]. YCSB is a benchmark capable
of emulating different kind of key-value store workloads. Although key-value workloads
are not a perfect fit for a value store, it’s the closest workload I could find at the time
of writing. Another well known benchmark is TPC-C [41, 42], however this focuses on
on-line transaction processing (OLTP) workloads which are further away from value store
workloads than key-value store workloads and thus a worse fit. The results of YCSB can
be found in sections 4.4 and 4.5, which answers RQ1 and RQ2 respectively.
In the next section I’ll describe the experimental setup for YCSB in more detail, as well

as the stores I’ll compare Stored against and why.

4.1 Experimental Setup

All experiments are run on the Distributed ASCI Supercomputer 5 (DAS5) [43, 44]. Each
node has a dual 8-core 2.4 GHz (Intel Haswell E5-2630-v3) CPU configuration and 64 GB
memory. 1 The number of nodes used varies between benchmark runs and will be explicitly
stated for each result.

1The nodes used are homogeneous.

33

4. EVALUATION

Stand-alone numbers, for example latency, are rarely useful due to the use of different
(hardware) setups. To put the results in perspective I’ll also run the benchmarks against
Redis [5] and etcd [45] to get comparable results.

One problem encountered during benchmarking was the performance of the storage on
the DAS5. The default storage option (a distributed file system) supports sequential read
speeds of roughly 100 MiB/s, as measured by fio [46]. That is not even close to commodity
Solid State Drives (SSD), supporting read speeds well over 1 Gib/sec. For reference, a
“Mid 2015” MacBook Pro has a read speed of 1500 MiB/s. The DAS5 also has a number
of nodes with SSDs, but disappointingly those have read speeds of only 37 MiB/s and
thus perform even worse than the distributed file system. After discussing with my thesis
supervisor we decided on using in-memory file system (tmpfs [47] or ramdisk [48]) as
“stable storage”. However setting up such a filesystem required administrative privileges I
didn’t have. As a work-around I finally decided on using /dev/shm as stable storage. The
/dev/shm directory is used for POSIX shared memory, essentially memory shared between
processes. This directory had read speed of 800 MiB/s, which is close to the read speed of
a SSD, which made the results usable.

As already mentioned I’ll be using YCSB to evaluate RQ1 and RQ2. YCSB comes with
six key-value workloads (A through F) and one time series workload. Of these workloads
only two are used: C and D. The time series workload is an obvious bad fit and the other
workloads include operations not supported by Stored such updating/modifying values or
scanning (returning a range of values).

YCSB workload C is read-only, this would emulate the workload of a process that runs
in phases with (intermediate) results being stored in Stored , such as machine learning data
sets. Workload D’s operations are 95% read and 5% insert. This is more in line with the
use case of hosting static files such as videos or images, library or container registries.

YCSB works in two stages. First, the load stage in which data is loaded into the store.
Second, the run stage in which the workload is benchmarked. The workload operations
(i.e. the percentage read/insert) are only used in the second stage.

The Ambry paper [13] has shown that the blob size impacts performance greatly. For
this reason I ran both workloads (C & D) using two blob sizes: 20 kB and 10 MB. 20
kB blobs represents for example library archives, while 10 MB represent images and other
hosted media.

YCSB wasn’t designed for immutable data stores and as such defines it own keys (to store
a value at), but Stored doesn’t support user-defined keys. To support these operations I
created a YCSB key to Stored key mapping in the YCSB client, a ConcurrentHashMap (in
Java) that maps the key provided by YCSB to the key generated by Stored . The overhead
of this mapping is included in the reported latencies. For Redis and etcd no such client
side mapping is required.

34

4.1 Experimental Setup

The YCSB client was run on a single DAS5 node, using 16 client threads to make
requests. This means that the concurrency is 16 as well. There was no target operations
per second set, leaving it unthrottled (i.e. make as many request as possible, until the
target number of operations is hit).
YCSB collects the following metrics per operation (read or insert): the total number of

operations, average latency, minimum latency, maximum latency, 95% and 99% latency.
Note that these are client side (thus end-to-end) measurements and include a network
round-trip as the YCSB client and stores are running on different nodes. In addition it
keeps track of the throughput and total run time. By default YCSB includes the cleanup
operations in the total run time, but I’ve removed it from the results below.1 Stored needs
to store it’s YCSB key to Stored key mapping at the end of the load stage to be able to
load the mapping again in the run stage, Redis and etcd however don’t have to do anything
in the cleanup stage. Because the mapping can get rather large (hundreds of megabytes in
JSON format) it would be unfair to Stored to include this is the run time and throughput
results. Note that the latencies are unchanged as the cleanup latencies are not reported in
this thesis.

4.1.1 Stored Setup

The configuration of Stored is very simple and not worth discussing here. But as described
in chapter 2 Stored creates a fully connected network and stored all blobs on all nodes.
Because the data stored by Stored was not needed after the benchmark run the bench-

mark script forcefully killed the application after the run was complete. This caused warn-
ings to be printed when nodes detected that their peers were (uncleanly) disconnecting.
These warnings did not impact the results.

4.1.2 Redis Setup

Redis is an in-memory data structure store, which supports YCSB’s key-value workloads.
Redis will act as a lower bound as it’s in-memory, but using the OS interface (i.e. no
kernel-bypass or special hardware). The evaluation is done using Redis version 6.0.8 (the
latest at time of benchmarking). Stored and Redis vary on various points:

• Redis stores data in-memory, where Stored stores data on-disk. To make the com-
parison a little fairer I’ve set appendonly to yes and appendfsync to always, which
forces Redis to write the request to disk followed by a call to fsync(2) for every
write request (something Stored also does).

1This is done by removing the maximum latency for the cleanup operations from the run time, as only
a single cleanup operation is run per client thread (which are run concurrently).

35

4. EVALUATION

• Redis doesn’t support synchronous replication using either Redis Cluster [49, 50]
or Redis Replication [51], it only supports asynchronous replication. Stored on the
other hand only supports synchronous replication, this will cause Redis to have an
advantage when it comes to multi node performance.

• Redis Cluster partitions the values over all available instances, Stored however stores
all blobs on all nodes. The client for Stored is very simple and sends all requests to
a single node. This gives Redis an advantage when inserting the blobs. It will not
impact the read performance as the client used by YCSB, Jedis [52], is cluster aware
meaning it sends the requests to the correct node.

These differences give Redis an advantage over Stored (along with a decade of develop-
ment work put into it), which is reflected in the results. Except for the settings mentioned
above the default configuration is used. Note that the settings above, to make the com-
parison fairer, means that the results for Redis don’t represent an “average” Redis setup,
as the default configuration would likely perform better.

Redis Cluster requires a minimum of three nodes, no results were gather using
two nodes for Redis.

During the benchmarking Redis logged a number of warnings. First, it warned that it was
unable to enforce the TCP backlog setting of 511 because /proc/sys/net/core/somaxconn
was set to 128. Because of the low number of connections this should not be a problem
and at no point was an ECONNREFUSED [53] error raised (error returned when a connection
was refused). Second, Redis warned that overcommit_memory [54] is set to 0, saying that
background saving might fail under low memory conditions. Since we’re not using back-
ground saving this should not impact the results. Finally, it complained that Transparent
Huge Pages (THP) were enabled, saying it would create latency and memory usage issues.
Unfortunately I didn’t have access to change this setting. After review I don’t believe any
of these warnings impacted the results of Redis.

4.1.3 etcd Setup

The default configuration for etcd was used. An initial cluster was created with all peers’
URLS provided, creating a new cluster for each benchmark run. etcd and Stored vary on
the following points:

• etcd synchronises to disk in batches and only on the coordinator node. Stored syn-
chronises to disk on each insert/delete request and on all nodes.

• etcd can only store blobs of sizes up to 1.5 MiB, the limit of Stored is 1GB.

36

4.2 Limitations

etcd logged two warnings during the benchmark runs. First it complained that the token
was not cryptographically signed, but this should not impact the results. Second, it logged
warnings once the servers were forcefully closed. Stored logged similar warnings and these
did not impact the results as they happened after the benchmark run was complete. None
of the warnings impacted the results of etcd.

4.1.4 Store Overview

Table 4.1 gives a quick overview of all benchmarked stores and some of their properties.

Property Stored Redis etcd
Flushes changes
to disk on each
write request.

Yes, flushes to disk
every store request.

Yes (configured
to do, see section
4.1.2).

No batches write
requests.

Synchronous or
asynchronous
replication.

Synchronous repli-
cation to all peers.

Asynchronous
replication.

Synchronous repli-
cation to a majority
of the peers.

Data must fit in
memory.

No. Yes, in-memory
only.

No.

Additional notes. Acts as lower
bound.

Maximum value
limit is 1.5 MiB.
Uses Raft [9] for
consensus.

Table 4.1: Overview of the stores.

4.2 Limitations

While evaluating Stored I’ve hit a number of limitations I would like to mention. First,
I attempted to benchmark more stores than reported here. Specifically Ambry, arguably
the most directly-comparable stored for Stored , and FoundationDB. However I failed to
run benchmarks against both stores, why is discussed in section 5.2.2.
Second, time. As with everything I had limited time to evaluate Stored . After spending

too much time building Stored and attempting to benchmark other stores, both described
in more detail in section 5.2, I couldn’t run all experiments I planed for. For example I
planned to do micro benchmarking to discover what the concurrent client limit of Stored
is, to see if using a single thread to access the storage is a bottleneck. However due to the
time limitation I was only able to benchmark using YCSB.

37

4. EVALUATION

4.3 RQ1 Simpler Design

Let’s start with repeating the research question: does taking advantage of the immutable
property of data lead to a simpler design of a distributed (immutable) data store? The
key factor in this question is of course simpler. However I couldn’t find any standardised
(or non standardised) way to evaluate the simplicity of a data store design. So instead of
proofing Stored is simple, or simpler than a mutable blob store’s design would be, I will
present a number of arguments for the simplicity of Stored .

First, Stored is a single binary with only one kind of component. Many distributed
system designs use different kinds of components (for example splitting processing and
storage), making deployment more complex. Furthermore the entirety of Stored is imple-
mented in three actors: HTTP/client actor (handles connections from clients), consensus
actor (handles connections from peers) and the database actors (handles interaction with
stable storage), as seen in figure 3.1. I would argue that, per the previous description and
figure 3.1, Stored can be described as simple (although, again, I have no way to measure
or proof it).

Second, successfully using the Two phase commit (2PC) protocol [26] for consensus,
seen as one of the the simplest consensus protocols. One of the main disadvantages of
2PC is that it’s a blocking protocol, only a single query can run concurrently on the data
it operates on. However since the data in Stored is immutable multiple 2PC queries can
safely be executed concurrently without interfering with one another, even on the same
blob or key location. Another disadvantage of the 2PC protocol is that on coordinator
failure all ongoing transactions (inserting/deleting blobs) halt, but this only the case if
we have a single coordinator. However Stored doesn’t use a single coordinator, it uses
a new coordinator per transaction. This means that if a node fails it only impacts the
transactions in which it plays the coordinator role.1

Third, deterministic key generation which doubles as checksum. Stored uses the SHA512
checksum [22] of the blob as the key, which is used in various places to validate the correct-
ness of the blobs. Because of this Stored doesn’t need to store any additional checksum
data, the key can determine if the blob is correctly retrieved from disk.

In summary, I can’t proof that taking advantage of the immutable property of data leads
to a simpler design. However I do personally believe this is the case, as I’ve argued above.

1In the current implementation it’s required that all nodes store all blobs, which means that even a
single node failing as participant will cause the 2PC protocol to fail. However this can be fixed by using
portioning, as discussed in section 5.4.1.

38

4.4 RQ2 Performance

4.4 RQ2 Performance

Research question 2: does a distributed store designed for immutable data perform better
than stores designed for mutable data? As previously mentioned I decided on using the
Yahoo! Cloud Serving Benchmark (YCSB) as performance benchmark. This section only
looks at single node performance, section 4.5 will look at the performance using multiple
nodes. To quantify performance I’ve used two metrics: latency and throughput.
The following two subsections look at latency and throughput respectively, followed by

a discussion of the results in subsection 4.4.3.

4.4.1 Single Node Latency

Starting with insert operations using 20 kB blobs, table 4.2 shows the average, minimum,
maximum, 95% and 99% latencies. The measurements are reported in microseconds (µs),
1 millionth (1,000,000) of a second, unless stated otherwise. Figure 4.1 shows the average
and 99% latencies for inserting 20 kB blobs, these are the same as in table 4.2.

Store Avg. latency Min. latency Max. latency 95% Latency 99% latency
Workload C load stage

Stored 12,449 µs 671 µs 1,935,359 µs 19,711 µs 26,815 µs
Redis 2,997 µs 776 µs 69,759 µs 4,635 µs 12,335 µs
etcd 3,834 µs 533 µs 1,649,663 µs 2,249 µs 23,887 µs

Workload D load stage
Stored 11,968 µs 611 µs 1,808,383 µs 17,343 µs 21,455 µs
Redis 3,065 µs 648 µs 56,191 µs 4,187 µs 13,871 µs
etcd 3,795 µs 544 µs 1,657,855 µs 2,369 µs 14,447 µs

Workload D run stage
Stored 19,180 µs 933 µs 1,949,695 µs 16,263 µs 25,599 µs
Redis 2,776 µs 1,024 µs 13,327 µs 5,723 µs 7,563 µs
etcd 5,500 µs 838 µs 430,079 µs 6,795 µs 8,463 µs

Table 4.2: Insert latencies using 20 kB blobs.

39

4. EVALUATION

(a) Average latency. (b) 99% latency.

Figure 4.1: Insert latencies using 20 kB blobs.

The table and figure show a clear picture with regards to 20 kB blobs: Redis and etcd
have a lower latency than Stored . Stored has a 2-7x higher average and 99% latencies, a
difference of 10-20 milliseconds. Stored performs significantly worse on maximum latency.
The maximum latency is nearly 2 seconds for all three workloads, which is 30-150x higher
than Redis.
Next we’ll look at a similar table and figure as above, but for the latencies of inserting

10 MB blobs. Note that etcd doesn’t support blobs larger than 1.5 MiB and thus isn’t
included in these results. Table 4.3 shows all the latencies exported by YCSB, figure 4.2
shows the average and 99% latencies.

Store Avg. latency Min. latency Max. latency 95% Latency 99% latency
Workload C load stage

Stored 1,425,671 µs 368,896 µs 5,578,751 µs 2,248,703 µs 3,483,647 µs
Redis 1,280,599 µs 170,112 µs 4,366,335 µs 2,263,039 µs 2,967,551 µs

Workload D load stage
Stored 1,374,120 µs 337,664 µs 4,263,935 µs 2,553,855 µs 3,115,007 µs
Redis 1,205,036 µs 251,264 µs 4,833,279 µs 2,359,295 µs 3,624,959 µs

Workload D run stage
Stored 595,636 µs 386,816 µs 1,174,527 µs 968,191 µs 1,104,895 µs
Redis 414,821 µs 206,848 µs 857,087 µs 826,879 µs 857,087 µs

Table 4.3: Insert latencies using 10 MB blobs.

Stored performs better with 10 MB blobs than it does with 20 kB blobs relative to Redis.
Where Stored was about 2-7 times slower than Redis using 20 kB blobs, this is reduced to
getting within 40% of Redis’s average, 95% and 99% latencies using 10 MB blobs. Stored
has a 1.3-2.2x higher minimum latency than Redis. The maximum latency for workload C

40

4.4 RQ2 Performance

(a) Average latency. (b) 99% latency.

Figure 4.2: Insert latencies using 10 MB blobs.

is also a second higher, but for the load stage of workload D Stored ’s maximum latency is
lower than Redis.

Next, we’ll look at read operations. Following the same structure as for the insert opera-
tions, table 4.4 shows all the latencies for the read operations using 20 kB blobs, figure 4.3
shows the average and 99% latencies.

Store Avg. latency Min. latency Max. latency 95% Latency 99% latency
Workload C run stage

Stored 6,484 µs 391 µs 1,959,935 µs 3,463 µs 18,575 µs
Redis 2,612 µs 527 µs 36,543 µs 3,757 µs 4,143 µs
etcd 4,328 µs 525 µs 732,671 µs 4,415 µs 12,471 µs

Workload D run stage
Stored 5,234 µs 472 µs 1,999,871 µs 12,559 µs 16,351 µs
Redis 2,288 µs 456 µs 36,063 µs 5,035 µs 5,683 µs
etcd 3,570 µs 521 µs 509,695 µs 4,091 µs 13,175 µs

Table 4.4: Read latencies using 20 kB blobs.

Stored achieves the lowest minimum latency in workload C, but also has the highest
maximum latency in both workloads. The average, 95% and 99% latencies of Stored are
close to that of Redis and etcd, Stored has 0.9-4.5x higher latencies compared to Redis
and 0.7-3.1x higher than etcd.

41

4. EVALUATION

(a) Average latency. (b) 99% latency.

Figure 4.3: Read latencies using 20 kB blobs.

Moving on to read operations using 10 MB blobs, table 4.5 shows the all latencies, figure
4.4 shows the average and 99% latencies.

Store Avg. latency Min. latency Max. latency 95% Latency 99% latency
Workload C run stage

Stored 1,082,818 µs 88,064 µs 4,345,855 µs 2,897,919 µs 3,743,743 µs
Redis 1,135,167 µs 104,256 µs 3,909,631 µs 2,525,183 µs 3,225,599 µs

Workload D run stage
Stored 1,148,505 µs 88,128 µs 3,788,799 µs 2,273,279 µs 2,842,623 µs
Redis 1,146,093 µs 108,160 µs 3,747,839 µs 1,825,791 µs 2,969,599 µs

Table 4.5: Read latencies using 10 MB blobs.

(a) Average latency. (b) 99% latency.

Figure 4.4: Read latencies using 10 MB blobs.

Again Stored performs better with 10 MB blobs than 20 kB blobs, relative to Redis.
Stored achieves better results than Redis in some categories, e.g. the minimum latency of
workload D is 19% lower than that of Redis. In the cases where Stored has higher latencies

42

4.4 RQ2 Performance

they are 1.01-1.25x higher than the latencies of Redis.

4.4.2 Single Node Throughput

To answer the research question I needed quantify performance, for I’ve used two metrics:
latency and throughput. Now we got the results for latency, we’ll look at throughput next.
Starting with insert operations in the load stage figure 4.5 shows the throughput using 20
kB and 10 MB blobs.

(a) 20 kB blobs. (b) 10 MB blobs.

Figure 4.5: Total throughput during load stage.

Redis has a throughput 2.1-2.8x higher than that of Stored inserting 20 kB blobs, however
Stored has a 1.6x higher throughput when using 10 MB blobs. etcd performs between Redis
and Stored , getting 2x higher throughput than Stored .
Next we’ll look at the read operations. Same setup as previously, figure 4.6 shows the

throughput for 20 kB blobs and 10 MB blobs.

(a) 20 kB blobs. (b) 10 MB blobs.

Figure 4.6: Total throughput during run stage.

Redis achieves 3.9-5.2x higher throughput with 20 kB blobs than Stored , but the through-
put when using 10 MB blobs is within 3% of that of Stored . etcd has 2.1-3x higher
throughput using 20 kB blobs than Stored .

43

4. EVALUATION

4.4.3 Discussion

To summarise the results, Redis and ectd both achieve lower insert and read latencies than
Stored in most cases. Redis and etcd also have a higher throughput when using 20 kB
blobs than Stored , however when using 10 MB blobs Stored has equal or better throughput
than Redis (etcd doesn’t support 10 MB blobs).

The insert latency can be explained by the amount of write(2) and fsync(2) (equiv-
alent)1 system calls made. Redis uses a single write and fsync call to write the request
to disk, however Stored uses both calls twice, for the data file and for the index file.
etcd batches write requests when synchronising them to disk, compared to Stored which
synchronises on every write.

For the read operations I don’t have an explanation why Redis or etcd is faster, however
I do have an idea to make Stored faster which is discussed in section 5.4.2.

Lastly I want to note that I believe the high maximum latency of Stored can be attributed
to the poor scheduler in Heph (the framework Stored is based on), as Stored is capable of
minimum latencies as low or lower than both Redis and etcd in various cases.

Considering both Redis and etcd are multi-year projects with many contributors and
Stored is only created by myself in roughly 4 months, I think there is more potential in
Stored , some of which is discussed in section 5.4.

Finally to answer the research question: does a distributed store designed for immutable
data perform better than stores designed for mutable data? For Stored , compared to Redis
and etcd, the answer is no. However I think that the results show a lot of promise when it
comes to using the immutability aspect of data.

4.5 RQ3 Scalability

The final research question is the following: does a distributed store designed for immutable
data scale better than stores designed for mutable data? It looks at the performance of
the store from a scalability perspective. To answer this question I again used YCSB and
report the same metrics as done in section 4.4. Only a single YCSB client was run that
send its requests to a single node. As previously mentioned Redis Cluster requires at least
three nodes to run, so no results were gathered using two nodes for Redis.

This section has the same structure as the previous section, first looking at the latency
and throughput results, followed by a discussion of the results in subsection 4.5.3.

1Stored uses msync(2) instead of fsync(2) to synchronise the data file to disk, but both system calls
achieve the same thing.

44

4.5 RQ3 Scalability

4.5.1 Multiple Nodes Latency

Table 4.6 and figure 4.7 show the average and 99% latencies inserting 20 kB blobs using
multiple nodes.

Store 1 Node 2 Nodes 4 Nodes 8 Nodes 1 Node 2 Nodes 4 Nodes 8 Nodes
Workload C load stage

Average latencies 99% latencies
Stored 12,449 µs 37,207 µs 82,419 µs 87,491 µs 26,815 µs 107,007 µs 152,575 µs 171,903 µs
Redis 2,997 µs N/A 2,887 µs 2,944 µs 12,335 µs N/A 5,747 µs 5,031 µs
etcd 3,834 µs 4,671 µs 4,794 µs 4,526 µs 23,887 µs 16,783 µs 20,527 µs 20,671 µs

Workload D load stage
Average latencies 99% latencies

Stored 11,968 µs 39,023 µs 80,670 µs 86,633 µs 21,455 µs 108,415 µs 155,263 µs 166,655 µs
Redis 3,065 µs N/A 2,928 µs 2,921 µs 13,871 µs N/A 5,383 µs 5,223 µs
etcd 3,795 µs 4,575 µs 4,205 µs 4,509 µs 14,447 µs 26,511 µs 16,767 µs 18,367 µs

Workload D run stage
Average latencies 99% latencies

Stored 19,180 µs 21,868 µs 34,957 µs 32,835 µs 25,599 µs 48,799 µs 74,815 µs 80,063 µs
Redis 2,776 µs N/A 4,689 µs 4,839 µs 7,563 µs N/A 7,623 µs 12,559 µs
etcd 5,500 µs 5,420 µs 4,280 µs 2,978 µs 8,463 µs 7,859 µs 44,511 µs 34,847 µs

Table 4.6: Insert latencies using 20 kB blobs.

(a) Average latencies. (b) 99% latencies.

Figure 4.7: Insert latencies using 20 kB blobs.

45

4. EVALUATION

Stored has 3-30x higher average latency than both Redis and etcd. Furthermore with
each added node Stored has a higher latency, only the increase from four to eight nodes
doesn’t see a nearly linear increase in latency. Redis and etcd however both maintain
roughly the same average latency independent of the number of nodes.
Stored also sees a nearly linear increase in 99% latency when using one, two or four

nodes, same as with the average latency. Stored has a 1.1-34x higher 99% latency than
Redis and etcd. The 99% latencies of Redis and etcd fluctuate more than their average
latencies.

Now we’ll look at 10MB blobs. Table 4.7 and figure 4.8 show the average and 99% insert
latencies with 10 MB blobs. Note that the times in table 4.7 are in milliseconds (ms) not
microseconds as seen previously,1 figure 4.8 uses microseconds. Also note that etcd can’t
handle values larger than 1.5 MiB and thus isn’t included in these results.

Store 1 Node 2 Nodes 4 Nodes 8 Nodes 1 Node 2 Nodes 4 Nodes 8 Nodes
Workload C load stage

Average latencies 99% latencies
Stored 1,426 ms 2,282 ms 2,3567 ms 2,575 ms 3,484 ms 4,260 ms 4,735 ms 4,542 ms
Redis 1,281 ms N/A 1,261 ms 1,250 ms 2,968 ms N/A 3,715 ms 3,686 ms

Workload D load stage
Average latencies 99% latencies

Stored 1,374 ms 2,148 ms 2,318 ms 2,675 ms 3,115 ms 4,096 ms 3,918 ms 5,243 ms
Redis 1,205 ms N/A 1,239 ms 1,257 ms 3,625 ms N/A 3,701 ms 4,192 ms

Workload D run stage
Average latencies 99% latencies

Stored 596 ms 915 ms 1,000 ms 1,029 ms 1,105 ms 1,831 ms 1,478 ms 1,798 ms
Redis 415 ms N/A 543 ms 470 ms 857 ms N/A 2,476 ms 985 ms

Table 4.7: Insert latencies using 10 MB blobs.

Compared to results from the 20 kB blobs Stored does better, but the average latency is
still 1.1-2.1x higher than that of Redis. Furthermore Stored still sees an increase in average
latency with each added node.
Stored achieves a better 99% latency than Redis in the load stage of workload D, but in

all other categories Stored has a 1.2-2.1x higher 99% latencies than Redis.

1Because the table wouldn’t fit on the page reporting the measurements in microseconds.

46

4.5 RQ3 Scalability

(a) Average latencies. (b) 99% latencies.

Figure 4.8: Insert latencies using 10 MB blobs.

Those were the results for the insert operations. Next we’ll look at the read operations.
Table 4.8 and figure 4.9 show the average and 99% read latencies using 20 kB blobs.

Store 1 Node 2 Nodes 4 Nodes 8 Nodes 1 Node 2 Nodes 4 Nodes 8 Nodes
Workload C

Average latencies 99% latencies
Stored 6,484 µs 5,176 µs 3,769 µs 4,409 µs 18,575 µs 22,719 µs 21,695 µs 29,391 µs
Redis 2,612 µs N/A 2,773 µs 2,897 µs 4,143 µs N/A 4,951 µs 6,787 µs
etcd 4,328 µs 4,289 µs 4,855 µs 4,345 µs 12,471 µs 19,359 µs 12,159 µs 10,895 µs

Workload D
Average latencies 99% latencies

Stored 5,234 µs 4,003 µs 3,251 µs 2,732 µs 16,351 µs 18,943 µs 20,031 µs 13,151 µs
Redis 2,288 µs N/A 2,585 µs 2,696 µs 5,683 µs N/A 4,827 µs 5,463 µs
etcd 3,570 µs 4,058 µs 4,452 µs 4,575 µs 13,175 µs 53,407 µs 19,359 µs 9,215 µs

Table 4.8: Read latencies using 20 kB blobs.

(a) Average latencies. (b) 99% latencies.

Figure 4.9: Read latencies using 20 kB blobs.

47

4. EVALUATION

Unlike with insert operations Stored doesn’t need to interact with its peers for reads,
so we don’t see the same increase in latency when increasing the number of nodes as we
did for the inserts. However Stored still has the highest latencies in most cases, which are
1-2.5x times higher than Redis and 0.6-1.5x higher than etcd’s latencies.

Next are the 10 MB blobs. Table 4.9 and figure 4.10 show the average and 99% read laten-
cies using 10 MB blobs. Note the measurements in table 4.9 are reported in milliseconds,
not microseconds, figure 4.10 uses microseconds.

Store 1 Node 2 Nodes 4 Nodes 8 Nodes 1 Node 2 Nodes 4 Nodes 8 Nodes
Workload C

Average latencies 99% latencies
Stored 1,083 ms 1,138 ms 1,163 ms 1,190 ms 3,744 ms 4,248 ms 3,600 ms 3,283 ms
Redis 1,135 ms N/A 1,306 ms 1,296 ms 3,226 ms N/A 2,933 ms 3,148 ms

Workload D
Average latencies 99% latencies

Stored 1,149 ms 1,163 ms 1,211 ms 1,133 ms 2,843 ms 3,035 ms 2,198 ms 2,929 ms
Redis 1,146 ms N/A 1,288 ms 1,286 ms 2,970 ms N/A 2,691 ms 2,968 ms

Table 4.9: Read latencies using 10 MB blobs.

(a) Average latencies. (b) 99% latencies.

Figure 4.10: Read latencies using 10 MB blobs.

As we’ve seen in the single node results Stored is much closer to Redis’s performance
using 10 MB blobs. The average latency of Stored is better in five cases (up to 14%) and
worse (by 1%) in a single case compared to that of Redis. The 99% latency of Stored is
worse than that of Redis using workload C (up to 23%), but using workload D Stored has
lower latencies (also up to 23%).

48

4.5 RQ3 Scalability

4.5.2 Multiple Nodes Throughput

The final metric we’ll looking at to answer the research question is throughput. Figure
4.11 shows the throughput during the load stage (thus at insert operations) for blobs of 20
kB and 10 MB.

(a) 20 kB blobs. (b) 10 MB blobs.

Figure 4.11: Total throughput during load stage.

For 20 kB blobs the results are clear, Redis achieves a 2.1-23.9x higher throughput
than Stored , etcd 1.5-15.6x higher. Using 10 MB blobs however Stored achieves a higher
throughput using a single node in both workloads. However when using multiple nodes
Redis achieves a 1.1-1.3x higher throughput than Stored .

Next let’s look at the reads during the run stage of the benchmark. Figure 4.12 looks at
the throughput using 20 kB Blobs and 10 MB blobs during the run stage of the workload.

(a) 20 kB blobs. (b) 10 MB blobs.

Figure 4.12: Total throughput during run stage.

Using 20 kB blobs Stored again has the lowest throughput, Redis and etcd being 1.6-5.2x
and 1.2-3x higher respectively. However using 10 MB blob Stored is capable of keeping up
with Redis this time achieving a throughput of within 5% of that of Redis.

49

4. EVALUATION

4.5.3 Discussion

Using multiple nodes we saw similar results to those of the single node performance. To
summarise the results, Redis and ectd both achieve lower insert and read latencies than
Stored in most cases. Stored does better with 10 MB blobs than 20 kB blobs, but doesn’t
have conclusively lower latencies than Redis using 10 MB blobs (etcd doesn’t support 10
MB blobs). Redis and etcd also have an order of magnitude higher throughput when using
20 kB blobs than Stored . Stored again does better with 10 MB blobs, but Redis still has
a higher throughput (up to 30%) when using multiple nodes.
Redis’s low insert latencies can be explained by the use of asynchronous replication,

compared to Stored use of synchronous replication. This explains why the insert latencies
remain (more or less) consistent for Redis, not increasing when adding more nodes. Fur-
thermore the Redis client used is cluster aware, which means it knows to what node to send
a certain request, splitting the read requests among the nodes. For Stored all requests,
read and insert, are send to a single node.
Like Stored , etcd also uses synchronous replication, but only does this to a majority of

its peers. It batches multiple insert requests when synchronising to disk and only does so
on the coordinator node (which is dynamic in etcd), where Stored does this on each insert
on all nodes.
Answering the research question: does a distributed store designed for immutable data

scale better than stores designed for mutable data? No. When it comes to scalability it’s
more important to reduce the communication required between peers to keep them in a
consistent state, at least when it comes to this work immutability did not help in this area.

Finally to answer the main research question: does taking advantage of the immutable
property of data lead to a better distributed (immutable) data store? As two of the three
answers to the sub-questions are no, the conclusion is simple: no. Stored does not suffi-
ciently show that it’s better than any of the mutable data stores, due to the fact it’s an
immutable data store.

50

Chapter 5

Discussion & Future Work

In this chapter I want to share some more thoughts about Stored , my experience working
on this thesis and future work in immutability and for Stored .

A number of stores, including f4, Ambry and Redis, use asynchronous replication, usually
for performance reasons. For Stored I decided against this and use synchronous replication
instead, arguing that stores should be strongly consistent in section 2.2. However after the
evaluation I’m more open to asynchronous replication and providing strong consistency at
the proxy or client level, not at store node level. This would require a proxy or client that
is aware of the distributed nature of Stored and any potential partitioning of the keys (see
section 5.4.1 below). The proxy or client would need to ensure that requests for a certain
key are send to the same store node to still provide a consistent view to the clients of
Stored , while the store nodes themselves are eventually consistent. But this still leaves a
“gap” in time between when the client receives the response to an insert request and the
time the blob is properly replicated to multiple nodes.

5.1 Experience

Since this is the first distributed system I’ve designed and built myself I wanted to share
some of my experiences. You could see this as an experience report to current and future
master students who are also considering building a distributed system (spoiler alert: it’s
hard). Note that the writing in these sections is more informal than the other sections of
the thesis.

First I’ll say that although it’s quite challenging to design a system that will operate
correctly (for some definition of correctly) under all circumstances (you can think of and
the ones you can’t think of), it is also very fun. In the end I couldn’t make Stored peer
fault tolerance, as described in section 2.4, but I made that decision as a clear trade-off
between spending even more time on the prototype and finishing my thesis.

51

5. DISCUSSION & FUTURE WORK

Second, 2-3 months, or even the roughly 5 months I eventually took, isn’t enough time to
build a distributed system by yourself from scratch, even a relatively simple one like Stored .
For future master student I highly recommend to not start from scratch. Use the available
libraries (that weren’t available to me) for things like task management, consensus, etc.
Building, testing and debugging these kinds of complex components take time, time you
don’t have while working on your thesis. Instead use that time experimenting.
Instead of building something from scratch I would modify an existing system to test

your hypothesis(es). The reduces the amount of work required (and perhaps the fun), but
it allows you to focus on the topic at hand.

5.1.1 Using Rust

For Stored I’ve the Rust programming language. The language itself is quite young, some-
thing that is reflected in the number of crates (Rust terminology for libraries) that are not
quite ready for production yet and the crates that are simply missing. I’ve working with
Rust for about four years (since 2015) before starting the thesis and two years on Heph.
After the steep learning curve, which made me quit two attempts prior, everything started
to make sense. The Rust compiler wants you do things a certain way, but that way is
usually better than the one you used before (with a few exceptions). I believe learning and
using Rust actually made me a better all-round programmer. For example Rust’s concept
of lifetimes makes me document the valid use of pointers in my C code, explaining the
“lifetime” of allocations in comments rather than code (like you would in Rust).
Right now I would recommend using Rust for building new systems, distributed or

otherwise. But I would like to note that the ecosystem is still young and somewhat divided.1

For example there are no de facto frameworks/libraries to use for certain tasks and most
libraries that are available are not yet at a version 1, meaning the API is still unstable
and can change. However in the five years I’ve used Rust things are moving into the right
direction and moving fast.

5.2 Encountered Problems

There also less fun part to designing/building a distributed system. When something
goes wrong in a “normal” system (i.e. not distributed) you can use conventional tools,
e.g. gdb or lldb (or good ol’ print statements), to debug the problem. This becomes
much harder when it comes to distributed systems, especially if some kind of timing and
communication between the nodes is involved. So I want to discuss some of the problems
that I’ve experienced that (at some point) made me doubt my sanity and everything I
knew about computers.

1I’m not helping the problem by creating Heph, I know that.

52

5.2 Encountered Problems

The first problem was the mysteriousness case of the “unexpected end of file” error. For
peer interaction Stored uses TCP, for which a connection is setup between each peer (as
described in section 3.5.1). In this connection setup we ask the peer we’re connecting to
for all the nodes it knows to create the fully connected network. However at any point
any node can fail, so I added timeouts to detect this. Then I started seeing errors saying
“unexpected end of file” while reading and the other side of the connection would report
timeouts. Spend some time thinking about what the problem could be, I’ll give a hint:
what you’re thinking about probably wasn’t the problem. After a couple of weeks of on/off
debugging this I finally found the problem and it had nothing to do with the connections
themselves, but with scheduling.
Each peer connection is handled by a single thread-safe Heph actor, that is run on

a worker thread, but is managed by a (different) coordinator thread. The coordinator
thread determines when a thread-safe actor is ready run, e.g. when getting a readiness
event from epoll(2)/kqueue(2), and schedules the thread-safe actors in a shared scheduler
data structure. However the coordinator thread doesn’t run any of the actors, that is the
job of the worker threads. The problem was that a worker thread setup everything for the
actor to run, including registering it’s accepted TCP socket with epoll(2)/kqueue(2), and
after that adds the actor to the scheduler structure. This created the following timeline.

1. Worker thread registered the TCP socket with epoll(2)/kqueue(2) to receive readi-
ness events (e.g. when it can be read).

2. Coordinator thread received a readiness event for the actor. It tries to mark the
actor as ready to run, but can’t find the actor and ignores the event as spurious.

3. Worker thread adds the actor to the scheduler structure as inactive, expecting the
coordinator thread to mark it as active later once it’s ready to run.

4. Time goes on, but the actor is not run. Eventually the other side of the connection
hits a timeout and disconnects.

5. The peer disconnecting causes the coordinator to receive another readiness event (to
indicate the connection is closed) and schedules the actor.

6. The actor is now run for the first time and it tries to read from the connection.
However the other side is already disconnected and it reads zero bytes, returning an
“unexpected end of file” error.

The problem is in point 2, the coordinator received an event too quickly and tried to mark
the actor as ready to run before it was added to the scheduler structure. This problem is
made worse because Heph uses edge-triggers [55], rather than level-triggers, which means a

53

5. DISCUSSION & FUTURE WORK

single readiness event is created when e.g. new data is ready to read until all data is read,
rather than each time new data is ready (send by the other side of the connection). But
the main problem was that coordinator simply discarded the event. It did this because
spurious events where possible and not uncommon. However this caused some unlucky
peer actors to simply not be run until the other side already closed the connection. The
solution to this was simple: don’t ignore the event. Now, instead of ignoring the event, a
marker is placed in the scheduler structure that indicates the actor is marked as ready to
run. Once a worker thread tries to add or add back (after running) a thread-safe actor to
the scheduler it will see this marker and put it in the ready-to-run queue instead of the
inactive list of the scheduler.

5.2.1 DAS5 Storage Performance

A second problem I’ve encountered was with the DAS5. I’ve already mentioned this in
section 4.1, but the storage performance of the DAS5 is bad compared to commodity
SSDs. Initially I though this would only cause bad performance results, however with
long(er) running benchmarks this also starting causing timeouts in peer and database
actor interaction. I tried to improve the performance by delaying the synchronisation of
mmap(2)-ed blobs as much as possible, but it was not enough. Eventually I resorted to
using an in-memory filesystem to get usable results.

5.2.2 Benchmarking Other Stores

Finally I also had a large number of problems with benchmarking Ambry and Founda-
tionDB.

As Ambry was the most directly comparable open-source store it made sense to com-
pare it to Stored . However after nearly two full weeks of trying to configure and run the
benchmarks I gave up. Using a single Ambry node was possible, but not specifying a full
configuration lead to many null pointer exceptions with unclear error messages. After
spending too much time fixing them I finally managed to run YCSB using a single node.
However when trying to add more nodes it kept sending metadata requests every millisec-
onds to all nodes. This created a large amount of traffic between nodes and used CPU
cycles. I was unable to undercover and fix the cause of this in two weeks time and decided
my time would be best spend elsewhere.

After the trouble I went through with Ambry I decided to timebox the setup of Founda-
tionDB. After two days trying configurations I failed to get it run properly. Again I had
to make the decision to spend my time elsewhere.

54

5.3 Future Work

5.3 Future Work

There is a lot of future work to be done in Stored , that is discussed in the next section 5.4.
This section will describe general future work with regards to immutable data stores.
The results of this thesis are disappointing as I was not able to confirm my hypothesis

that immutable data store could be better1 than mutable stores. A similar hypothesis
should be tested again with a more mature immutable data store to either confirm or deny
that immutability brings some of the advantages I theorised in section 1.2.
A second avenue of future work is using immutability in the consensus algorithm. We’ve

seen from the evaluation of RQ3 (scalability) that communication between peers (required
by the consensus algorithm) plays a large role in the latency and throughput. However
all consensus algorithms (I know of) are designed for mutable stores. Designing a new, or
adopting an existing, consensus algorithm for immutability could potentially lead to less
communication and lower latency, while maintaining strong consistency.
A third avenue is making more use of non-commodity hardware (capabilities). For

example [56] and [57] use Remote Direct Memory Access (RDMA) to achieve single digit
microsecond latencies in their key-value stores. Immutability could make the management
of the memory areas that are remotely accessible easier.

5.4 Future Work Stored

There are quite a lot of improvements that can be made to Stored , this section discusses
some of them. Starting with improving on the limitations in the design, discussed in section
2.4.

5.4.1 Partitioning

For this thesis I decided that all nodes needed to store all blobs for simplicity. However
moving beyond a prototype this limitation becomes a larger problem, requiring too much
storage and not providing any peer fault tolerance.
A common solution to this limitation is partitioning [58], where only a portion of the

nodes (enough to achieve the desired fault tolerance) store a blob. This technique is used
by many stores, including Redis, etcd, f4 and Ambry. Using partitions would solve the
first limitations, that the storage requirement increases per node added, by limiting the
amount of nodes that store a blob.
The second limitation, that a single failing node blocks all 2PC queries, would be im-

proved as only a portion of the nodes would have to participate in the 2PC query, rather
than all nodes. However it wouldn’t solve the limitation completely as a failing node can

1See section 1.2 for a definition of better.

55

5. DISCUSSION & FUTURE WORK

still block all 2PC queries in which that node needs to participate (based on the partition-
ing).
To solve the second limitation completely rather than using a fixed partitioning scheme,

Stored would need to use a dynamic partitioning that can be adjusted based on the avail-
able/reachable nodes while running, while also maintaining Stored strong consistency guar-
antees. This is not an easy problem to solve and I don’t have a recommendation of such a
partitioning algorithm at the time of writing.

5.4.2 Optimise Reading Blobs

In the current implementation of Stored all datastore accesses, i.e. inserting, deleting and
reading, have to go through the database actor. This has a number of benefits as discussed
previously, but with an increasing number of concurrent requests this could become a
bottleneck.1 A possible optimisation here is optimising for reading blobs, which makes
sense for use cases which see >95% read traffic (see section 1.3).
Another database project in Rust, Noria [36], uses an left-right [59] concurrent HashMap

that allows reading from multiple threads without using any locks/synchronisation and a
single writer. This implementation is provided as a library (evmap [60]) and has benchmarks
that show linear read performance when adding readers.
Using a left-right concurrent data structure, such as the one provided by evmap, I expect

the read latencies to improve by avoiding a RPC with the database actor. Furthermore
with many concurrent clients issuing a mix of read/write requests I expect the insert/delete
latencies to remaining lower by alleviating the message pressure on the database actor.

5.4.3 Heph Improvements

The last improvements to Stored isn’t actually to Stored , but to Heph the framework
I’ve built Stored on. Although the core design of Heph focuses on performance, the actual
implementation has many areas of possible improvement. Based on the high maximum and
99% latencies, often measured in seconds not micro/milliseconds, and the low minimum
latencies, showing that Stored can in fact achieve low latencies, from the evaluation I
believe the scheduler is quite poor.
The current scheduling implementation is loosely based on the Completely Fair Scheduler

(CFS) found in Linux. It uses the total runtime of a process/actor combined with the
priority to determine the order in which to run processes/actors. However there are many
schedulers which could be a better fit for scheduling the kind of workloads found in Stored .
Finally overall Heph is fairly new (three years old at the time of writing) with little

1As mentioned in section 3.3.1 I didn’t have enough time to properly evaluate the performance impli-
cation of making a single actor control the access to the datastore files.

56

5.4 Future Work Stored

performance engineering put into it as I’ve mostly focused on the design. I’m convinced
there are many areas which could be improved as I’ve already identified a number of them,
such as the scheduler data structure and the timer implementation.

57

Chapter 6

Related work

In this chapter I’ll describe work related to this thesis.
[61] describes how “immutability changes everything”, from high-level concepts such

append-only applications down to the hardware level of SSDs using Copy-On-Write (COW)
when writing physical blocks. It gives a good, but shallow, overview of some advantages
that immutability can provide in various areas.
[62] proposes that configuration and architecture should become immutable. This would

avoid “configuration drift” where the actual configuration used in production and the con-
figuration stored (e.g. in source-control) slowly drifts apart. This can for example be
caused by manual changes on production machines that are not put into the stored (source-
controlled) configuration.
[63] shows how data immutability can be used in distributed data analytics, providing,

among other things, better failure recovery.
[64] proposes using shared immutable byte arrays throughout network applications, en-

abling several valuable optimisations, and explores their strengths, weaknesses and imple-
mentation considerations.
Finally there is IPFS [65], or InterPlanetary File System, which aims to replace current

web technologies such as HTTP. Instead of having central servers delivering content to
all users, it uses a peer-to-peer distributed hash table (DHT) [66] with immutable objects
(such as web pages or media).

6.1 Immutable Stores

In this section we’ll look at some immutable data stores, some of which have already been
mentioned previously.
First, Facebook’s f4 [12]. f4 is a distributed immutable blob store designed to increase

the storage efficiency over Haystack [67], their original blob store initially designed for

58

6.2 Mutable Stores

storing photos.
Next there is LinkedIn’s Ambry [13]. Ambry is a scalable geo-distributed object store,

storing variable-sized media objects such as photos, videos and audio clips. It continually
stores and serves billions of these media objects.
[68] uses immutability for archiving. It presents Deep Store, an archival store architecture

that stores immutable data efficiently and reliably for multiple years (10 or even 100 years).
[69] presents Content Immutable Storage (CIS), which uses immutability to achieve trust-

worthy electronic record keeping. CIS is secure even against inside attacks, preventing
corporate misconduct such as destroying incriminating records.
[70] argues that today’s store’s expose abstractions which are too low-level. They present

UStore: a distributed storage with rich semantics built around a data-structure similar to
that of Git [71]. It deliver three key properties: immutability, sharing and security.
There is also immudb [72], an immutable ledger database with built-in cryptographic

proof and verification. immudb allows you to keep a record of changes in the data aiming
to making it tamper-proof and auditable. It provides a key-value interface where multiple
versions of the key exist as old values are not removed.
The final two stores I could find were BeanFS [73] and Ringo [14]. BeanFS is a distributed

file system for a large number of immutable files. Ringo is a store which claims to have
a similar design to Amazon’s Dynamo [15], but lacks more documentation beyond that.
More (actively developed) immutable stores I could not find at the time of writing.

6.2 Mutable Stores

As mentioned in the introduction mutable data stores have been optimised for many
decades based on the structure of the data. This lead to many different kind of stores, such
as SQL databases and key-value stores. In table 6.1 I’ve included an overview of some of
these mutable data store, grouped by the model that they expose.
Note that there are many more stores available than mentioned below. For example

there are many experimental/research stores which focus on special hardware capabilities
such as NVM Express (NVMe) [74] or FPGA [75]. Here I’ve limited the mentioned to
stores to those that can run on commodity hardware (which doesn’t yet include NVMe or
FPGAs).

59

6. RELATED WORK

Store On-disk/
In-memory

Distributed? Consistency

SQL
CockroachDB [76] On-disk Yes Serialisable, Synchronous

replication
MariaDB [77] On-disk Multi-master

replication
Atomic changes, asyn-
chronous replication

MySQL [78] On-disk Multi-master
replication

Atomic changes, asyn-
chronous replication

PostgreSQL [16] On-disk Multi-master
replication

Configurable, can use syn-
chronous replication

Key-value
Memcached [79] In-memory Yes Keys are split over available

machines.
Redis [5] In-memory Yes, via Redis

Cluster
Weakly consistent with asyn-
chronous replication

Scalaris [80] In-memory Yes Strong consistency
etcd [45] On-disk Yes Strong consistency, syn-

chronous replication
Wide-column

Cassandra [3] Yes Yes Asynchronous replication
ClickHouse [81] Yes Yes Asynchronous replication
ScyllaDB [82] On-disk Yes Eventual consistency

Document
Apache CouchDB
[83]

Yes Yes Eventual consistency

Elasticsearch [84] Yes Yes Configurable
MongoDB [85] Yes Yes Causal Consistency
RethinkDB [86] Yes Yes Configurable

Multi-model
Apache Ignite [87] Configurable Yes Strongly consistent
FoundationDB
[88]

Yes Yes Configurable

Riak [89] Yes Yes Configurable

60

6.2 Mutable Stores

Store On-disk/
In-memory

Distributed? Consistency

Libraries
LevelDB [90]
(key-value)

Yes No Programmable

RocksDB [91]
(key-value)

Yes No Programmable

SQLite [92] (SQL) Yes No Strongly consistent

Table 6.1: Comparison of mutable data stores.

In short, there are many options available when it comes to mutable data stores, differing
in exposed model, consistency and more factors.

61

Chapter 7

Conclusion

I’ve design and implemented a distributed immutable blob store prototype, named Stored ,
to evaluation the research questions of this thesis. The prototype is built on the Heph [21]
actor framework (which I’ve also build) in the Rust [20] programming language.
To answer the main research question: does taking advantage of the immutable property

of data lead to a better distributed (immutable) data store? I divided it into three sub-
questions and answered them by evaluating Stored .
RQ1: does taking advantage of the immutable property of data lead to a simpler design

of a distributed (immutable) data store? I couldn’t find any standardised methods or
evaluation tools to answer the question properly. Thus although I’m not able to proof that
the using the immutable property of data leads to a simple design, I am convinced of it
based on the my experience working on Stored .
For the next two research questions RQ2: does a distributed store designed for immutable

data perform better than stores designed for mutable data? and RQ3: does a distributed
store designed for immutable data scale better than stores designed for mutable data? the
answer is the same, based on the evaluation of Stored it does not outperform Redis or etcd
in the YCSB benchmark. However I believe that the results are promising and that Stored
(or another immutable data store) could outperform both mutable stores by some margin,
if some more performance engineering is put into it (some of which is discussed in section
5.4).

62

References

[1] David Reinsel-John Gantz-John Rydning. The digitization of the world
from edge to core. Framingham: International Data Corporation, 2018. i, 1

[2] NoSQL Database Management Systems. https://nosql-database.org, 2020.
1

[3] Apache Cassandra. https://cassandra.apache.org, 2020. 1, 60

[4] Neo4j Graph Platform. https://neo4j.com, 2020. 1

[5] Redis. https://redis.io, 2020. 1, 3, 34, 60

[6] The Rust community’s crate registry. https://crates.io, 2020. 1, 3

[7] npm Node.js package manager. https://www.npmjs.com, 2020. 1, 3

[8] Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM
Trans. Database Syst., 31(1):133–160, 2006. 2, 8

[9] Diego Ongaro and John K. Ousterhout. In Search of an Understandable
Consensus Algorithm. In Garth Gibson and Nickolai Zeldovich, editors,
2014 USENIX Annual Technical Conference, USENIX ATC ’14, Philadelphia, PA,
USA, June 19-20, 2014, pages 305–319. USENIX Association, 2014. 2, 8, 37

[10] David F. Bacon, Nathan Bales, Nicolas Bruno, Brian F. Cooper, Adam

Dickinson, Andrew Fikes, Campbell Fraser, Andrey Gubarev, Milind

Joshi, Eugene Kogan, Alexander Lloyd, Sergey Melnik, Rajesh Rao,

David Shue, Christopher Taylor, Marcel van der Holst, and Dale

Woodford. Spanner: Becoming a SQL System. In Semih Salihoglu, Wen-

chao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu, editors, Proceedings
of the 2017 ACM International Conference on Management of Data, SIGMOD Con-
ference 2017, Chicago, IL, USA, May 14-19, 2017, pages 331–343. ACM, 2017. 2,
7

63

https://nosql-database.org
https://cassandra.apache.org
https://neo4j.com
https://redis.io
https://crates.io
https://www.npmjs.com
https://doi.org/10.1145/1132863.1132867
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1145/3035918.3056103

REFERENCES

[11] Marcos K. Aguilera, Joshua B. Leners, and Michael Walfish. Yesquel:
scalable sql storage for web applications. In Ethan L. Miller and Steven

Hand, editors, Proceedings of the 25th Symposium on Operating Systems Principles,
SOSP 2015, Monterey, CA, USA, October 4-7, 2015, pages 245–262. ACM, 2015. 2

[12] Muralidhar Subramanian, Wyatt Lloyd, Sabyasachi Roy, Cory Hill,

Ernest Lin, Weiwen Liu, Satadru Pan, Shiva Shankar, Sivakumar

Viswanathan, Linpeng Tang, and Sanjeev Kumar. f4: Facebook’s Warm
BLOB Storage System. In Jason Flinn and Hank Levy, editors, 11th USENIX
Symposium on Operating Systems Design and Implementation, OSDI ’14, Broom-
field, CO, USA, October 6-8, 2014, pages 383–398. USENIX Association, 2014. 3, 4,
7, 58

[13] Shadi A. Noghabi, Sriram Subramanian, Priyesh Narayanan, Sivabalan

Narayanan, Gopalakrishna Holla, Mammad Zadeh, Tianwei Li, In-

dranil Gupta, and Roy H. Campbell. Ambry: LinkedIn’s Scalable Geo-
Distributed Object Store. In Fatma Özcan, Georgia Koutrika, and Sam

Madden, editors, Proceedings of the 2016 International Conference on Management
of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01,
2016, pages 253–265. ACM, 2016. 3, 4, 7, 34, 59

[14] Ringo. https://github.com/tuulos/ringo, 2020. 3, 59

[15] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-

manian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly
available key-value store. In Thomas C. Bressoud and M. Frans Kaashoek,
editors, Proceedings of the 21st ACM Symposium on Operating Systems Principles
2007, SOSP 2007, Stevenson, Washington, USA, October 14-17, 2007, pages 205–
220. ACM, 2007. 3, 59

[16] PostgreSQL: The world’s most advanced open source database. https:

//www.postgresql.org, 2020. 3, 6, 60

[17] Docker Hub. https://hub.docker.com, 2020. 3

[18] Nat Friedman. npm is joining GitHub. https://github.blog/

2020-03-16-npm-is-joining-github/?utm_campaign=1584377606&utm_medium=

social&utm_source=twitter&utm_content=1584377606, 2020. 3

[19] Thomas de Zeeuw. Stored: a distributed immutable blob store — GitHub.
https://github.com/Thomasdezeeuw/stored, 2020. 4

64

https://doi.org/10.1145/2815400.2815413
https://doi.org/10.1145/2815400.2815413
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/muralidhar
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/muralidhar
https://doi.org/10.1145/2882903.2903738
https://doi.org/10.1145/2882903.2903738
https://github.com/tuulos/ringo
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
https://www.postgresql.org
https://www.postgresql.org
https://hub.docker.com
https://github.blog/2020-03-16-npm-is-joining-github/?utm_campaign=1584377606&utm_medium=social&utm_source=twitter&utm_content=1584377606
https://github.blog/2020-03-16-npm-is-joining-github/?utm_campaign=1584377606&utm_medium=social&utm_source=twitter&utm_content=1584377606
https://github.blog/2020-03-16-npm-is-joining-github/?utm_campaign=1584377606&utm_medium=social&utm_source=twitter&utm_content=1584377606
https://github.com/Thomasdezeeuw/stored

REFERENCES

[20] The Rust Project Developers. Rust Programming Language. https:

//www.rust-lang.org, 2020. 4, 12, 62

[21] Thomas de Zeeuw. Heph — GitHub. https://github.com/Thomasdezeeuw/

heph, 2020. 4, 12, 62, 73

[22] National Institute of Standards and Technology. FIPS PUB 180-4.
Federal Information Processing Standards. FIPS, 2015. 6, 38

[23] PgBouncer - lightweight connection pooler for PostgreSQL. https://www.
pgbouncer.org, 2020. 6

[24] nginx. https://nginx.org, 2020. 7

[25] HAProxy — The Reliable, High Performance TCP/HTTP Load Balancer.
https://www.haproxy.org, 2020. 7

[26] Jim Gray. Notes on Data Base Operating Systems. In Michael J. Flynn,

Jim Gray, Anita K. Jones, Klaus Lagally, Holger Opderbeck, Gerald J.

Popek, Brian Randell, Jerome H. Saltzer, and Hans-Rüdiger Wiehle,
editors, Operating Systems, An Advanced Course, 60 of Lecture Notes in Computer
Science, pages 393–481. Springer, 1978. 8, 20, 38

[27] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and

Phillip W. Hutto. Causal Memory: Definitions, Implementation, and
Programming. Distributed Comput., 9(1):37–49, 1995. 8, 14

[28] Wan Fokkink. Distributed Algorithms: An Intuitive Approach. The MIT Press, 2
edition, 2018. 8, 14

[29] Fsync Errors - PostgreSQL wiki. https://wiki.postgresql.org/wiki/Fsync_
Errors, 2020. 11

[30] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. A Universal
Modular ACTOR Formalism for Artificial Intelligence. In Nils J. Nilsson,
editor, Proceedings of the 3rd International Joint Conference on Artificial Intelli-
gence. Standford, CA, USA, August 20-23, 1973, pages 235–245. William Kaufmann,
1973. 12, 72

[31] Wikipedia contributors. Actor model — Wikipedia. https://en.

wikipedia.org/wiki/Actor_model, 2020. 12, 72

[32] aio(7) — Linux manual page. https://man7.org/linux/man-pages/man7/aio.
7.html, 2020. 12

65

https://www.rust-lang.org
https://www.rust-lang.org
https://github.com/Thomasdezeeuw/heph
https://github.com/Thomasdezeeuw/heph
http://dx.doi.org/10.6028/NIST.FIPS.180-4
https://www.pgbouncer.org
https://www.pgbouncer.org
https://nginx.org
https://www.haproxy.org
https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.1007/BF01784241
https://doi.org/10.1007/BF01784241
https://wiki.postgresql.org/wiki/Fsync_Errors
https://wiki.postgresql.org/wiki/Fsync_Errors
http://ijcai.org/Proceedings/73/Papers/027B.pdf
http://ijcai.org/Proceedings/73/Papers/027B.pdf
https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Actor_model
https://man7.org/linux/man-pages/man7/aio.7.html
https://man7.org/linux/man-pages/man7/aio.7.html

REFERENCES

[33] Jens Axboe. Efficient IO with io_uring. https://kernel.dk/io_uring.pdf,
2019. 12

[34] Ka-Hing Cheung. How we scaled nginx and saved the
world 54 years every day. https://blog.cloudflare.com/

how-we-scaled-nginx-and-saved-the-world-54-years-every-day, 2018.
12

[35] Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu. ffwd: delega-
tion is (much) faster than you think. In Proceedings of the 26th Symposium on
Operating Systems Principles, Shanghai, China, October 28-31, 2017, pages 342–358.
ACM, 2017. 13

[36] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbó

Araújo, Martin Ek, Eddie Kohler, M. Frans Kaashoek, and Robert Tap-

pan Morris. Noria: dynamic, partially-stateful data-flow for high-
performance web applications. In Andrea C. Arpaci-Dusseau and Geoff

Voelker, editors, 13th USENIX Symposium on Operating Systems Design and Im-
plementation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, pages 213–231.
USENIX Association, 2018. 13, 56

[37] Chenggang Wu, Jose M. Faleiro, Yihan Lin, and Joseph M. Hellerstein.
Anna: A KVS for Any Scale. In 34th IEEE International Conference on Data
Engineering, ICDE 2018, Paris, France, April 16-19, 2018, pages 401–412. IEEE
Computer Society, 2018. 13

[38] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-

Dusseau, and Remzi H. Arpaci-Dusseau. WiscKey: Separating Keys from
Values in SSD-conscious Storage. In Angela Demke Brown and Flo-

rentina I. Popovici, editors, 14th USENIX Conference on File and Storage Tech-
nologies, FAST 2016, Santa Clara, CA, USA, February 22-25, 2016, pages 133–148.
USENIX Association, 2016. 14

[39] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. Benchmarking cloud serving systems with YCSB.
In Joseph M. Hellerstein, Surajit Chaudhuri, and Mendel Rosenblum,
editors, Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC 2010,
Indianapolis, Indiana, USA, June 10-11, 2010, pages 143–154. ACM, 2010. 33

[40] Yahoo! Cloud Serving Benchmark on GitHub. https://github.com/

brianfrankcooper/YCSB, 2020. 33

66

https://kernel.dk/io_uring.pdf
https://blog.cloudflare.com/how-we-scaled-nginx-and-saved-the-world-54-years-every-day
https://blog.cloudflare.com/how-we-scaled-nginx-and-saved-the-world-54-years-every-day
https://doi.org/10.1145/3132747.3132771
https://doi.org/10.1145/3132747.3132771
https://www.usenix.org/conference/osdi18/presentation/gjengset
https://www.usenix.org/conference/osdi18/presentation/gjengset
https://doi.org/10.1109/ICDE.2018.00044
https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu
https://doi.org/10.1145/1807128.1807152
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB

REFERENCES

[41] Kim Shanley. TPC Releases New Benchmark: TPC-C. SIGMETRICS Per-
form. Evaluation Rev., 20(2):8–9, 1992. 33

[42] TPC-C. http://www.tpc.org/tpcc, 2020. 33

[43] Henri E. Bal, Dick H. J. Epema, Cees de Laat, Rob van Nieuwpoort,

John W. Romein, Frank J. Seinstra, Cees Snoek, and Harry A. G. Wi-

jshoff. A Medium-Scale Distributed System for Computer Science Re-
search: Infrastructure for the Long Term. IEEE Computer, 49(5):54–63, 2016.
33

[44] DAS-5: Distributed ASCI Supercomputer 5. https://www.cs.vu.nl/das5/

home.shtml, 2020. 33

[45] etcd. https://etcd.io, 2020. 34, 60

[46] Flexible I/O Tester. https://github.com/axboe/fio, 2020. 34

[47] Tmpfs. https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt,
2020. 34

[48] RAM disk block device. https://www.kernel.org/doc/Documentation/

blockdev/ramdisk.txt, 2020. 34

[49] Redis Cluster Tutorial. https://redis.io/topics/cluster-tutorial, 2020. 36

[50] Redis Cluster Specification. https://redis.io/topics/cluster-spec, 2020.
36

[51] Redis Replication. https://redis.io/topics/replication, 2020. 36

[52] Jedis. https://github.com/redis/jedis, 2020. 36

[53] connect(2) — Linux manual page. https://man7.org/linux/man-pages/man2/
connect.2.html, 2020. 36

[54] Linux kernel overcommit policy. https://www.kernel.org/doc/

Documentation/vm/overcommit-accounting, 2020. 36

[55] epoll - I/O event notification facility. https://man7.org/linux/man-pages/

man7/epoll.7.html, 2020. 53

[56] Anuj Kalia, Michael Kaminsky, and David G. Andersen. FaSST: Fast,
Scalable and Simple Distributed Transactions with Two-Sided (RDMA)
Datagram RPCs. In Kimberly Keeton and Timothy Roscoe, editors, 12th

67

https://doi.org/10.1145/141858.141861
http://www.tpc.org/tpcc
https://doi.org/10.1109/MC.2016.127
https://doi.org/10.1109/MC.2016.127
https://www.cs.vu.nl/das5/home.shtml
https://www.cs.vu.nl/das5/home.shtml
https://etcd.io
https://github.com/axboe/fio
https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt
https://www.kernel.org/doc/Documentation/blockdev/ramdisk.txt
https://www.kernel.org/doc/Documentation/blockdev/ramdisk.txt
https://redis.io/topics/cluster-tutorial
https://redis.io/topics/cluster-spec
https://redis.io/topics/replication
https://github.com/redis/jedis
https://man7.org/linux/man-pages/man2/connect.2.html
https://man7.org/linux/man-pages/man2/connect.2.html
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://man7.org/linux/man-pages/man7/epoll.7.html
https://man7.org/linux/man-pages/man7/epoll.7.html
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kalia

REFERENCES

USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016, pages 185–201. USENIX Association,
2016. 55

[57] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Using RDMA
efficiently for key-value services. In Fabián E. Bustamante, Y. Charlie Hu,

Arvind Krishnamurthy, and Sylvia Ratnasamy, editors, ACM SIGCOMM
2014 Conference, SIGCOMM’14, Chicago, IL, USA, August 17-22, 2014, pages 295–
306. ACM, 2014. 55

[58] Mark J. Eisner and Dennis G. Severance. Mathematical Techniques
for Efficient Record Segmentation in Large Shared Databases. J. ACM,
23(4):619–635, 1976. 55

[59] Pedro Ramalhete and Andreia Correia. Left-Right: A Concur-
rency Control Technique with Wait-Free Population Oblivious Reads.
http://sourceforge.net/projects/ccfreaks/files/papers/LeftRight/

leftright-extended.pdf, 2013. https://concurrencyfreaks.blogspot.com/

2013/12/left-right-concurrency-control.html. 56

[60] Jon Gjengset et al. evmap — A lock-free, eventually consistent, concur-
rent multi-value map. https://github.com/jonhoo/rust-evmap, 2020. 56

[61] Pat Helland. Immutability Changes Everything. ACM Queue, 13(9):40,
2015. 58

[62] Anders Mikkelsen, Tor-Morten Grønli, and Rick Kazman. Immutable
Infrastructure Calls for Immutable Architecture. In Tung Bui, editor, 52nd
Hawaii International Conference on System Sciences, HICSS 2019, Grand Wailea,
Maui, Hawaii, USA, January 8-11, 2019, pages 1–9. ScholarSpace, 2019. 58

[63] Yuzhen Huang, Xiao Yan, Guanxian Jiang, Tatiana Jin, James Cheng,

An Xu, Zhanhao Liu, and Shuo Tu. Tangram: Bridging Immutable and
Mutable Abstractions for Distributed Data Analytics. In Dahlia Malkhi

and Dan Tsafrir, editors, 2019 USENIX Annual Technical Conference, USENIX
ATC 2019, Renton, WA, USA, July 10-12, 2019, pages 191–206. USENIX Associa-
tion, 2019. 58

[64] Dmitri Nikulin. Shared Immutable Byte Arrays For Distributed Applica-
tions. 58

[65] Protocal Labs. InterPlanetary File System (IPFS). https://ipfs.io, 2020.
58

68

https://doi.org/10.1145/2619239.2626299
https://doi.org/10.1145/2619239.2626299
https://doi.org/10.1145/321978.321982
https://doi.org/10.1145/321978.321982
http://sourceforge.net/projects/ccfreaks/files/papers/LeftRight/leftright-extended.pdf
http://sourceforge.net/projects/ccfreaks/files/papers/LeftRight/leftright-extended.pdf
https://concurrencyfreaks.blogspot.com/2013/12/left-right-concurrency-control.html
https://concurrencyfreaks.blogspot.com/2013/12/left-right-concurrency-control.html
https://github.com/jonhoo/rust-evmap
http://doi.acm.org/10.1145/2857274.2884038
http://hdl.handle.net/10125/60142
http://hdl.handle.net/10125/60142
https://www.usenix.org/conference/atc19/presentation/huang
https://www.usenix.org/conference/atc19/presentation/huang
https://ipfs.io

REFERENCES

[66] Wikipedia contributors. Distributed hash table — Wikipedia. https:

//en.wikipedia.org/wiki/Distributed_hash_table, 2020. 58

[67] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter

Vajgel. Finding a Needle in Haystack: Facebook’s Photo Storage. In
Remzi H. Arpaci-Dusseau and Brad Chen, editors, 9th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2010, October 4-6, 2010,
Vancouver, BC, Canada, Proceedings, pages 47–60. USENIX Association, 2010. 58

[68] Lawrence You, Kristal T. Pollack, and Darrell D. E. Long. Deep Store:
an Archival Storage System Architecture. In Karl Aberer, Michael J.

Franklin, and Shojiro Nishio, editors, Proceedings of the 21st International
Conference on Data Engineering, ICDE 2005, 5-8 April 2005, Tokyo, Japan, pages
804–815. IEEE Computer Society, 2005. 59

[69] Lan Huang and Fengzhou Zheng. CIS: Content Immutable Storage for
Trustworthy Electronic Record Keeping, 2004. 59

[70] Anh Dinh, Ji Wang, Sheng Wang, Gang Chen, Wei-Ngan Chin, Qian

Lin, Beng Chin Ooi, Pingcheng Ruan, Kian-Lee Tan, Zhongle Xie, Hao

Zhang, and Meihui Zhang. UStore: A Distributed Storage With Rich
Semantics. CoRR, abs/1702.02799, 2017. 59

[71] Git. https://git-scm.com, 2020. 59

[72] CodeNotary. immudb - CodeNotary. https://codenotary.com/

technologies/immudb, 2020. 59

[73] Wook Jung Daewoo Lee Eunji Pak, Youngjae Lee Sang-Hoon Kim, Jin-

Soo Kim, Taewoong Kim, and Sungwon Jun. BeanFS: A Distributed File
System for a Large Number of Immutable Files, 2008. 59

[74] Inc NVM Express. NVM Express — scalable, efficient, and industry stan-
dard. https://nvmexpress.org, 2020. 59

[75] Wikipedia contributors. Field-programmable gate array — Wikipedia.
https://en.wikipedia.org/wiki/FPGA, 2020. 59

[76] Cockroach Labs. CockroachDB. https://www.cockroachlabs.com/product,
2020. 60

[77] MariaDB contributors. MariaDB Enterprise Open Source Database.
https://mariadb.com, 2020. 60

69

https://en.wikipedia.org/wiki/Distributed_hash_table
https://en.wikipedia.org/wiki/Distributed_hash_table
http://www.usenix.org/events/osdi10/tech/full_papers/Beaver.pdf
https://doi.org/10.1109/ICDE.2005.47
https://doi.org/10.1109/ICDE.2005.47
http://arxiv.org/abs/1702.02799
http://arxiv.org/abs/1702.02799
https://git-scm.com
https://codenotary.com/technologies/immudb
https://codenotary.com/technologies/immudb
https://nvmexpress.org
https://en.wikipedia.org/wiki/FPGA
https://www.cockroachlabs.com/product
https://mariadb.com

REFERENCES

[78] MySQL contributors. MySQL. https://www.mysql.com, 2020. 60

[79] memcached - a distributed memory object caching system. https://

memcached.org, 2020. 60

[80] Scalaris. http://scalaris.zib.de, 2020. 60

[81] Clickhouse. https://clickhouse.tech, 2020. 60

[82] ScyllaDB. https://www.scylladb.com, 2020. 60

[83] CouchDB. https://couchdb.apache.org, 2020. 60

[84] Elasticsearch. https://www.elastic.co/products/elasticsearch, 2020. 60

[85] MongoDB. https://www.mongodb.com, 2020. 60

[86] RethinkDB. https://rethinkdb.com, 2020. 60

[87] Apache Ignite. https://ignite.apache.org, 2020. 60

[88] FoundationDB. https://www.foundationdb.org, 2020. 60

[89] Riak KV. https://docs.riak.com/riak/kv/latest/index.html, 2020. 60

[90] LevelDB. https://github.com/google/leveldb, 2020. 61

[91] RocksDB. https://rocksdb.org, 2020. 61

[92] SQLite. https://sqlite.org/index.html, 2020. 61

[93] Wikipedia contributors. Binary large object — Wikipedia. https://en.

wikipedia.org/wiki/Binary_large_object, 2020. 72

[94] Wikipedia contributors. Consensus (computer science) — Wikipedia.
https://en.wikipedia.org/wiki/Consensus_(computer_science), 2020. 72

[95] Wikipedia contributors. Coroutine — Wikipedia. https://en.wikipedia.
org/wiki/Coroutine, 2020. 72

[96] Wikipedia contributors. Green threads — Wikipedia. https://en.

wikipedia.org/wiki/Green_threads, 2020. 73

[97] Wikipedia contributors. Hash table — Wikipedia. https://en.wikipedia.
org/wiki/Hash_table, 2020. 73

[98] Wikipedia contributors. Hypertext Transfer Protocol — Wikipedia.
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol, 2020. 73

70

https://www.mysql.com
https://memcached.org
https://memcached.org
http://scalaris.zib.de
https://clickhouse.tech
https://www.scylladb.com
https://couchdb.apache.org
https://www.elastic.co/products/elasticsearch
https://www.mongodb.com
https://rethinkdb.com
https://ignite.apache.org
https://www.foundationdb.org
https://docs.riak.com/riak/kv/latest/index.html
https://github.com/google/leveldb
https://rocksdb.org
https://sqlite.org/index.html
https://en.wikipedia.org/wiki/Binary_large_object
https://en.wikipedia.org/wiki/Binary_large_object
https://en.wikipedia.org/wiki/Consensus_(computer_science)
https://en.wikipedia.org/wiki/Coroutine
https://en.wikipedia.org/wiki/Coroutine
https://en.wikipedia.org/wiki/Green_threads
https://en.wikipedia.org/wiki/Green_threads
https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

REFERENCES

[99] Wikipedia contributors. Node (networking) — Wikipedia. https://en.

wikipedia.org/wiki/Node_(networking), 2020. 73

[100] Wikipedia contributors. NoSQL — Wikipedia. https://en.wikipedia.

org/wiki/NoSQL, 2020. 73

[101] Wikipedia contributors. Remote procedure call — Wikipedia. https:

//en.wikipedia.org/wiki/Remote_procedure_call, 2020. 73

[102] Wikipedia contributors. SQL — Wikipedia. https://en.wikipedia.org/

wiki/SQL, 2020. 74

[103] Wikipedia contributors. Stable storage — Wikipedia. https://en.

wikipedia.org/wiki/Stable_storage, 2020. 74

[104] Wikipedia contributors. URL — Wikipedia. https://en.wikipedia.org/

wiki/URL, 2020. 74

71

https://en.wikipedia.org/wiki/Node_(networking)
https://en.wikipedia.org/wiki/Node_(networking)
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Stable_storage
https://en.wikipedia.org/wiki/Stable_storage
https://en.wikipedia.org/wiki/URL
https://en.wikipedia.org/wiki/URL

Glossary

actor

An actor in the actor model, see actor model. 12, 18, 38

actor model

The actor model in computer science is a mathematical model of concurrent com-
putation that treats actor as the universal primitive of concurrent computation. In
response to a message it receives, an actor can: make local decisions, create more
actors, send more messages, and determine how to respond to the next message re-
ceived. Actors may modify their own private state, but can only affect each other
indirectly through messaging (removing the need for lock-based synchronisation).
[30, 31]. 12

blob

A Binary Large OBject (BLOB) is a collection of binary data stored as a single entity
in a database management system [93]. 3, 4, 6, 14, 18–20, 23, 24, 28, 30, 31, 34, 35,
58

consensus

A fundamental problem in distributed computing and multi-agent systems is to
achieve overall system reliability in the presence of a number of faulty processes.
This often requires coordinating processes to reach consensus, or agree on some data
value that is needed during computation [94]. 2, 12, 37, 38

coroutine

Coroutines are computer program components that generalize subroutines for non-
preemptive multitasking, by allowing execution to be suspended and resumed [95].
13

72

Glossary

green thread

In computer programming, green threads are threads that are scheduled by a runtime
library or virtual machine (VM) instead of natively by the underlying operating
system (OS) [96]. 13

HashMap

In computing, a hash table (hash map) is a data structure that implements an as-
sociative array abstract data type, a structure that can map keys to values [97].
16

Heph

Heph is an actor framework for Rust based on asynchronous functions. [21]. 4, 12,
32, 44

HTTP

The Hypertext Transfer Protocol (HTTP) is an application layer protocol for dis-
tributed, collaborative, hypermedia information systems [98]. 6, 13, 18, 38

node

A communication endpoint in a network capable of creating, receiving, or transmit-
ting information over a communications channel. [99]. 3, 12, 18–20, 73

NoSQL

A NoSQL (originally referring to "non-SQL" or "non-relational") database provides
a mechanism for storage and retrieval of data that is modelled in means other than
the tabular relations used in relational databases [100]. 1

peer

A node A that is connected to node B, considers node B its peer. v, 8, 12, 14, 19,
20, 24, 31, 35–37

RPC

In distributed computing, a remote procedure call (RPC) is when a computer pro-
gram causes a procedure (subroutine) to execute in a different address space (com-
monly on another computer on a shared network), which is coded as if it were a
normal (local) procedure call, without the programmer explicitly coding the details
for the remote interaction [101]. 13, 14

73

Glossary

SQL

Structured Query Language (SQL) is a domain-specific language used in program-
ming and designed for managing data held in a relational database management
system (RDBMS), or for stream processing in a relational data stream management
system (RDSMS) [102]. i, 1

stable storage

Stable storage is a classification of computer data storage technology that guarantees
atomicity for any given write operation and allows software to be written that is
robust against some hardware and power failures. [103]. 14, 34, 38

URL

A Uniform Resource Locator (URL), colloquially termed a web address, is a reference
to a web resource that specifies its location on a computer network and a mechanism
for retrieving it [104]. 26, 36

74

	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Research Questions
	1.3 The Case For Stored
	1.4 Contributions Made
	1.5 Thesis Outline

	2 Design
	2.1 Overview
	2.2 System Properties
	2.3 Assumptions
	2.4 Limitations
	2.5 Distributed Design Decisions
	2.6 Request Handling
	2.6.1 Inserting Blobs
	2.6.2 Reading Blobs
	2.6.3 Deleting Blobs

	3 Implementation
	3.1 Assumptions
	3.2 Limitations
	3.3 Overview
	3.3.1 Single Node
	3.3.2 Achieving Causal Ordering

	3.4 Storage Layer
	3.4.1 On-Disk Representation
	3.4.2 Storage Durability
	3.4.3 In-Memory Representation

	3.5 Processes
	3.5.1 Startup
	3.5.2 Inserting Blobs
	3.5.3 Handling Coordinator Failure While Inserting Blobs
	3.5.4 Reading Blobs
	3.5.5 Deleting Blobs
	3.5.6 Handling Coordinator Failure While Deleting Blobs
	3.5.7 Compacting
	3.5.8 Validating
	3.5.9 Recovery
	3.5.10 Shutdown

	4 Evaluation
	4.1 Experimental Setup
	4.1.1 Stored Setup
	4.1.2 Redis Setup
	4.1.3 etcd Setup
	4.1.4 Store Overview

	4.2 Limitations
	4.3 RQ1 Simpler Design
	4.4 RQ2 Performance
	4.4.1 Single Node Latency
	4.4.2 Single Node Throughput
	4.4.3 Discussion

	4.5 RQ3 Scalability
	4.5.1 Multiple Nodes Latency
	4.5.2 Multiple Nodes Throughput
	4.5.3 Discussion

	5 Discussion & Future Work
	5.1 Experience
	5.1.1 Using Rust

	5.2 Encountered Problems
	5.2.1 DAS5 Storage Performance
	5.2.2 Benchmarking Other Stores

	5.3 Future Work
	5.4 Future Work Stored
	5.4.1 Partitioning
	5.4.2 Optimise Reading Blobs
	5.4.3 Heph Improvements

	6 Related work
	6.1 Immutable Stores
	6.2 Mutable Stores

	7 Conclusion
	References
	Glossary

