#include template using vc = std::vector; template using vvc = std::vector>; struct CustomHash { static constexpr uint64_t splitmix64(uint64_t x) { x += 0x9e3779b97f4a7c15; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return x ^ (x >> 31); } static constexpr size_t append(size_t x, size_t y) { return x ^ (y >> 1) ^ ((y & 1) << (sizeof(size_t) * 8 - 1)); } size_t operator()(uint64_t x) const { static const uint64_t FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count(); return splitmix64(x + FIXED_RANDOM); } template size_t operator()(std::pair const &p) const { return append((*this)(p.first), (*this)(p.second)); } template size_t operator()(std::tuple const &tp) const { size_t ret = 0; std::apply( [&](Ts const &...targs) { ((ret = append(ret, (*this)(targs))), ...); }, tp); return ret; } template < class Tp, std::enable_if_t().begin()), typename Tp::iterator> && std::is_same_v().end()), typename Tp::iterator>> * = nullptr> size_t operator()(Tp const &tp) const { size_t ret = 0; for (auto &&i : tp) ret = append(ret, (*this)(i)); return ret; } }; using i32 = int32_t; using i64 = int64_t; #define for_(i, l, r, vars...) \ for (std::make_signed_t i = (l), i##end = (r), ##vars; \ i <= i##end; \ ++i) #define all_(a) (a).begin(), (a).end() #define read_var_(type, name) \ type name; \ std::cin >> name template constexpr auto chkmin(Tp &a, Tp b) -> bool { return b < a ? a = b, true : false; } template constexpr auto chkmax(Tp &a, Tp b) -> bool { return a < b ? a = b, true : false; } template constexpr auto ispow2(Tp i) -> bool { return i && (i & -i) == i; } #define TPL_SIZE_(Tuple) std::tuple_size_v> namespace tuple_detail_ { template constexpr auto subtuple_impl_(Tuple &&t, std::index_sequence) { return std::make_tuple(std::get(t)...); } template constexpr auto apply2_impl_(BinOp &&f, Tuple &&lhs, Tuple &&rhs, std::index_sequence) { return std::make_tuple( std::forward(f)(std::get(lhs), std::get(rhs))...); } } // namespace tuple_detail_ template constexpr auto subtuple(Tuple &&t) { static_assert(Begin <= TPL_SIZE_(Tuple) && Len <= TPL_SIZE_(Tuple) && Begin + Len <= TPL_SIZE_(Tuple), "Out of range"); return tuple_detail_::subtuple_impl_(t, std::make_index_sequence()); } template constexpr auto tuple_push(Tp &&v, Tuple &&t) { static_assert(TPL_SIZE_(Tuple) > 0, "Pop from empty tuple"); return std::tuple_cat(subtuple<0, Pos>(t), std::make_tuple(v), subtuple(t)); } template constexpr auto tuple_push_front(Tp &&v, Tuple &&t) { return tuple_push<0>(v, t); } template constexpr auto tuple_push_back(Tp &&v, Tuple &&t) { return tuple_push(v, t); } template constexpr auto tuple_pop(Tuple &&t) { static_assert(TPL_SIZE_(Tuple) > 0, "Pop from empty tuple"); return std::tuple_cat(subtuple<0, Pos>(t), subtuple(t)); } template constexpr auto tuple_pop_front(Tuple &&t) { return tuple_pop<0>(t); } template constexpr auto tuple_pop_back(Tuple &&t) { return tuple_pop(t); } template constexpr auto apply2(BinOp &&f, Tuple &&lhs, Tuple &&rhs) { return tuple_detail_::apply2_impl_( f, lhs, rhs, std::make_index_sequence()); } #define OO_PTEQ_(op) \ template \ constexpr auto operator op(std::pair lhs, \ const std::pair &rhs) { \ return {lhs.first op rhs.first, lhs.second op rhs.second}; \ } \ template \ constexpr auto operator op(std::tuple const &lhs, \ std::tuple const &rhs) { \ return apply2([](auto &&l, auto &&r) { return l op r; }, lhs, rhs); \ } \ template \ constexpr std::pair &operator op##=(std::pair &lhs, \ const std::pair &rhs) { \ lhs.first op## = rhs.first; \ lhs.second op## = rhs.second; \ return lhs; \ } \ template \ constexpr auto operator op##=(std::tuple &lhs, \ const std::tuple &rhs) { \ return lhs = lhs op rhs; \ } OO_PTEQ_(+) OO_PTEQ_(-) OO_PTEQ_(*) OO_PTEQ_(/) OO_PTEQ_(%) OO_PTEQ_(&) OO_PTEQ_(|) OO_PTEQ_(^) OO_PTEQ_(<<) OO_PTEQ_(>>) #undef OO_PTEQ_ #undef TPL_SIZE_ template std::istream &operator>>(std::istream &is, std::pair &p) { return is >> p.first >> p.second; } template std::ostream &operator<<(std::ostream &os, const std::pair &p) { return os << p.first << ' ' << p.second; } template std::istream &operator>>(std::istream &is, std::tuple &p) { std::apply([&](Ts &...targs) { ((is >> targs), ...); }, p); return is; } template std::ostream &operator<<(std::ostream &os, const std::tuple &p) { std::apply( [&](Ts const &...targs) { std::size_t n{0}; ((os << targs << (++n != sizeof...(Ts) ? " " : "")), ...); }, p); return os; } template ().begin()), typename Ct::iterator> && std::is_same_v().end()), typename Ct::iterator>> * = nullptr> std::basic_ostream &operator<<(std::basic_ostream &os, const Ct &x) { if (x.begin() == x.end()) return os; for (auto it = x.begin(); it != x.end() - 1; ++it) os << *it << ' '; os << x.back(); return os; } const i32 INF = 0x3f3f3f3f; using namespace std; namespace internal { template struct simple_queue { std::vector payload; int pos = 0; void reserve(int n) { payload.reserve(n); } int size() const { return int(payload.size()) - pos; } bool empty() const { return pos == int(payload.size()); } void push(const T &t) { payload.push_back(t); } T &front() { return payload[pos]; } void clear() { payload.clear(); pos = 0; } void pop() { pos++; } }; } // namespace internal template struct mf_graph { public: mf_graph(): _n(0) {} explicit mf_graph(int n): _n(n), g(n) {} int add_edge(int from, int to, Cap cap) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); assert(0 <= cap); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); int from_id = int(g[from].size()); int to_id = int(g[to].size()); if (from == to) to_id++; g[from].push_back(_edge{to, to_id, cap}); g[to].push_back(_edge{from, from_id, 0}); return m; } struct edge { int from, to; Cap cap, flow; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap}; } std::vector edges() { int m = int(pos.size()); std::vector result; for (int i = 0; i < m; i++) { result.push_back(get_edge(i)); } return result; } void change_edge(int i, Cap new_cap, Cap new_flow) { int m = int(pos.size()); assert(0 <= i && i < m); assert(0 <= new_flow && new_flow <= new_cap); auto &_e = g[pos[i].first][pos[i].second]; auto &_re = g[_e.to][_e.rev]; _e.cap = new_cap - new_flow; _re.cap = new_flow; } Cap flow(int s, int t) { return flow(s, t, std::numeric_limits::max()); } Cap flow(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); std::vector level(_n), iter(_n); internal::simple_queue que; auto bfs = [&]() { std::fill(level.begin(), level.end(), -1); level[s] = 0; que.clear(); que.push(s); while (!que.empty()) { int v = que.front(); que.pop(); for (auto e : g[v]) { if (e.cap == 0 || level[e.to] >= 0) continue; level[e.to] = level[v] + 1; if (e.to == t) return; que.push(e.to); } } }; auto dfs = [&](auto self, int v, Cap up) { if (v == s) return up; Cap res = 0; int level_v = level[v]; for (int &i = iter[v]; i < int(g[v].size()); i++) { _edge &e = g[v][i]; if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue; Cap d = self(self, e.to, std::min(up - res, g[e.to][e.rev].cap)); if (d <= 0) continue; g[v][i].cap += d; g[e.to][e.rev].cap -= d; res += d; if (res == up) return res; } level[v] = _n; return res; }; Cap flow = 0; while (flow < flow_limit) { bfs(); if (level[t] == -1) break; std::fill(iter.begin(), iter.end(), 0); Cap f = dfs(dfs, t, flow_limit - flow); if (!f) break; flow += f; } return flow; } std::vector min_cut(int s) { std::vector visited(_n); internal::simple_queue que; que.push(s); while (!que.empty()) { int p = que.front(); que.pop(); visited[p] = true; for (auto e : g[p]) { if (e.cap && !visited[e.to]) { visited[e.to] = true; que.push(e.to); } } } return visited; } private: int _n; struct _edge { int to, rev; Cap cap; }; std::vector> pos; std::vector> g; }; auto solve([[maybe_unused]] int t_ = 0) -> void { read_var_(int, n); vvc b(n, vc(n)); vc c(n); for (auto &i : b) for (auto &j : i) cin >> j; for (auto &i : c) cin >> i; auto encode_b = [&](int i, int j) { return i * n + j; }; auto encode_c = [&](int i) { return n * n + i; }; int s = n * n + n, t = s + 1; mf_graph mf(n * n + n + 2); for_(i, 0, n - 1) for_(j, 0, n - 1) mf.add_edge(s, encode_b(i, j), b[i][j]); for_(i, 0, n - 1) mf.add_edge(encode_c(i), t, c[i]); for_(i, 0, n - 1) for_(j, 0, n - 1) { mf.add_edge(encode_b(i, j), encode_c(i), INF); mf.add_edge(encode_b(i, j), encode_c(j), INF); } i64 ans = 0; for_(i, 0, n - 1) ans += accumulate(all_(b[i]), 0ll); cout << ans - mf.flow(s, t) << '\n'; } int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); int i_ = 0; solve(i_); return 0; }