Polynomials

Algebra Handout
12 Nov 2022

1 Definitions

Definition 1. Let $n \geq 0$ be an integer. A polynomial of degree n is a function of the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=\sum_{k=0}^{n} a_{k} x^{k}
$$

where $a_{n}, a_{n-1}, \cdots, a_{1}, a_{0}$ are constants and $a_{n} \neq 0$. We also include the zero function $(f(x)=0$ for all x) as a polynomial and usually say it has degree $-\infty$ (or just agree it has lower degree than any other polynomial).

Definition 2. The numbers a_{n}, \cdots, a_{0} defined above are called the coefficients of f.
Definition 3. The solution(s) to the equation $f(x)=0$ are called the root/zero(s) of $f(x)$.
Definition 4. A polynomial is said to be monic if the leading coefficient a_{n} is 1 .
Exercise. Which of the following are polynomials? Which are monic?

- $2 x^{2}+1$
- 2
- $1+x+x^{2}+\cdots$

Exercise. A polynomial of degree 101 has no real root. Is this possible?
Exercise. A polynomial of degree 102 has no real root. Is this possible?
Exercise. $\operatorname{deg}(f g)=\operatorname{deg} f+\operatorname{deg} g$. Can you see why we say $\operatorname{deg} 0=-\infty$ now?
Exercise. $\operatorname{deg}(f+g) \leq \max (\operatorname{deg} f, \operatorname{deg} g)$.

2 Division Algorithm

Given two positive integers m and n, we can always write $m=n q+r$ uniquely where $r<n$. This is called the division algorithm. There is also an analogous statement for polynomials:

Theorem 1. Given nonzero polynomials f, g, there exist unique polynomials q, r such that

$$
f=g q+r, \quad \operatorname{deg} r<\operatorname{deg} g
$$

Example. Say $f(x)=x^{5}+3 x^{2}-2 x+1$ and $g(x)=x^{2}-1$, then

$$
x^{5}+3 x^{2}-2 x+1=\left(x^{2}-1\right)\left(x^{3}+x+3\right)+(-x+4)
$$

You have probably learnt how to find q and r via long division, but being able to find some q and r doesn't guarantee uniqueness. So let's prove it.

Proof. [Existence] Stating the exact procudure of long division is enough to prove existence, but let's prove it another way. We induct on the degree of f. The case $\operatorname{deg} f=0$ is easy (left as an exercise). Assume for all f, g with $\operatorname{deg} f \leq k$ there exists such q, r.

Let's say $\operatorname{deg} f=k+1$. If $\operatorname{deg} g>\operatorname{deg} f$, then $q=0, r=f$ works. Or else when $\operatorname{deg} g \leq$ $\operatorname{deg} f$, say $g(x)=g_{n} x^{n}+\cdots$ and $f(x)=f_{m} x^{m}+\cdots$, notice that

$$
f(x)-\left(f_{m} / g_{n}\right) x^{m-n} g(x)
$$

has degree $\leq k$ because the leading term of f is annihilated. Therefore, by inductive hypothesis there exists q_{1}, r_{1} such that

$$
f-\left(f_{m} / g_{n}\right) x^{m-n} g=g q_{1}+r_{1}, \quad \operatorname{deg} r_{1}<\operatorname{deg} g .
$$

Rewriting the equation gives

$$
f=\left(\left(f_{m} / g_{n}\right) x^{m-n}+q_{1}\right) g+r_{1}, \quad \operatorname{deg} r_{1}<\operatorname{deg} g .
$$

Therefore $q=\left(f_{m} / g_{n}\right) x^{m-n}+q_{1}$ and $r=r_{1}$ works.
[Uniqueness] The most common way of proving uniqueness is performing subtraction in some way. Say there exist $\left(q_{1}, r_{1}\right),\left(q_{2}, r_{2}\right)$ such that

$$
\begin{array}{ll}
f=g q_{1}+r_{1}, & \operatorname{deg} r_{1}<\operatorname{deg} g \\
f=g q_{2}+r_{2}, & \operatorname{deg} r_{2}<\operatorname{deg} g
\end{array}
$$

then by subtracting we get

$$
0=g\left(q_{1}-q_{2}\right)+\left(r_{1}-r_{2}\right)
$$

We see that $q_{1}-q_{2}=0$, otherwise $\operatorname{deg} g\left(q_{1}-q_{2}\right) \geq \operatorname{deg} g>\operatorname{deg}\left(r_{1}-r_{2}\right)$ and their sum cannot be equal to 0 on the LHS. But when $q_{1}-q_{2}=0$ the equation forces $r_{1}-r_{2}=0$. Therefore $q_{1}=q_{2}, r_{1}=r_{2}$.

Note. The above theorem needs an extra condition to hold if, let's say, we are only allowed to have integer coefficients. What is the condition? (Hint, it is about g).

Corollary 1 (Remainder/Factor Theorem). If f is a polynomial with root a, then $f(x)=(x-$ a) $g(x)$ for some polynomial g. If, on the other hand, $f(a)=r$, then $f(x)=(x-a) g(x)+r$.

A result of the factor theorem is,
Theorem 2. A nonzero polynomial of degree n cannot have more than n roots.
Corollary 2. If two nonzero polynomials f, g with degree $\leq n$ agree at more than n points (meaning: there exist $n+1$ distinct x_{i} such that $f\left(x_{i}\right)=g\left(x_{i}\right)$ for all i), then $f=g$.

3 Lagrange Interpolation

Question: Can you find a polynomial f with real coefficients such that

$$
f(1)=2, f(2)=3, f(3)=4 ?
$$

How about a polynomial g with real coefficients such that

$$
g(1)=2, g(2)=3, g(3)=\pi ?
$$

Before we answer these questions, let's notice from Corollary 2 that if we only allow f or g to have degree ≤ 2, then they must be unique (if they exist, of course). Let's prove that they must exist.

- For the first example, $f(x)=x+1$ obviously works. Therefore by Corollary 2 there are no other polynomials of degree ≤ 2 that work.
- For the second example, existence is not so easy. Let's break down the problem into several pieces, and please try them yourself:
- First we find three polynomials g_{1}, g_{2}, g_{3} with deg ≤ 2 satisfying:

$$
\begin{aligned}
& g_{1}(1)=2, g_{1}(2)=0, g_{1}(3)=0 \\
& g_{2}(1)=0, g_{2}(2)=3, g_{2}(3)=0 \\
& g_{3}(1)=0, g_{3}(2)=0, g_{3}(3)=\pi
\end{aligned}
$$

- Then we stitch them together to form our final g :

$$
g(x)=g_{1}(x)+g_{2}(x)+g_{3}(x)
$$

You should get something like

$$
g(x)=2 \frac{(x-2)(x-3)}{(1-2)(1-3)}+3 \frac{(x-1)(x-3)}{(2-1)(2-3)}+\pi \frac{(x-1)(x-2)}{(3-1)(3-2)}
$$

More generally,
Theorem 3 (Lagrange Interpolation). If x_{1}, \cdots, x_{n} are distinct numbers and y_{1}, \cdots, y_{n} are numbers (not necessarily distinct) then the (unique) polynomial f of $\operatorname{deg}<n$ such that
$f\left(x_{i}\right)=y_{i}$ for all i is

$$
f(x)=\sum_{i=1}^{n} y_{i} \prod_{j \neq i} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

Exercise. $f(x)$ leaves a remainder of 2 when divided by $(x-3)$ whereas $f(x)$ leaves a remainder of 1 when divided by $(x-4)$. Find the remainder polynomial when $f(x)$ is divided by $(x-3)(x-4)$.

Exercise. Let $f_{0}(x)$ be the polynomial obtained by interpolation. Find a way to express all polynomials $f(x)$ such that $f\left(x_{i}\right)=y_{i}$ for all i.

4 An IMO Example

IMOSL2019A5. Let x_{1}, \cdots, x_{n} be distinct reals. Prove that

$$
\sum_{i=1}^{n} \prod_{j \neq n} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}}= \begin{cases}0 & \text { if } n \text { even } \\ 1 & \text { if } n \text { odd }\end{cases}
$$

We first want a polynomial which we can easily incorporate into the Interpolation Formula. Therefore we want something like $y_{i}=f\left(x_{i}\right)=\prod_{j \neq i}\left(1-x_{i} x_{j}\right)$, but the closest thing we can have is probably by choosing

$$
f(x)=\left(1-x_{1} x\right)\left(1-x_{2} x\right) \cdots\left(1-x_{n} x\right)
$$

except this generates a new factor $\left(1-x_{i}^{2}\right)$. Let's just see what happens when we apply interpolation on $f(x)$ anyway:

$$
f(x)=\sum_{i=1}^{n}\left(1-x_{i}^{2}\right) \prod_{j \neq i} \frac{\left(1-x_{i} x_{j}\right)\left(x-x_{j}\right)}{x_{i}-x_{j}} .
$$

How do we 'erase' the $\left(1-x_{i}^{2}\right)$? The idea turns out to be adding more 'nodes' to the interpolation. If we interpolate not just on x_{1}, \cdots, x_{n} but also on $1,-1$, then the denominator in the above expression has new factors of $x_{i}-1$ and $x_{i}+1$, cancelling with the ($1-x_{i}^{2}$). Let's do exactly that then. Redoing interpolation on $1,-1, x_{1}, \cdots, x_{n}$,
$f(x)=f(1) \frac{x+1}{1+1} \prod_{j} \frac{x-x_{j}}{1-x_{j}}+f(-1) \frac{x-1}{-1-1} \prod_{j} \frac{x-x_{j}}{-1-x_{j}}+\sum_{i=1}^{n} f\left(x_{i}\right) \frac{(x-1)(x+1)}{\left(x_{i}-1\right)\left(x_{i}+1\right)} \prod_{j \neq i} \frac{x-x_{j}}{x_{i}-x_{j}}$
Each term above is a polynomial with degree $n+1$, but we know by definition that f has degree n. That means the coefficient of x^{n+1} must miraculously vanish after summing everything. By looking at the leading coefficients:

$$
0=f(1) \frac{1}{1+1} \prod_{j} \frac{1}{1-x_{j}}+f(-1) \frac{1}{-1-1} \prod_{j} \frac{1}{-1-x_{j}}+\sum_{i=1}^{n} f\left(x_{i}\right) \frac{1}{\left(x_{i}-1\right)\left(x_{i}+1\right)} \prod_{j \neq i} \frac{1}{x_{i}-x_{j}}
$$

Substituing $f(1)=\prod_{j}\left(1-x_{j}\right), f(-1)=\prod_{j}\left(1+x_{j}\right)$ and $f\left(x_{i}\right)$ gives

$$
0=\frac{1}{2}-\frac{(-1)^{n}}{2}-\sum_{i=1}^{n} \prod_{j \neq i} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}} .
$$

5 Exercises

1. Find the remainder when x^{100} is divided by $x^{2}-x-6$.
2. If $a \in \mathbb{R}$ is a root of a polynomial with integer coefficients, then there is a unique monic polynomial with integer coefficients, with a as a root, with minimal degree. This is called the minimal polynomial of a.
3. Find a polynomial in $\mathbb{Z}[x]$ with root $\sqrt{2}+\sqrt{3}$.
4. Prove

$$
\frac{a^{2}}{(a-b)(a-c)}+\frac{b^{2}}{(b-a)(b-c)}+\frac{c^{2}}{(c-a)(c-b)}=1 .
$$

(As Peter Lorre would say, 'Do it ze kveek vay, Johnny!') How about

$$
\frac{a^{3}}{(a-b)(a-c)}+\frac{b^{3}}{(b-a)(b-c)}+\frac{c^{3}}{(c-a)(c-b)} ?
$$

5. Consider the system of equations

$$
\begin{aligned}
a+8 b+27 c+64 d & =1 \\
8 a+27 b+64 c+125 d & =27 \\
27 a+64 b+125 c+216 d & =125 \\
64 a+125 b+216 c+343 d & =343
\end{aligned}
$$

Find the value of $64 a+27 b+8 c+d$.
6. Show that for all $n \in \mathbb{N}$, there is a polynomial P_{n} such that $\cos n x=P_{n}(\cos x)$.
7. Let P be a polynomial with positive coefficients. Prove that if

$$
P\left(\frac{1}{x}\right) \geq \frac{1}{P(x)}
$$

holds for $x=1$, then it holds for all $x>0$.

