
1. Find the maximal number of regions a circle can be divided in by segments joining n
points on the boundary of the circle.

Answer.

(
n

4

)
+

(
n

2

)
+ 1.

Solution. There are
(
n
4

)
intersection points inside the circle, and n intersection points on

the circle. For every internal intersection point, there are 4 segments joining it, whereas
for every external intersection point, there are n+ 1 segments joining it. Hence there are
(4
(
n
4

)
+ n(n+ 1))/2 edges. By Euler’s Characteristic Formula,

F + V = E + 2

F +

(
n

4

)
+ n = 2

(
n

4

)
+
n(n+ 1)

2
+ 2

F =

(
n

4

)
+

(
n

2

)
+ 2

Excluding the outer face, we get the desired answer. �

2. An alphabet consists of n letters. What is the maximal length of a word if we
know that any two consecutive letters a, b of the word are different and that the word
cannot be reduced to a word of the kind abab with a 6= b by removing letters.

Answer. 2n− 1.

Solution. We prove by induction. When n = 1, the answer is 1 = 2(1) − 1. As-
sume the answer for i ≤ n letters is 2i− 1. For n+ 1 letters, first we have some facts:

Fact 1. The first and last letter should be the same since otherwise we can append
another letter at the back which is the same as the first letter.

Say the first and last letter is k. Then k divides the word into several segments. We
observe that the same letter can appear in different segments otherwise abab is formed,
which leads to:

Fact 2. Every segment is its own entity, i.e. a sub-word that satisfies the conditions.

Now assume there are m k’s. Then there will be m − 1 sub-words, i.e. the maximum
word must have

m+ (2a1 − 1) + · · ·+ (2am−1 − 1) = 2a1 + · · ·+ 2am−1 + 1 = 2(n+ 1)− 1.

whereas the word w1 . . . wn+1 . . . w1 is valid. �
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3. Three players A,B,C play a game with three cards and on each of these 3 cards it is
written a positive integer, all 3 numbers are different. A game consists of shuffling the
cards, giving each player a card and each player is attributed a number of points equal
to the number written on the card and then they give the cards back. After a number
(≥ 2) of games we find out that A has 20 points, B has 10 points and C has 9 points.
We also know that in the last game B had the card with the biggest number. Who had
in the first game the card with the second value (this means the middle card concerning
its value).

Answer. C.

Solution. Let the cards be of value a < b < c. If this supposed number of games
is n, then

20 ≤ nc

c ≤ 10− (n− 1)

∴
20

n
≤ 11− n

∴ n ≥ 3

n(a+ b+ c) = 39

∴ n = 3, a+ b+ c = 13

Hence

20 ≤ 3c

c ≤ 10− 1− 1

∴ c = 7, 8

If c = 7,

(a, b, c) = (1, 2, 7)

which is a contradiction. If c = 8,

(a, b, c) = (1, 4, 8)

20 = 8 + 8 + 4

10 = 8 + 1 + 1

9 = 4 + 4 + 1

And the shuffling (8, 1, 4), (8, 1, 4), (4, 8, 1) is valid. �
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4. Find the least natural number n such that, if the set {1, 2, ..., n} is arbitrarily divided
into two non-intersecting subsets, then one of the subsets contains 3 distinct numbers
such that the product of two of them equals the third.

Answer. 96.

Solution. For n = 95, the sets

A = {2, 3, 4, 5, 7, 48, 54, 60, 66, 72, 78, 80, 88, 90}
B = {1, . . . , 95} \ A

form a valid configuration since the elements of B pairwise multiply to
{48, 54, 60, 66, 72, 78, 80, 88, 90, 96, . . . } which are clearly either in A or more than 95. For
n = 96, first we mention the obvious fact that if x > y are in the same set, then xy, x/y
must be in the other set if they are integers. We have a few cases WLOG:

Case 1. 2, 3, 4 ∈ A⇒ 6, 8, 12 ∈ B ⇒ 48, 72, 96 ∈ A⇒ 2, 48, 96 ∈ A.

Case 2. 2, 3 ∈ A, 4 ∈ B ⇒ 6 ∈ B ⇒ 24 ∈ A⇒ 48 ∈ B ⇒ 12 ∈ A⇒ 2, 12, 24 ∈ A.

Case 3. 2, 4 ∈ A, 3 ∈ B ⇒ 8 ∈ A⇒ 24 ∈ A⇒ 6, 12 ∈ B ⇒ 18, 36 ∈ A⇒ 2, 18, 36 ∈ A.

Case 4. 3, 4 ∈ A, 2 ∈ B ⇒ 12 ∈ B ⇒ 6 ∈ A⇒ 24 ∈ B ⇒ 2, 12, 24 ∈ B.

All of which are contradictions. �
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5. Around a circular table an even number of persons have a discussion. After a break
they sit again around the circular table in a different order. Prove that there are at least
two people such that the number of participants sitting between them before and after a
break is the same.

Solution. Let there be 2n people and let σ be a permutation of {1, . . . , 2n}. The
problem wants i < j such that

σ(j)− σ(i) ≡ j − i (mod 2n)

⇔ σ(j)− j ≡ σ(i)− i (mod 2n).

Assume otherwise, then σ(i)− i(i = 1, . . . , 2n) forms a complete residue system mod 2n,

0 = (σ(1) + · · ·+ σ(2n))− (1 + · · ·+ 2n)

= (σ(1)− 1) + · · ·+ (σ(2n)− 2n)

≡ 1 + · · ·+ 2n

= n(2n+ 1) 6≡ 0 (mod 2n)

which is a contradiction. �

6. Let L denote the set of all lattice points of the plane (points with integral coordinates).
Show that for any three 4 points A,B,C of L there is a fourth point D, different from
A,B,C, such that the interiors of the segments AD,BD,CD contain no points of L. Is
the statement true if one considers four points of L instead of three?

Solution. The points (0, 0), (1, 0), (0, 1), (1, 1) clearly ensures some pair of distances
to be both even, hence the second statement.

For 3 points, it wants a lattice (x, y) such that gcd(x− xi, y − yi) = 1 for 1 ≤ i ≤ 3.
Let (a, b) be a pair of residue classes mod 2 that doesn’t appear among the Ai. Since
there are 4 possible pairs of residue classes and only three points Ai, there must be such
a vacant residue class. Similarly, we can find a pair (c, d) of residue classes mod 3 that
is also not represented. Fix x to be any integer congruent to amodulo 2 and to cmodulo 3.

We consider the set P of all primes dividing any of the numbers x − xi. For each
p ∈ P , find some y(p) such that (x− xi, y(p)− yi) is not congruent to (0, 0) mod p. This
can be done for p = 2, 3 by our choice of x, and for p ≥ 5 simply because there are p
options for y(p) and only 3 constraints. Alas we can use CRT. �
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7. A rectangular array of numbers is given. In each row and each column, the sum of
all numbers is an integer. Prove that each non-integral number x in the array can be
changed into either bxc or dxe so that the row-sums and column-sums remain unchanged.

Solution. Complete for the column-sums easily. Now assume we are not done. Let
S be the sum of absolute values of differences of the each current row-sum from its
previous row-sum. Clearly S is even. A row is said to be lower if the current sum
is lower than its original sum, and higher if it is higher than its original sum. Now a
tile is labelled + if the ceiling is used; and − if the floor is used. A row R1 is said to
be accessible to another row R2 (denoted by R1 → R2) if there exists a column C such
that R1∩C is − and R2∩C is +. WLOG R is a lower row. We have the following lemma:

Lemma. There exists a sequence R→ R1 → · · · → Rk such that Rk is higher.

Proof. Let R be the set of rows accessible from R directly or indirectly and R be
the remaining rows. We want to prove that there is a higher row in R. Assume other-
wise. Pick any column C. If R ∩ C has a −, since ∀r ∈ R is inaccessible by rows in
R, the labelled signs of every tile in R ∩ C is −, therefore the sum of all tiles in R ∩ C
must be higher then its original sum in order to preserve the constancy of column-sums.
If R ∩ C has all +, then the sum of all tiles in R ∩ C must be obviously higher. In
conclusion, we can sum up all R ∩ C and conclude that the sum of rows in R is higher
than its original sum, hence there must be a higher row. �

Now we can swap in order the labelled signs of (R∩C,R1∩C), (R1∩C,R2∩C), . . . , (Rk−1∩
C,Rk ∩ C) and we get to decrease S by 2. Since S is even, we must hit 0 eventually. �
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8. In a contest, there are m candidates and n judges, where n ≥ 3 is an odd integer.
Each candidate is evaluated by each judge as either pass or fail. Suppose that each pair
of judges agrees on at most k candidates. Prove that

k

m
≥ n− 1

2n
.

Solution. Let C1, . . . , Cm and J1, . . . , Jn be the candidates and judges respectively. We
count the number of elements in T = {(Ci, {Jj, Jk}) : Ci is graded equally by Jj and Jk.}.
Let ri be the number of judges that grade fail on Ci. On one hand,

|T | ≤
(
n

2

)
· k

Since each pair of judges agrees on at most k candidates. On the other hand,

|T | =
m∑
i=1

(
ri
2

)
+

(
n− ri

2

)
≥ m

((n−1
2

2

)
+

(n+1
2

2

))
Therefore

m

((n−1
2

2

)
+

(n+1
2

2

))
≤
(
n

2

)
· k

m(n− 1)2 ≤ 2kn(n− 1)

k

m
≥ n− 1

2n

and we are done. �
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9. Let A be a set of N residues (mod N 2). Prove that there exists a set B of of N
residues (mod N 2) such that A+ B = {a+ b|a ∈ A, b ∈ B} contains at least half of all
the residues (mod N 2).

Solution. Work in Z/N2Z. Let [N 2] = 0, . . . , N 2 − 1. Below we compute (the con-
dition under the summation is omitted after it is mentioned):

∑
0≤i1<···<iN≤N2−1

∣∣∣∣∣
N⋃
j=1

(A+ {ij})

∣∣∣∣∣
=
∑∣∣∣∣∣N 2 −

N⋂
j=1

(A+ {ij})

∣∣∣∣∣
=

(
N 2

N

)
N 2 −

∑∣∣∣∣∣
N⋂
j=1

(A+ {ij})

∣∣∣∣∣
=

(
N 2

N

)
N 2 −

∑∣∣{x ∈ [N 2] : x− ij 6∈ A}
∣∣

=

(
N 2

N

)
N 2 −

∑
x∈[N2]

|{{i1, . . . , iN} : x− ij 6∈ A}|

=

(
N 2

N

)
N 2 −

∑
x∈[N2]

(
N 2 −N
N

)

=

((
N 2

N

)
−
(
N 2 −N
N

))
N 2

therefore by Pigeonhole Principle there must exist {i1, . . . , iN} such that∣∣∣∣∣
N⋃
j=1

(A+ {ij})

∣∣∣∣∣ ≥
(
N2

N

)
−
(
N2−N

N

)(
N2

N

) ·N 2

=

(
1−

N∏
k=1

(
1 +

N

N 2 − 2N + k

)−1)
N 2

=

(
1−

(
1 +

1

N − 1

)−N)
N 2

> (1− e−1)N 2

>
1

2
N 2

and we are done. �

7


