Finite Differences

Chaang Tze Shen Tristan

January 22, 2022

1 Operators

We define $\Delta f(x)=f(x+1)-f(x)$ as the first order finite difference. The symbol Δ is said to be the finite difference operator. Generally we define

$$
\begin{equation*}
\Delta^{r} f(x)=\Delta\left(\Delta^{r-1} f(x)\right) \tag{1}
\end{equation*}
$$

as the r-order finite difference. Also we define the following operators:

1. $E f(x)=f(x+1)$
2. $I f(x)=f(x)$

Hence

$$
\begin{aligned}
E^{n} f(x) & =f(x+n) \\
I^{n} f(x) & =f(x) \\
\Delta & =E-I
\end{aligned}
$$

These operations will be very useful in proving some of the propositions below.

2 Finite Differences

Let's start by finding a pattern in finite differences of various orders:

$$
\begin{aligned}
& \Delta^{2} f(x)=f(x+2)-2 f(x+1)+f(x) \\
& \Delta^{3} f(x)=f(x+3)-3 f(x+2)+3 f(x+1)-f(x) \\
& \Delta^{4} f(x)=f(x+4)-4 f(x+3)+6 f(x+2)-4 f(x+1)+f(x)
\end{aligned}
$$

As such, we propose the following:

Proposition 1. Let r be a positive integer, then

$$
\begin{equation*}
\Delta^{n} f(x)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} f(x+n-k) \tag{2}
\end{equation*}
$$

Proof. Since $\Delta=E-I$,

$$
\Delta^{n}=(E-I)^{n}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} E^{n-k}
$$

Let's look from a different perspective from Proposition 1, where we write a function in terms of finite differences instead.

$$
\begin{aligned}
& f(x+1)=\Delta f(x)+f(x) \\
& f(x+2)=\Delta^{2} f(x)+2 \Delta f(x)+f(x) \\
& f(x+3)=\Delta^{3} f(x)+3 \Delta^{2} f(x)+3 \Delta f(x)+f(x)
\end{aligned}
$$

Hence we propose the following:

Proposition 2. For any non-negative integer n,

$$
\begin{equation*}
f(x+n)=\sum_{k=0}^{n}\binom{n}{k} \Delta^{k} f(x) \tag{3}
\end{equation*}
$$

Proof. Since $\Delta=E-I$,

$$
E^{n}=(\Delta+I)^{n}=\sum_{k=0}^{n}\binom{n}{k} \Delta^{k}
$$

Again, this directly brings us to

Proposition 3. For any non-negative integer n,

$$
f(n)=\sum_{k=0}^{n}\binom{n}{k} \Delta^{k} f(0)
$$

Proof. Proposition 2. $x=0$.

We take one step further: Writing $f(1)+\cdots+f(n)$ as a sum of finite differences.

Proposition 4. The sum of the first n terms of $f(n)$ is

$$
\begin{equation*}
f(1)+\cdots+f(n)=\sum_{k=1}^{n}\binom{n}{k} \Delta^{k-1} f(1) \tag{4}
\end{equation*}
$$

Proof. Since $\Delta=E-I$,

$$
E^{0}+\cdots+E^{n-1}=\frac{E^{n}-I}{E-I}=\frac{(\Delta+I)^{n}-I}{\Delta}=\sum_{k=0}^{n}\binom{n}{k+1} \Delta^{k}
$$

3 Polynomials

Next let's see what happens if we apply finite differences to polynomials:

$$
\begin{aligned}
f(x) & =a_{n} x^{n}+\ldots \\
\Delta f(x) & =n a_{n} x^{n-1}+\ldots \\
\Delta^{2} f(x) & =n(n-1) a_{n} x^{n-2}+\ldots
\end{aligned}
$$

Proposition 5. If $f(x)$ is an n-degree polynomial with leading coefficient a_{n}, then

$$
\begin{equation*}
\Delta^{n} f(x)=n!\cdot a_{n} \tag{5}
\end{equation*}
$$

Proof. Induct in terms of the leading coefficient.
The following proposition may be very useful and it is very straightforward. We can use it to deal with the degree of a certain polynomial.

Proposition 6. If $f(x)$ is an n-degree polynomial, then

$$
\begin{equation*}
\Delta^{n+1} f(x)=0 \tag{6}
\end{equation*}
$$

Proof. From proposition 5 we have $\Delta^{n+1} f(x)=n!\cdot a_{n}-n!\cdot a_{n}=0$.
From proposition 3, we can also generalise n to x, writing $f(x)$ as a sum of what we call finite difference polynomials (which is deep down just a binomial choose function!)

Proposition 7. For any n-degree polynomial,

$$
f(x)=\sum_{k=0}^{n} \Delta^{k} f(0)\binom{x}{k} \text { or simply } \sum_{k=0}^{n} c_{k}\binom{x}{k}
$$

Proof. $f(x)-\sum_{k=0}^{n} \Delta^{k} f(0)\binom{x}{k}$ has $n+1$ roots, hence 0 .
In fact, the expansion in proposition 7 is unique, and a polynomial is integer valued if and only if $\forall c_{i} \in \mathbb{Z}$.

Example 1. Let $m \geq n$ be positive integers. Prove that

$$
\sum_{k=0}^{n}(-1)^{k}\binom{m-k}{n}\binom{n}{k}=1
$$

Solution. Note that $\Delta^{n} f(x)$ is constant if we let

$$
\begin{aligned}
f(x) & =\binom{m-x}{n} \\
\therefore \text { LHS } & =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} f(k) \\
& =(-1)^{n} \Delta^{n} f(0) \\
& =(-1)^{n} \Delta^{n} f(m-n) \\
& =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} f(m-n+k) \\
& =1+0+0+0+\cdots=1 \quad \square
\end{aligned}
$$

Example 2. Let $P(x)$ be a polynomial of degree n such that

$$
P(k)=\binom{n+1}{k}^{-1}
$$

for $k=0,1, \ldots, n$. Find the value of $P(n+1)$.

Solution. We start with

$$
\begin{aligned}
\Delta^{n+1} P(x) & =0 \\
\sum_{i=0}^{n+1}(-1)^{i}\binom{n+1}{i} P(n+1-i) & =0 \\
P(n+1)+\sum_{i=1}^{n+1}(-1)^{i} & =0 \\
\therefore P(n+1) & = \begin{cases}0 & \text { if } n \text { is even } \\
1 & \text { if } n \text { is odd }\end{cases}
\end{aligned}
$$

4 Falling Factorials

Let's introduce and define falling factorials.

$$
k^{(n)}=k(k-1) \ldots(k-n+1) .
$$

Yes, it is precisely another definition of P_{n}^{k}. Take the finite difference

$$
\begin{aligned}
\Delta k^{(n)} & =(k+1)^{(n)}-k^{(n)} \\
& =(k+1) k^{(n-1)}-k^{(n-1)}(k-n+1) \\
& =n \cdot k^{(n-1)}
\end{aligned}
$$

and we see it resembles the definition of the derivative! Hence the backward process is analogous, it is called finite integration.

Example 3. Find the value of

$$
1^{4}+\cdots+n^{4}
$$

Solution.

$$
\begin{aligned}
\sum_{k=0}^{n} k^{4} & =\sum_{k=0}^{n}\left(k^{(4)}+6 k^{(3)}+7 k^{(2)}+k^{(1)}\right) \\
& =\sum_{k=0}^{n} \Delta\left(\frac{1}{5} k^{(5)}+\frac{3}{2} k^{(4)}+\frac{7}{3} k^{(3)}+\frac{1}{2} k^{(2)}\right) \\
& =\left(\frac{1}{5}(n+1)^{(5)}+\frac{3}{2}(n+1)^{(4)}+\frac{7}{3}(n+1)^{(3)}+\frac{1}{2}(n+1)^{(2)}\right)-0 \\
& =\frac{1}{30} n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)
\end{aligned}
$$

Example 4. Find the value of

$$
2^{3}+5^{3}+8^{3}+\cdots+(3 n+2)^{3}
$$

Solution. We have $f(n)=(3 n+2)^{3}$. Then

$$
\begin{aligned}
\sum_{k=0}^{n}(3 k+2)^{3} & =\sum_{k=1}^{n}\left(27 k^{(3)}+135 k^{(2)}+117 k^{(1)}+8\right) \\
& =\sum_{k=1}^{n} \Delta\left(\frac{27}{4} k^{(4)}+45 k^{(3)}+\frac{117}{2} k^{(2)}+8 k^{(1)}\right) \\
& =\frac{27}{4}(n+1)^{(4)}+45(n+1)^{(3)}+\frac{117}{2}(n+1)^{(2)}+8(n+1)^{(1)} \\
& =\frac{1}{4}(n+1)(3 n+4)\left(9 n^{2}+21 n+8\right)
\end{aligned}
$$

Example 5. Find the value of

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} k^{n+2}
$$

Solution. We basically want $(I-E)^{n} x^{n+2}=(-1)^{n} \Delta^{n} x^{n+2}$ evaluated at $x=0$.

$$
\Delta^{n}\left(x^{n+2}\right)=\Delta^{n}\left(x^{(n+2)}+\left\{\begin{array}{l}
n+2 \\
n+1
\end{array}\right\} x^{(n+1)}+\left\{\begin{array}{c}
n+2 \\
n
\end{array}\right\} x^{(n)}+\cdots\right)
$$

so the answer is

$$
(-1)^{n} n!\left\{\begin{array}{c}
n+2 \\
n
\end{array}\right\}=(-1)^{n} n!\cdot \frac{(n+2)(n+1) n(3 n+1)}{24}=(-1)^{n} \cdot \frac{(n+2)!(3 n+1) n}{24}
$$

