Geometry
Problem-Solving Session (Junior)
11 Feb 2022

1. A point D lies inside triangle $A B C$. Let A_{1}, B_{1}, C_{1} be the second intersection points of the lines $A D, B D, C D$ with the circumcircles of $B D C, C D A, A D B$ respectively. Show that

$$
\frac{A D}{A A^{\prime}}+\frac{B D}{B B^{\prime}}+\frac{C D}{C C^{\prime}}=1
$$

2. In triangle $A B C$ with circumcircle Γ, the internal angle bisector of $\angle A$ intersects $B C$ at D and Γ again at E. The circle with diameter $D E$ meets Γ again at F. Prove that $A F$ is a symmedian of triangle $A B C$.
3. Let Γ be the circumcircle of the triangle $A B C$. The circle ω is tangent to the sides $A C$ and BC , and it is internally tangent to the circle Γ at the point P. A line parallel to $A B$ intersecting the interior of triangle $A B C$ is tangent to ω at Q. Prove that $\angle A C P=\angle Q C B$.
4. Let D be the foot of altitude from A to $B C$ in a triangle $A B C$, and let X and Y be the feet of altitude from D to $A B$ and $A C$ respectively. Denote Z as the orthocentre of $A B D$. Prove that $(X Y Z)$ is tangent to the circle centred at A with radius $A D$.
5. A convex quadrilateral $A B C D$ satisfies $A B \cdot C D=B C \cdot D A$. A point X is chosen inside the quadrilateral so that $\angle X A B=\angle X C D$ and $\angle X B C=\angle X D A$. Prove that $\angle A X B+$ $\angle C X D=180$.
6. Let $A B C$ be a triangle with circumcircle ω and ℓ a line without common points with ω. Denote by P the foot of the perpendicular from the center of ω to ℓ. The side-lines $B C, C A, A B$ intersect ℓ at the points X, Y, Z different from P. Prove that the circumcircles of the triangles $A X P, B Y P, C Z P$ have a common point different from P or are mutually tangent at P.

Sources

1. BAMO 2008
2. Russia 2009
3. EGMO 2013
4. I don't know
5. IMO 2018
6. IMOSL 2012
