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1. A point D lies inside triangle ABC. Let A1, B1, C1 be the second intersection points of the
lines AD, BD, CD with the circumcircles of BDC, CDA, ADB respectively. Show that
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2. In triangle ABC with circumcircle Γ, the internal angle bisector of ∠A intersects BC at D
and Γ again at E. The circle with diameter DE meets Γ again at F. Prove that AF is a
symmedian of triangle ABC.

3. Let Γ be the circumcircle of the triangle ABC. The circle ω is tangent to the sides AC
and BC, and it is internally tangent to the circle Γ at the point P. A line parallel to AB
intersecting the interior of triangle ABC is tangent to ω at Q. Prove that ∠ACP = ∠QCB.

4. Let D be the foot of altitude from A to BC in a triangle ABC, and let X and Y be the feet of
altitude from D to AB and AC respectively. Denote Z as the orthocentre of ABD. Prove
that (XYZ) is tangent to the circle centred at A with radius AD.

5. A convex quadrilateral ABCD satisfies AB · CD = BC · DA. A point X is chosen inside
the quadrilateral so that ∠XAB = ∠XCD and ∠XBC = ∠XDA. Prove that ∠AXB +
∠CXD = 180.

6. Let ABC be a triangle with circumcircle ω and ` a line without common points with
ω. Denote by P the foot of the perpendicular from the center of ω to `. The side-lines
BC, CA, AB intersect ` at the points X, Y, Z different from P. Prove that the circumcircles
of the triangles AXP, BYP, CZP have a common point different from P or are mutually
tangent at P.
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