BIMO 2

Combinatorics Handout
12 March 2022

In combinatorics, we sometimes would like to study a network of things. For example, if we plot out every single Facebook user as points, and connect two users if they are friends, we will obtain a diagram that is made up of points and lines. These kind of diagrams will be called graphs.

1 Basic Definitions

- A graph is a pair $G=\left(V_{G}, E_{G}\right)$, where V_{G} (or V, if the context is clear) is a finite nonempty set and E_{G} (or E, if the context is clear) is a multiset of two-element submultisets of V. The elements in V and E are called vertices and edges respectively.
- If $e=\{u, v\} \in E$, then u and v are said to be the endpoints of e; and e is said to be incident to u and v; and u and v are said to be adjacent.
- If $u=v$, then e is a loop (Figure 1). If $e_{1}=e_{2}=\{u, v\}$ both appear in E, then e_{1} and e_{2} are parallel edges (Figure 2).
- A graph with no loops nor parallel edges is called a simple graph (Figure 3). Therefore, a simple graph is a pair $G=(V, E)$ where V is a finite nonempty set and E is a set of twoelement subsets of V. Most graphs will be assumed simple unless stated otherwise.

Figure 1: Loops

Figure 2: Parallel edges

Figure 3: Simple graph

- The degree $\operatorname{deg}_{G}(v)$ of a vertex v is the number of edges incident to it.
- A walk is a sequence of vertices $\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ where v_{i} and v_{i+1} are adjacent for all $i=1, \cdots, n-1$. A trail is a walk with no repeated edges. A path is a trail with no repeated vertices.
- (Closed trails) A circuit $\left(v_{1}, \cdots, v_{n}\right)$ is trail where $v_{1}=v_{n}$. A cycle is a circuit with no repeated vertices, apart from the first and last one.
- The complete graph K_{n} on n vertices is where every pair of vertices are adjacent.
- A subgraph $H=\left(V_{H}, E_{H}\right)$ of $G=\left(V_{G}, E_{G}\right)$ is a graph where $V_{H} \subseteq V_{G}$ and $E_{H} \subseteq E_{G}$.
- A subgraph H of G is spanning if $V_{H}=V_{G}$.
- Given a subset $S \subseteq V_{G}$, the subgraph induced by S is

$$
\left(S,\left\{e \in E_{G}: \text { the endpoints of } e \text { are both in } S\right\}\right) .
$$

- The complement \bar{G} of a graph G is obtained by switching the state of every pair of distinct vertices (adjacent \leftrightarrow not adjacent).

1. (Handshake Lemma) $\sum_{v \in V} \operatorname{deg}(v)=2|E|$.
2. There is a walk from u to v if and only if there is a path from u to v.

2 Connected Graphs

- A graph is said to be connected if there is walk between any two vertices.
- Any graph can be decomposed into a disjoint union of connected subgraphs. These are called the connected components (or components) of the graph. The number of components of G is denoted by $k(G)$.
- An edge of G is a cut-edge (or bridge / isthmus) if its removal increases $k(G)$.
- For any two vertices u, v, the distance $d_{G}(u, v)$ of u, v is the length of the shortest path between u and v. We say $d(u, v)=\infty$ if u, v lie in different components.

1. An edge is cut-edge if and only if it does not belong to any cycle.
2. The following conditions are equivalent for a connected graph G :
a) G contains no cycles.
b) All edges of G are cut-edges.
c) There is a unique path between any two distinct vertices in G.
d) $|E|=|V|-1$.

A graph satisfying such conditions is called a tree. A graph all of whose components are trees is called a forest.
3. For any forest $G,|E|=|V|-k(G)$.
4. Any connected graph G contains a spanning tree - a spanning subgraph that is a tree.

3 Eulerian Trails and Eulerian Circuits

- A trail or circuit is Eulerian if it traverses every edge.
- A vertex is odd if its degree is odd.

1. G has an Eulerian circuit if and only if there are no odd vertices.
2. G has an Eulerian trail if and only if there are at most two odd vertices.

4 Colourings

- Given a set of colours, a vertex-colouring is a colouring of the vertices such that no two monochromatic vertices are adjacent. The minimal number of colours required to vertex-colour G is denoted by $\chi(G)$, the chromatic number of G.
- Given a set of colours, an edge-colouring is a colouring of the edges such that no two monochromatic edges are incident to a common vertex. The minimal number of colours required to edge-colour G is denoted by $\chi_{e}(G)$, the edge chromatic number of G.
- A set of vertices in G is independent its induced subgraph has no edges. The size of the maximum independent set of G is denoted by $\beta(G)$.
- A k-partite graph is a graph that can be vertex-coloured with k colours.
- A complete k-partite graph $K_{n_{1}, n_{2}, \cdots, n_{k}}$ is the graph $G=(V, E)$ where $V=V_{1} \sqcup V_{2} \sqcup V_{3} \sqcup$ $\cdots \sqcup V_{k},\left|V_{i}\right|=n_{i}, V_{i}$ are independent sets, and every vertex of V_{i} is adjacent to every vertex of V_{j} for all $i \neq j$.

1. $\chi(G) \beta(G) \geq n$.
2.

5 Subgraphs

- A subgraph H of G that is K_{n} is called an n-clique of G.
- The Türan graph $T(n, k)$ is the complete k-partite graph $K_{n_{1}, \cdots, n_{k}}$ on n vertices such that $\max \left(n_{i}\right)-\min \left(n_{i}\right) \leq 1$.

Let $n=|V(G)|$.

1. (Mantel) If G has no 3-cycles (triangles), then $|E| \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor$.
2. (Türan) If G has no $(k+1)$-cliques, then $\left|E_{G}\right| \leq\left|E_{T(n, k)}\right|$. Equality can hold.
3. If G has no 4 -cycles, then $|E| \leq \frac{n}{4}(1+\sqrt{4 n+3})$.

- A simple digraph, or simple directed graph, is a pair $G=(V, E)$ where E is instead a set of ordered pairs of V. It is basically a graph in which every edge is assigned a direction. Here we will just call them digraphs.

Figure 4: Digraph

