

BIMO 2 Combinatorics Handout 12 March 2022

In combinatorics, we sometimes would like to study a network of things. For example, if we plot out every single Facebook user as points, and connect two users if they are friends, we will obtain a diagram that is made up of points and lines. These kind of diagrams will be called graphs.

1 Basic Definitions

- A graph is a pair $G = (V_G, E_G)$, where V_G (or V, if the context is clear) is a finite nonempty set and E_G (or E, if the context is clear) is a multiset of two-element submultisets of V. The elements in V and E are called *vertices* and *edges* respectively.
- If *e* = {*u*, *v*} ∈ *E*, then *u* and *v* are said to be the *endpoints* of *e*; and *e* is said to be *incident* to *u* and *v*; and *u* and *v* are said to be adjacent.
- If u = v, then *e* is a *loop* (Figure 1). If $e_1 = e_2 = \{u, v\}$ both appear in *E*, then e_1 and e_2 are *parallel edges* (Figure 2).
- A graph with no loops nor parallel edges is called a *simple graph* (Figure 3). Therefore, a simple graph is a pair G = (V, E) where V is a finite nonempty set and E is a set of two-element subsets of V. Most graphs will be assumed simple unless stated otherwise.

Figure 1: Loops

Figure 2: Parallel edges

- The degree $\deg_G(v)$ of a vertex v is the number of edges incident to it.
- A *walk* is a sequence of vertices (v_1, v_2, \dots, v_n) where v_i and v_{i+1} are adjacent for all $i = 1, \dots, n-1$. A *trail* is a walk with no repeated edges. A *path* is a trail with no repeated vertices.
- (Closed trails) A *circuit* (v_1, \dots, v_n) is trail where $v_1 = v_n$. A *cycle* is a circuit with no repeated vertices, apart from the first and last one.
- The complete graph K_n on n vertices is where every pair of vertices are adjacent.
- A subgraph $H = (V_H, E_H)$ of $G = (V_G, E_G)$ is a graph where $V_H \subseteq V_G$ and $E_H \subseteq E_G$.

- A subgraph *H* of *G* is *spanning* if $V_H = V_G$.
- Given a subset $S \subseteq V_G$, the subgraph *induced* by *S* is

 $(S, \{e \in E_G : \text{the endpoints of } e \text{ are both in } S\}).$

- The complement *G* of a graph *G* is obtained by switching the state of every pair of distinct vertices (adjacent ↔ not adjacent).
- 1. (Handshake Lemma) $\sum_{v \in V} \deg(v) = 2|E|$.
- 2. There is a walk from *u* to *v* if and only if there is a path from *u* to *v*.

2 Connected Graphs

- A graph is said to be *connected* if there is walk between any two vertices.
- Any graph can be decomposed into a disjoint union of connected subgraphs. These are called the *connected components* (or *components*) of the graph. The number of components of *G* is denoted by *k*(*G*).
- An edge of *G* is a *cut-edge* (or *bridge* / *isthmus*) if its removal increases k(G).
- For any two vertices u, v, the distance $d_G(u, v)$ of u, v is the length of the shortest path between u and v. We say $d(u, v) = \infty$ if u, v lie in different components.
- 1. An edge is cut-edge if and only if it does not belong to any cycle.
- 2. The following conditions are equivalent for a connected graph *G*:
 - a) *G* contains no cycles.
 - b) All edges of *G* are cut-edges.
 - c) There is a unique path between any two distinct vertices in *G*.
 - d) |E| = |V| 1.

A graph satisfying such conditions is called a *tree*. A graph all of whose components are trees is called a *forest*.

- 3. For any forest *G*, |E| = |V| k(G).
- 4. Any connected graph *G* contains a spanning tree a spanning subgraph that is a tree.

3 Eulerian Trails and Eulerian Circuits

- A trail or circuit is *Eulerian* if it traverses every edge.
- A vertex is *odd* if its degree is odd.
- 1. *G* has an Eulerian circuit if and only if there are no odd vertices.
- 2. *G* has an Eulerian trail if and only if there are at most two odd vertices.

4 Colourings

- Given a set of colours, a *vertex-colouring* is a colouring of the vertices such that no two monochromatic vertices are adjacent. The minimal number of colours required to vertex-colour *G* is denoted by $\chi(G)$, the chromatic number of *G*.
- Given a set of colours, an *edge-colouring* is a colouring of the edges such that no two monochromatic edges are incident to a common vertex. The minimal number of colours required to edge-colour *G* is denoted by $\chi_e(G)$, the edge chromatic number of *G*.
- A set of vertices in *G* is *independent* its induced subgraph has no edges. The size of the maximum independent set of *G* is denoted by $\beta(G)$.
- A *k*-partite graph is a graph that can be vertex-coloured with *k* colours.
- A complete k-partite graph K_{n_1,n_2,\dots,n_k} is the graph G = (V, E) where $V = V_1 \sqcup V_2 \sqcup V_3 \sqcup \dots \sqcup V_k$, $|V_i| = n_i$, V_i are independent sets, and every vertex of V_i is adjacent to every vertex of V_j for all $i \neq j$.

1. $\chi(G)\beta(G) \ge n$.

2.

5 Subgraphs

- A subgraph *H* of *G* that is K_n is called an *n*-clique of *G*.
- The Türan graph T(n, k) is the complete *k*-partite graph K_{n_1, \dots, n_k} on *n* vertices such that $\max(n_i) \min(n_i) \le 1$.

Let n = |V(G)|.

1. (Mantel) If *G* has no 3-cycles (triangles), then $|E| \leq \left|\frac{n^2}{4}\right|$.

- 2. (Türan) If *G* has no (k + 1)-cliques, then $|E_G| \le |E_{T(n,k)}|$. Equality can hold.
- 3. If *G* has no 4-cycles, then $|E| \le \frac{n}{4} \left(1 + \sqrt{4n+3}\right)$.

• A *simple digraph*, or *simple directed graph*, is a pair G = (V, E) where *E* is instead a set of ordered pairs of *V*. It is basically a graph in which every edge is assigned a direction. Here we will just call them *digraphs*.

Figure 4: Digraph