Law of the Unconscious Statistician

Tristan Chaang

January 24, 2022
"This law is not a trivial result of definitions as it might at first appear, but rather must be proved." - Wikipedia

In this article I will prove the Law of the Unconscious Statistician (LOTUS).

Contents

1 Background 1
2 Preliminaries 2
3 Law of the Unconscious Statistician 2
4 The Proof on Wikipedia 3
5 Full Proof 3
6 An Example 4

1 Background

A few days ago I was writing an article titled 'On Continuous Distributions', attempting to expand as much as possible the meaning of the distributions taught in A-level's Further Mathematics Syllabus. I tried to give a proof for every detail needed to derive the pdfs of the distributions, and one of them was the definition of expectation.

I noticed the textbook wrote, the definition of $E(X)$ is $\int_{-\infty}^{\infty} x f_{X}(x) d x$ whereas the definition of $E(g(X))$ for some function g is $\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$. However, this got me wondering: According to the first definition, we can construct the pdf $f_{g(X)}(x)$ of $g(X)$ and then have $E(g(X))=\int_{-\infty}^{\infty} x f_{g(X)}(x) d x$, but this is a different form from the second definition. Unless there is a clear reason why these two forms mean the same thing, I will not accept both definitions if they can potentially clash with each other.

Assume we take the second definition instead, then $E(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x$ follows immediately, but with this we get that $E(g(X))=\int_{-\infty}^{\infty} x f_{g(X)}(x) d x$ again by replacing X by $g(X)$.

Therefore, I feel there is a need to prove that the two expressions are equal. This situation is similar to how the scalar product is sometimes defined as $x_{1} y_{1}+x_{2} y_{2}+\cdots$, but is sometimes defined as $|X||Y| \cos \theta$. The difference is, the equivalence between these two statements is quite easy to prove.

After some attempts I couldn't manage to prove LOTUS completely because things get complicated when $g(X)$ is not bijective. Thus I went online and see if this was well-known, and after some digging, I still couldn't find anyone giving a complete proof. However, I did find out that this relation has name,
which is the Law of the Unconscious Statistician. Wikipedia gives a so-called proof, but it assumes $g(x)$ is bijective and monotonic.

Therefore, I will try to take on the challenge to prove LOTUS completely in this article.

2 Preliminaries

1. The probability density function (pdf) $f_{X}(x)$ of a random variable X is the function satisfying

$$
\mathcal{P}(a \leq x \leq b)=\int_{a}^{b} f_{X}(x) d x \quad \text { for all } a \leq b
$$

2. At every differentiable point of $\mathcal{P}(X \leq x)$, the pdf satisfies

$$
f_{X}(x)=\frac{d}{d x} \mathcal{P}(X \leq x)
$$

3. The expectation of X is

$$
E(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

4. The derivative of an invertible function $g(x)$ is

$$
\frac{d g^{-1}}{d x}=\frac{1}{g^{\prime}\left(g^{-1}(x)\right)}
$$

3 Law of the Unconscious Statistician

Given a (Riemann integrable) function $g: \mathbb{R} \rightarrow \mathbb{R}$, the expected value of $E(g(X))$, if it exists, is

$$
E(g(X))=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

In other words,

$$
\int_{-\infty}^{\infty} x f_{g(X)}(x) d x=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

This theorem is incredibly useful because the second form of computing expectation is usually much easier to deal with, as we will see in the Example section.

4 The Proof on Wikipedia

Assume $g(x)$ has an inverse and is strictly increasing. Then

$$
\begin{align*}
E(g(X)) & =\int_{-\infty}^{\infty} x f_{g(X)}(x) d x \\
& =\int_{-\infty}^{\infty} x\left[\frac{d}{d u} \mathcal{P}(g(X) \leq u)\right]_{u=x} d x \\
& =\int_{-\infty}^{\infty} x\left[\frac{d}{d u} \mathcal{P}\left(X \leq g^{-1}(u)\right)\right]_{u=x} d x \tag{1}\\
& =\int_{-\infty}^{\infty} x\left[\frac{d}{d u} F\left(g^{-1}(u)\right)\right]_{u=x} d x \\
& =\int_{-\infty}^{\infty} x\left[F^{\prime}\left(g^{-1}(u)\right) \cdot \frac{1}{g^{\prime}\left(g^{-1}(u)\right)}\right]_{u=x} d x \\
& =\int_{-\infty}^{\infty} x \cdot f_{X}\left(g^{-1}(x)\right) \cdot \frac{1}{g^{\prime}\left(g^{-1}(x)\right)} d x
\end{align*}
$$

Applying the substitution $u=g^{-1}(x)$:

$$
=\int_{-\infty}^{\infty} g(u) \cdot f_{X}(u) d u
$$

This proof relies on the very wild assumption that $g(x)$ has an inverse and is strictly increasing. This allows (1) to be true. Without that assumption, we have to think further.

5 Full Proof

We will dissect $g(x)$ into sections where g is constant, strictly decreasing, or strictly increasing. Let $\cdots, I_{-1}, I_{0}, I_{1}, \cdots$ be disjoint open intervals such that $\sup I_{i}=\inf I_{i+1}$, and $g_{i}:=\left.g\right|_{I_{i}}$ is either constant or strictly monotone. Then

$$
\begin{align*}
& \int_{-\infty}^{\infty} x f_{g(X)}(x) d x \\
& \left.=\int_{-\infty}^{\infty} x\left[\frac{d}{d u} \mathcal{P}\left(g_{(} X\right) \leq u\right)\right]_{u=x} d x \\
& =\int_{-\infty}^{\infty} x\left[\sum_{i=-\infty}^{\infty} \frac{d}{d u} \mathcal{P}\left(g_{i}(X) \leq u\right)\right]_{u=x} d x \tag{2}
\end{align*}
$$

We will now analyse the value of $\frac{d}{d u} \mathcal{P}\left(g_{i}(X) \leq u\right)$ depending on whether g_{i} is increasing, decreasing or constant.

If g_{i} is increasing and $u \in \operatorname{Im}\left(g_{i}\right)$,

$$
\begin{aligned}
\frac{d}{d u} \mathcal{P}\left(g_{i}(X) \leq u\right) & =\frac{d}{d u} \mathcal{P}\left(X \leq g_{i}^{-1}(u)\right) \\
& =f_{X}\left(g_{i}^{-1}(u)\right) \cdot\left(g_{i}^{-1}\right)^{\prime}(u) \\
& =\frac{f_{X}\left(g_{i}^{-1}(u)\right)}{g_{i}^{\prime}\left(g_{i}^{-1}(u)\right)} .
\end{aligned}
$$

If g_{i} is decreasing and $u \in \operatorname{Im}\left(g_{i}\right)$,

$$
\begin{aligned}
\frac{d}{d u} \mathcal{P}\left(g_{i}(X) \leq u\right) & =\frac{d}{d u} \mathcal{P}\left(X \geq g_{i}^{-1}(u)\right) \\
& =-f_{X}\left(g_{i}^{-1}(u)\right) \cdot\left(g_{i}^{-1}\right)^{\prime}(u) \\
& =-\frac{f_{X}\left(g_{i}^{-1}(u)\right)}{g_{i}^{\prime}\left(g_{i}^{-1}(u)\right)} .
\end{aligned}
$$

If $u \notin \operatorname{Im}\left(g_{i}\right)$ or g_{i} is constant, the value is either 0 or 1 , thus

$$
\frac{d}{d u} \mathcal{P}\left(g_{i}(X) \leq u\right)=0 .
$$

Denoting $I_{i}=\left(a_{i}, b_{i}\right)$ and $\mu_{i}= \begin{cases}1 & \text { if } g_{i} \text { is increasing; } \\ -1 & \text { if } g_{i} \text { is decreasing; the expression in }(2) \text { is } \\ 0 & \text { if } g_{i} \text { constant. }\end{cases}$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} x\left[\sum_{i=-\infty}^{\infty} \frac{d}{d u} \mathcal{P}\left(g_{i}(X) \leq u\right)\right]_{u=x} d x \\
& =\sum_{i=-\infty}^{\infty} \mu_{i} \int_{\min \left(g\left(a_{i}\right), g\left(b_{i}\right)\right)}^{\max \left(g\left(a_{i}\right), g\left(b_{i}\right)\right)} x \cdot \frac{f_{X}\left(g_{i}^{-1}(x)\right)}{g_{i}^{\prime}\left(g_{i}^{-1}(x)\right)} d x
\end{aligned}
$$

Applying the substitution $v=g_{i}^{-1}(x)$ and noting how μ_{i} swaps the bounds, the above is equal to

$$
\sum_{i=-\infty}^{\infty} \int_{a_{i}}^{b_{i}} g_{i}(v) \cdot f_{X}(v) d v=\int_{-\infty}^{\infty} g(x) \cdot f_{X}(x) d x
$$

as desired.

6 An Example

Assume $g(x)=x^{2}$ and $f_{X}(x)=\frac{1}{100}$ for $-20 \leq x \leq 80$ and $f_{X}(x)=0$ otherwose. Then

$$
f_{X^{2}}(x)=\frac{d}{d x} \mathcal{P}\left(X^{2} \leq x\right)
$$

If $x \leq 0$, then $f_{X^{2}}(x)=0$. If $x>0$,

$$
\begin{aligned}
& \frac{d}{d x} \mathcal{P}\left(X^{2} \leq x\right) \\
& =\frac{d}{d x} \mathcal{P}(-\sqrt{x} \leq X \leq \sqrt{x}) \\
& =\frac{d}{d x}(\mathcal{P}(X \leq \sqrt{x})-\mathcal{P}(X \leq-\sqrt{x})) \\
& =f_{X}(\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}}-f_{X}(-\sqrt{x}) \cdot\left(-\frac{1}{2 \sqrt{x}}\right) \\
& = \begin{cases}\frac{1}{100 \sqrt{x}} & \text { if } 0<x \leq 400 ; \\
\frac{1}{200 \sqrt{x}} & \text { if } 400<x \leq 6400 ; \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

We have two ways to compute $E\left(X^{2}\right)$. One,

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{0}^{400} x \cdot \frac{1}{100 \sqrt{x}} d x+\int_{400}^{6400} x \cdot \frac{1}{200 \sqrt{x}} d x \\
& =\frac{1}{150} \cdot 400^{3 / 2}+\frac{1}{300} \cdot 6400^{3 / 2}-\frac{1}{300} \cdot 400^{3 / 2} \\
& =\frac{5200}{3} .
\end{aligned}
$$

Two,

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{-20}^{80} x^{2} \cdot \frac{1}{100} d x \\
& =\frac{1}{100}\left(\frac{80^{3}}{3}-\frac{(-20)^{3}}{3}\right) \\
& =\frac{5200}{3}
\end{aligned}
$$

We see that the answers are consistent. This is exactly what we were looking for.

References

[1] Law of the Unconscious Statistician
https://en.wikipedia.org/wiki/Law_of_the_unconscious_statistician
[2] On Continuous Distributions
https://tristanchaang.github.io/2022/01/07/on-continuous-distributions.html

