Modular Arithmetic

Chaang Tze Shen Tristan

May 19, 2018

1 Congruence

Two integers are said to be congruent mod m if their remainders are equal when divided by m, we write this as

$$
a \equiv b \quad(\bmod m)
$$

For example the following holds:

$$
16 \equiv 9 \equiv 2 \equiv-5 \equiv-12 \quad(\bmod 7)
$$

Note that congruence expressions are linear and multiplicative. Also, if $a \equiv b(\bmod m)$, then $a^{n} \equiv b^{n}(\bmod m)$ for any positive integer n.

2 Multiplicative Inverses

We want to solve $7 x \equiv 3(\bmod 9)$. Then we write $x \equiv \frac{3}{7}(\bmod 9)\left(\right.$ Note that here $\frac{3}{7}$ is not really a fraction! It is just a convention to write x in a neater manner.)

$$
x \equiv \frac{3}{7} \equiv \frac{12}{28} \equiv \frac{12}{1} \equiv 12 \quad(\bmod 9)
$$

3 The Base-eliminating Method

When solving congruences with large powers, we need to find a way to eliminate it.
Example 1. Find the remainder of 2^{10000} when divided by 127.
Solution. Note that $2^{7} \equiv 1(\bmod 127)$. Therefore we can do this:

$$
\begin{aligned}
2^{10000} & \equiv\left(2^{7}\right)^{1428} \times 2^{4} \\
& \equiv 1^{1428} \times 2^{4} \\
& \equiv 16 \quad(\bmod 127)
\end{aligned}
$$

We need to be smart to find the order, which is when will it be congruent to 1 (or anything that would be easy to evaluate under large powers)

3.1 Problems

1. Find the remainder of 3^{2000} when divided by 13 .
2. Find the remainder of $2019^{2019^{2019}}$ when divided by 7 .
3. Find the units digit of $163^{163^{163}}$.

4 The Chinese Remainder Theorem (CRT)

If given a system of ANY number of expressions

$$
x \equiv a_{i} \quad\left(\bmod m_{i}\right)
$$

where m_{i} are all pairwise coprime, then there is a unique solution $\bmod m_{1} m_{2} \ldots m_{i}$

$$
x \equiv A \quad\left(\bmod m_{1} m_{2} \ldots m_{i}\right)
$$

Example 2. Find the last two digits of $7^{7^{7^{7}}}$.
Solution. We can first split 100 into two coprime numbers 4 and 25.
For mod 4,

$$
7^{7^{7^{7}}} \equiv(-1)^{2 k+1} \equiv-1 \equiv 3 \quad(\bmod 4)
$$

For $\bmod 25$, note that $7^{2} \equiv-1(\bmod 25)$, so $7^{4} \equiv 1(\bmod 25)$.

$$
7^{7^{7^{7}}} \equiv 7^{4 k+3} \equiv 7^{3} \equiv 343 \equiv 18 \quad(\bmod 25)
$$

Therefore $7^{7^{7^{7}}} \equiv 43(\bmod 100)$.
Example 3. Given n, is it always possible to have n consecutive integers, each divisible by a square greater than 1 ?

Solution. Yes. Consider n pairwise coprime perfect squares $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$. Let

$$
\begin{array}{rlrl}
x+i & \equiv 0 \quad\left(\bmod X_{i}\right) & & (i=1,2,3, \ldots, n) \\
x & \equiv-i \quad\left(\bmod X_{i}\right) & (i=1,2,3, \ldots, n)
\end{array}
$$

x is solvable by CRT. Thus $x+1, x+2, x+3, \ldots x+n$ is the desired sequence. (Q.E.D)

4.1 Real Problems

1. Find the last two digits of $17^{17^{17^{17}}}$
2. (1987/IMO) Prove that there 1000 consecutive integers such that none is a power of a prime.
3. (2017/ChenJingRun) How many positive integers $n<1000$ are there such that $n^{n}+1$ can be divisible by 66 ?

5 Perfect Squares

Here are some extremely important perfect-square properties.

$$
\begin{aligned}
& x^{2} \equiv 0,1 \quad(\bmod 3) \\
& x^{2} \equiv 0,1 \quad(\bmod 4) \\
& x^{2} \equiv 0,1,4,5,6,9 \quad(\bmod 10)
\end{aligned}
$$

5.1 Problems

1. How many $n \in \mathbb{N}$ are there such that $2007+4^{n}$ is a perfect square?
2. Prove that there are no $\overline{a b c}$ such that $\overline{a b c}+\overline{b c a}+\overline{c a b}$ is not a perfect square.
3. Prove that there are infinitely primes which cannot be expressed as a sum of two squares.
4. Let $2001 m^{2}+m=2002 n^{2}+n$ and m, n positive integers. Prove that $m-n$ is a perfect square.
