p-adic Valuation

Number Theory Handout
18 Dec 2022

Let p be a prime number. Given a nonzero integer n, we define the p-adic valuation $v_{p}(n)$ of n to be the largest integer k such that $p^{k} \mid n$.

More generally, given a nonzero rational number $\frac{m}{n}$ where $\operatorname{gcd}(m, n)=1$, we define its p adic valuation $v_{p}\left(\frac{m}{n}\right)$ as $v_{p}(m)-v_{p}(n)$. However, we will assume the domain of v_{p} is \mathbb{N} unless stated otherwise.

A few trivial facts:

- $v_{p}(m n)=v_{p}(m)+v_{p}(n)$. (They operate like logarithms)
- $v_{p}(n)=0$ if and only if $p \nmid n$.
- $v_{p}(n)=k$ if and only if $p^{k} \mid n$ and $p^{k+1} \nmid n$. We write this also as $p^{k}| | n$.
- $v_{p}(a+b) \geq \min \left(v_{p}(a), v_{p}(b)\right)$. (When is the equality strict?)
- $(a+b p)^{k} \equiv a^{k}+k a^{k-1} b p\left(\bmod p^{2}\right)$.

1 Warm Up

1. Denote $s_{p}(n)$ as the sum of digits of n in base p.

$$
v_{p}(n!)=\sum_{k \geq 1}\left\lfloor\frac{n}{p^{k}}\right\rfloor=\frac{n-s_{p}(n)}{p-1}
$$

2. Prove that p does not divide $\binom{p^{k} m}{p^{k}}$ where $p \nmid m$.
3. Let a and b be integers such that $a\left|b^{2}, b^{3}\right| a^{4}, a^{5}\left|b^{6}, b^{7}\right| a^{8}, \cdots$. Prove that $a=b$.
4. Prove that for all positive integers a, b, c,

$$
\frac{\operatorname{lcm}(a, b, c)^{2}}{\operatorname{lcm}(a, b) \cdot \operatorname{lcm}(b, c) \cdot \operatorname{lcm}(c, a)}=\frac{\operatorname{gcd}(a, b, c)^{2}}{\operatorname{gcd}(a, b) \cdot \operatorname{gcd}(b, c) \cdot \operatorname{gcd}(c, a)}
$$

2 Lifting the Exponent Lemma

We will analyse what $v_{p}\left(x^{n}-y^{n}\right)$ is in terms of $x-y$ and n. Turns out that for suitable conditions for x, y, the relation is simple. However, we need to separate into two regimes:

$2.1 p \neq 2$

Theorem 1. Assume $x \equiv y \not \equiv 0(\bmod p)$. Then for any positive integer n,

$$
v_{p}\left(x^{n}-y^{n}\right)=v_{p}(x-y)+v_{p}(n)
$$

Proof. We use induction, but first let's settle a large number of cases: If $p \nmid n$, then

$$
\frac{x^{n}-y^{n}}{x-y}=\sum_{k=0}^{n-1} x^{n-1-k} y^{k} \equiv \sum_{k=0}^{n-1} x^{n-1-k} x^{k} \equiv n x^{n-1} \not \equiv 0 \quad(\bmod p)
$$

thus $v_{p}\left(x^{n}-y^{n}\right)=v_{p}(x-y)$. Next, we prove that $v_{p}\left(x^{p}-y^{p}\right)=v_{p}(x-y)+1$. To do this, we prove that $v_{p}\left(\left(x^{p}-y^{p}\right) /(x-y)\right)=1$. By taking $\bmod p^{2}$ and letting $y=x+p N$,

$$
\begin{aligned}
\frac{x^{p}-y^{p}}{x-y} & =\sum_{k=0}^{p-1} x^{p-1-k}(x+N p)^{k} \\
& \equiv \sum_{k=0}^{p-1} x^{p-1-k}\left(x^{k}+k x^{k-1} N p\right) \\
& \equiv \sum_{k=0}^{p-1}\left(x^{p-1}+N p k x^{p-2}\right) \\
& \equiv p x^{p-1}+N p \cdot \frac{p(p-1)}{2} \cdot x^{p-2} \\
& \equiv p x^{p-1}\left(\bmod p^{2}\right)
\end{aligned}
$$

and hence this is divisible by p but not p^{2} (Where did we use $p \neq 2$?). Finish the proof.

Theorem 2. Assume $x \equiv-y \not \equiv 0(\bmod p)$. Then for any odd positive integer n,

$$
v_{p}\left(x^{n}+y^{n}\right)=v_{p}(x+y)+v_{p}(n)
$$

Proof. Analogous to Theorem 1.
$2.2 p=2$

Theorem 3. Assume $x \equiv y \not \equiv 0(\bmod 2)$. Then for any odd positive integer n,

$$
v_{2}\left(x^{n} \pm y^{n}\right)=v_{2}(x \pm y)
$$

Proof. Analogous to the first part of Theorem 1.
Theorem 4. Assume $x \equiv y \not \equiv 0(\bmod 2)$. Then for any even positive integer n,

$$
v_{2}\left(x^{n}-y^{n}\right)=v_{2}(x-y)+v_{2}(x+y)+v_{2}(n)-1 .
$$

Proof. It suffices to prove for $n=2^{m}$ (Why?):

$$
\begin{aligned}
v_{2}\left(x^{2^{m}}-y^{2^{m}}\right) & =v_{2}\left((x-y) \prod_{k=0}^{m-1}\left(x^{2^{k}}+y^{2^{k}}\right)\right) \\
& =v_{2}(x-y)+v_{2}(x+y)+\sum_{k=1}^{m-1} v_{2}\left(x^{2^{k}}+y^{2^{k}}\right) \\
& =v_{2}(x-y)+v_{2}(x+y)+\sum_{k=1}^{m-1} 1 \quad(\text { Why? }) \\
& =v_{2}(x-y)+v_{2}(x+y)+m-1 .
\end{aligned}
$$

2.3 Exercises

1. Let $k>0$ be fixed. Find all $n \in \mathbb{N}$ such that $3^{k} \mid 2^{n}-1$.
2. Prove that if p is an odd prime, $a^{p} \equiv 1\left(\bmod p^{n}\right) \Rightarrow a \equiv 1\left(\bmod p^{n-1}\right)$.
3. Find all $x \in \mathbb{N}$ such that $4\left(x^{n}+1\right)$ is a perfect cube for all $n>0$.
4. Let $k>1$ be fixed. Show there are infinitely many n such that

$$
n \mid 1^{n}+2^{n}+\cdots+k^{n}
$$

5. Find all triples (a, b, p) of positive integers with p prime and

$$
a^{p}=b!+p .
$$

