

Field F*p* Number Theory Handout 18 Dec 2022

Definition. A field is a set, equipped with two operations: an **addition operation** +, and a **multiplication operation** \cdot , such that the following properties are met:

1. a + (b + c) = (a + b) + c and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (Associativity)

2. a + b = b + a and $a \cdot b = b \cdot a$ (Commutativity)

- 3. There exists an additive identity (denoted by 0) that satisfies a + 0 = a
- 4. There exists a multiplicative identity (denoted by 1) that satisfies $a \cdot 1 = a$
- 5. For each *a* there exists an additive inverse -a such that a + (-a) = 0
- 6. For each $a \neq 0$ there exists a multiplicative inverse a^{-1} such that $a \cdot a^{-1} = 1$

7. $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

Properties 1 and 2 ensure we can do common sense arithmetic in the set; properties 5 and 6 ensure we can 'invert' elements; property 7 establishes a link between addition and multiplication. Informally,

A field is a set in which you can add, subtract, multiply and divide any two elements, except dividing by zero.

Some obvious fields are \mathbb{Q} , \mathbb{R} and \mathbb{C} . However, we did not require a field to have anything to do with \mathbb{R} or \mathbb{C} . The definition above allows us to talk about *abstract* sets where $+, \cdot$ may not be exactly the same as those in \mathbb{C} . The operations $+, \cdot$ are nothing more than two functions that takes two inputs and spits out an output (and hence, technically, we should write +(a, b) instead of a + b, but it doesn't really matter), subject to the conditions required above.

1 The field \mathbb{F}_p

Let *p* be a prime. Consider the set $\{0, \dots, p-1\}$. Normally, we would write 3 + (p-1) = p+2, but let's be sneaky and talk under modulo *p*, and force 3 + (p-1) = 2 (i.e. the outputs remain in the same set). This allows us to define a new kind of + and a new kind of \cdot , by

$$a+b = (a+b \mod p)$$

 $a \cdot b = (a \cdot b \mod p)$

where mod *p* means we take its residue in $\{0, \dots, p-1\}$. Is this set, under our new + and \cdot , considered a field? It certainly obeys properties 1, 2, 3, 4, 5, 7. How about property 6? Luckily we know for a fact that

If $p \nmid a$, then there exists *b* such that $ab \equiv 1 \pmod{p}$. (Why?)

Now that makes this set a field! We denote this set as \mathbb{F}_p . We will also rename the elements as $\{\overline{0}, \overline{1}, \dots, \overline{p-1}\}$ so that it is clear we are talking about a completely new collection of objects that interact in this new abstract modulo *p* sense.

Example. Consider $\mathbb{F}_7 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$. Then

- $\overline{1} + \overline{4} = \overline{5}$, $\overline{3} + \overline{6} = \overline{2}$, $\overline{4} \cdot \overline{5} = \overline{6}$.
- $\overline{0}$ is the additive identity while $\overline{1}$ is the multiplicative identity.
- $\overline{2}$ and $\overline{4}$ are multiplicative inverses of each other.
- $\overline{2}$ and $\overline{5}$ are additive inverses of each other.

By abstractly defining a field, many properties that may seem obvious have to be re-proven to make sure the common intuition about \mathbb{R} or \mathbb{C} does not mislead us into thinking some property is true:

- $a \cdot 0 = 0$. Proof: $a \cdot 0 = a \cdot (0 + 0) = a \cdot 0 + a \cdot 0$. Add $-(a \cdot 0)$ on both sides.
- ¹If ab = ac and $a \neq 0$, then b = c. Proof: $b = a^{-1}ab = a^{-1}ac = c$.
- If *ab* = 0 then *a* = 0 or *b* = 0. Proof: Say *a* ≠ 0, then multiply *a*⁻¹ on both sides to get *b* = 0. (This property will be called **no zero factors**)

A quick explanation of why the mod 6 integers do not form a field is because $2 \cdot 3 = 0$ in that set, but 2 and 3 are not 0, so it has zero factors!

For any set *S*, we define S[x] to be the set of polynomials with coefficients in *S*, i.e. the set of elements in the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

where *n* is a nonnegative integer (A regular one! Not modulo anything!) and $a_0, \dots, a_n \in S$.

Proposition. Let *F* be a field. F[x] is not a field, but it does not have zero factors.

Proof. F[x] is not a field obviously because $x \neq 0$ has no inverse element. To prove that it has no zero factors, let $f(x) = a_n x^n + \cdots$ and $g(x) = b_m x^m + \cdots$ be two nonzero polynomials. Hence $a_n, b_m \neq 0$. Then $f(x)g(x) = (a_n b_m)x^{n+m} + \cdots$, and $a_n b_m \neq 0$ because F has no zero factors! Thus f(x)g(x) cannot be 0.

¹If the context is clear we will just write $a \cdot b$ as ab

Also, we can do usual long division on F[x]:

Proposition. If $f(x), g(x) \in F[x]$, then there exist unique q(x) and r(x) such that

$$f(x) = g(x)q(x) + r(x)$$

and deg $r < \deg g$.

Proof. The existence part comes from the usual procedure of long division. Uniqueness is left as an exercise. \Box

This leads to a useful theorem that not only applies to \mathbb{R} :

Theorem. If $r \in F$, $f(x) \in F[x]$ satisfies f(r) = 0. then f(x) = (x - r)g(x) for some $g(x) \in F[x]$.

Proof. By doing long division we get f(x) = (x - r)q(x) + r(x) where deg r < 1 and thus r is a constant. r must be 0 since f(r) = 0.

Theorem. If $f(x) \in F[x]$, then f(x) = 0 has at most deg *f* solutions.

Proof. Say *r* is a root of f(x) = 0. Then f(x) = (x - r)g(x). If there were some other root $r_2 \neq r$, then $f(r_2) = (r_2 - r)g(r_2) = 0$ implies $g(r_2) = 0$ since *F* has no zero factors. But deg $g = \deg f - 1$. Induction (Every time we have a new root, degree falls by one).

Example. Let p > 2 be prime. Prove that the coefficient of x^{p-2} in $(x - 1) \cdots (x - p + 1)$ is divisible by p.

Proof. Take $(x - 1) \cdots (x - p + 1) = x^{p-1} + a_{p-2}x^{p-2} + \cdots + a_0$ into $\mathbb{F}_p[x]$ by simply replacing 1 by $\overline{1}$ and so on. The resultant polynomial is

$$(x-\overline{1})(x-\overline{2})\cdots(x-\overline{p}+\overline{1})=\overline{1}x^{p-1}+\overline{a_{p-2}}x^{p-2}+\cdots+\overline{a_{0}}.$$

However, we know that the polynomial $\overline{1}x^{p-1} - \overline{1}$ also has roots $\overline{1}, \dots, \overline{p-1}$ by Fermat's Little Theorem. By comparing degrees we must have the following!

 $(x-\overline{1})(x-\overline{2})\cdots(x-\overline{p}+\overline{1})=\overline{1}x^{p-1}-\overline{1}$

That means $\overline{a_0} = -\overline{1}$ and $\overline{a_1} = \cdots = \overline{a_{p-2}} = 0$. Taking back to \mathbb{Z} we must have $p \mid a_{p-2}$. \Box

The above proof also immediately proves that $(p-1)! \equiv -1 \pmod{p}$. Do you see why?

Eisenstein's Criterion for Irreducibility. If $f(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x]$ satisfies

- $p \nmid a_n;$
- $p \mid a_{n-1}, a_{n-2}, \cdots, a_0;$
- $p^2 \nmid a_0$,

then f(x) is irreducible in $\mathbb{Z}[x]$.

Proof. Assume f(x) = g(x)h(x). Bring into \mathbb{F}_p gives $\overline{a_n}x^n = \overline{g}(x)\overline{h}(x)$, so by looking at roots and degrees, $\overline{g}(x) = \overline{a}x^k$ and $\overline{h}(x) = \overline{b}x^{n-k}$. This means $g(x) = ax^k + ($ multiples of p) and $h(x) = bx^{n-k} + ($ multiples of p). This is impossible if deg g, deg h > 0 because otherwise p^2 divides the constant term of f(x).

2 Building Larger Fields

Given a field *F*, we can insert some new element and generate a bigger field. Such an element must be a root of an irreducible polynomial in F[x]. We won't explain this further² except giving a few examples:

Example. Consider \mathbb{F}_7 . Note that $x^2 - \overline{3}$ is irreducible in $\mathbb{F}_7[x]$, so we can let $\sqrt{3}$ be a new element that is a root of $x^2 - \overline{3}$ and add it into \mathbb{F}_7 . Since we want a field we must also include all numbers of the form $a + b\sqrt{3}$ where $a, b \in \mathbb{F}_7$. Let's check that the set formed

$$\mathbb{F}_7[\sqrt{3}] = \{a + b\sqrt{3} \mid a, b \in \mathbb{F}_7\}$$

is a field. In fact, that's your job.

What if we add something like a root of $x^2 - \overline{2}$? Unfortunately that's not possible, because $x^2 - \overline{2} = (x - \overline{3})(x + \overline{3})$ and hence in the end you're just 'adding in $\overline{3}$ (or $\overline{4}$)' after all, keeping \mathbb{F}_7 as \mathbb{F}_7 .

3 An IMO Example

IMOSL2003N7. The sequence a_0, a_1, a_2, \cdots is defined as follows:

$$a_0 = 2$$
, $a_{k+1} = 2a_k^2 - 1$ for $k \ge 0$

Prove that if an odd prime *p* divides a_n , then 2^{n+3} divides $p^2 - 1$.

Proof. By substituting $a_n = \cosh x_n$ we can simplify (try it) a_n to

$$a_n = \frac{(2+\sqrt{3})^{2^n} + (2-\sqrt{3})^{2^n}}{2}$$

Case 1. If $x^2 - 3$ is reducible mod p, we treat $\sqrt{3}$ as that root (so $\sqrt{3}$ is some mod p integer! Weird.) and bring the entire expression above into \mathbb{F}_p . Since $p \mid a_n$,

$$(2+\sqrt{3})^{2^n} + (2-\sqrt{3})^{2^n} = 0$$

²If you're really interested, it's about looking at F[x] mod that irreducible polynomial, so it's like \mathbb{Z} mod primes all over again but with a higher level of abstraction.

Multiply both sides by $(2 + \sqrt{3})^{2^n}$, then $(2 + \sqrt{3})^{2^{n+1}} = -1$ and thus 2^{n+2} is the order of $2 + \sqrt{3}$ in \mathbb{F}_p (see Problem 1 of the Exercises). Therefore $2^{n+2} | |\mathbb{F}_p| - 1 = p - 1$ and thus $2^{n+3} | p^2 - 1$.

Case 2. If $x^2 - 3$ is irreducible, work in the enlarged field $\mathbb{F}[\sqrt{3}]$, which has size p^2 . Similarly, we get that the order of $2 + \sqrt{3}$ is 2^{n+2} . Therefore $2^{n+2} | |\mathbb{F}_p[\sqrt{3}]| - 1 = p^2 - 1$. But this is not enough... Let's find some $u \in \mathbb{F}_p[\sqrt{3}]$ such that $u^2 = 2 + \sqrt{3}$. If that's the case then the order of u is 2^{n+3} and it would work. Now $2(2 + \sqrt{3}) = (1 + \sqrt{3})^2$ and so it suffices to find some v such that $v^2 = \frac{1}{2}$. Notice that in $\mathbb{F}_p[\sqrt{3}]$, $a_n = 0 = 2a_{n-1}^2 - 1$ and thus $a_{n-1}^2 = \frac{1}{2}$. \Box

4 Exercise

- 1. Prove that if *F* is a finite field, then $x^{|F|-1} = 1$ for any nonzero $x \in F$. Also if *n* is the order of *x* (the smallest positive integer *n* such that $x^n = \overline{1}$), then *n* divides |F| 1. (Mimic the proof for Fermat's Little Theorem)
- 2. Prove that if p > 3 is a prime then p^2 divides the numerator of

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{p-1}.$$

- 3. Prove that *p* divides the $2p(p^2 1)$ -th Fibonacci number ($F_1 = F_2 = 1, F_{n+1} = F_n + F_{n-1}$).
- 4. Prove that $x^{p-1} + x^{p-2} + \cdots + 1$ is irreducible in $\mathbb{Z}[x]$.
- 5. Find the remainder of

$$\prod_{k=0}^{p-1} (k^2 + 1)$$

when divided by *p*.