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Definition. A field is a set, equipped with two operations: an addition operation +, and a
multiplication operation ·, such that the following properties are met:

1. a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c (Associativity)

2. a + b = b + a and a · b = b · a (Commutativity)

3. There exists an additive identity (denoted by 0) that satisfies a + 0 = a

4. There exists a multiplicative identity (denoted by 1) that satisfies a · 1 = a

5. For each a there exists an additive inverse −a such that a + (−a) = 0

6. For each a 6= 0 there exists a multiplicative inverse a−1 such that a · a−1 = 1

7. a · (b + c) = (a · b) + (a · c)

Properties 1 and 2 ensure we can do common sense arithmetic in the set; properties 5 and 6
ensure we can ‘invert’ elements; property 7 establishes a link between addition and multi-
plication. Informally,

A field is a set in which you can add, subtract, multiply and divide any two ele-
ments, except dividing by zero.

Some obvious fields are Q, R and C. However, we did not require a field to have anything
to do with R or C. The definition above allows us to talk about abstract sets where +, ·
may not be exactly the same as those in C. The operations +, · are nothing more than two
functions that takes two inputs and spits out an output (and hence, technically, we should
write +(a, b) instead of a + b, but it doesn’t really matter), subject to the conditions required
above.

1 The field Fp

Let p be a prime. Consider the set {0, · · · , p− 1}. Normally, we would write 3 + (p− 1) =
p+ 2, but let’s be sneaky and talk under modulo p, and force 3+(p− 1) = 2 (i.e. the outputs
remain in the same set). This allows us to define a new kind of + and a new kind of ·, by

a + b = (a + b mod p)
a · b = (a · b mod p)



where mod p means we take its residue in {0, · · · , p − 1}. Is this set, under our new +
and ·, considered a field? It certainly obeys properties 1, 2, 3, 4, 5, 7. How about property 6?
Luckily we know for a fact that

If p - a, then there exists b such that ab ≡ 1 (mod p). (Why?)

Now that makes this set a field! We denote this set as Fp. We will also rename the elements
as {0, 1, · · · , p− 1} so that it is clear we are talking about a completely new collection of
objects that interact in this new abstract modulo p sense.

Example. Consider F7 = {0, 1, 2, 3, 4, 5, 6}. Then

• 1 + 4 = 5, 3 + 6 = 2, 4 · 5 = 6.

• 0 is the additive identity while 1 is the multiplicative identity.

• 2 and 4 are multiplicative inverses of each other.

• 2 and 5 are additive inverses of each other.

By abstractly defining a field, many properties that may seem obvious have to be re-proven
to make sure the common intuition about R or C does not mislead us into thinking some
property is true:

• a · 0 = 0. Proof: a · 0 = a · (0 + 0) = a · 0 + a · 0. Add −(a · 0) on both sides.

• 1If ab = ac and a 6= 0, then b = c. Proof: b = a−1ab = a−1ac = c.

• If ab = 0 then a = 0 or b = 0. Proof: Say a 6= 0, then multiply a−1 on both sides to get
b = 0. (This property will be called no zero factors)

A quick explanation of why the mod 6 integers do not form a field is because 2 · 3 = 0 in
that set, but 2 and 3 are not 0, so it has zero factors!

For any set S, we define S[x] to be the set of polynomials with coefficients in S, i.e. the set of
elements in the form

f (x) = anxn + an−1xn−1 + · · ·+ a0

where n is a nonnegative integer (A regular one! Not modulo anything!) and a0, · · · , an ∈ S.

Proposition. Let F be a field. F[x] is not a field, but it does not have zero factors.

Proof. F[x] is not a field obviously because x 6= 0 has no inverse element. To prove that
it has no zero factors, let f (x) = anxn + · · · and g(x) = bmxm + · · · be two nonzero polyno-
mials. Hence an, bm 6= 0. Then f (x)g(x) = (anbm)xn+m + · · · , and anbm 6= 0 because F has
no zero factors! Thus f (x)g(x) cannot be 0. �

1If the context is clear we will just write a · b as ab



Also, we can do usual long division on F[x]:

Proposition. If f (x), g(x) ∈ F[x], then there exist unique q(x) and r(x) such that

f (x) = g(x)q(x) + r(x)

and deg r < deg g.

Proof. The existence part comes from the usual procedure of long division. Uniqueness
is left as an exercise. �

This leads to a useful theorem that not only applies to R:

Theorem. If r ∈ F, f (x) ∈ F[x] satisfies f (r) = 0. then f (x) = (x − r)g(x) for some
g(x) ∈ F[x].

Proof. By doing long division we get f (x) = (x− r)q(x) + r(x) where deg r < 1 and thus r
is a constant. r must be 0 since f (r) = 0. �

Theorem. If f (x) ∈ F[x], then f (x) = 0 has at most deg f solutions.

Proof. Say r is a root of f (x) = 0. Then f (x) = (x − r)g(x). If there were some other
root r2 6= r, then f (r2) = (r2 − r)g(r2) = 0 implies g(r2) = 0 since F has no zero factors. But
deg g = deg f − 1. Induction (Every time we have a new root, degree falls by one). �

Example. Let p > 2 be prime. Prove that the coefficient of xp−2 in (x− 1) · · · (x− p + 1) is
divisible by p.

Proof. Take (x − 1) · · · (x − p + 1) = xp−1 + ap−2xp−2 + · · · + a0 into Fp[x] by simply re-
placing 1 by 1 and so on. The resultant polynomial is

(x− 1)(x− 2) · · · (x− p + 1) = 1xp−1 + ap−2xp−2 + · · ·+ a0.

However, we know that the polynomial 1xp−1 − 1 also has roots 1, · · · , p− 1 by Fermat’s
Little Theorem. By comparing degrees we must have the following!

(x− 1)(x− 2) · · · (x− p + 1) = 1xp−1 − 1

That means a0 = −1 and a1 = · · · = ap−2 = 0. Taking back to Z we must have p | ap−2. �

The above proof also immediately proves that (p− 1)! ≡ −1 (mod p). Do you see why?

Eisenstein’s Criterion for Irreducibility. If f (x) = anxn + · · ·+ a0 ∈ Z[x] satisfies

• p - an;

• p | an−1, an−2, · · · , a0;

• p2 - a0,



then f (x) is irreducible in Z[x].

Proof. Assume f (x) = g(x)h(x). Bring into Fp gives anxn = g(x)h(x), so by looking at
roots and degrees, g(x) = axk and h(x) = bxn−k. This means g(x) = axk + (multiples of p)
and h(x) = bxn−k + (multiples of p). This is impossible if deg g, deg h > 0 because other-
wise p2 divides the constant term of f (x). �

2 Building Larger Fields

Given a field F, we can insert some new element and generate a bigger field. Such an element
must be a root of an irreducible polynomial in F[x]. We won’t explain this further2 except
giving a few examples:

Example. Consider F7. Note that x2 − 3 is irreducible in F7[x], so we can let
√

3 be a new
element that is a root of x2− 3 and add it into F7. Since we want a field we must also include
all numbers of the form a + b

√
3 where a, b ∈ F7. Let’s check that the set formed

F7[
√

3] = {a + b
√

3 | a, b ∈ F7}

is a field. In fact, that’s your job. �

What if we add something like a root of x2 − 2? Unfortunately that’s not possible, because
x2− 2 = (x− 3)(x + 3) and hence in the end you’re just ‘adding in 3 (or 4)’ after all, keeping
F7 as F7.

3 An IMO Example

IMOSL2003N7. The sequence a0, a1, a2, · · · is defined as follows:

a0 = 2, ak+1 = 2a2
k − 1 for k ≥ 0

Prove that if an odd prime p divides an, then 2n+3 divides p2 − 1.

Proof. By substituting an = cosh xn we can simplify (try it) an to

an =
(2 +

√
3)2n

+ (2−
√

3)2n

2

Case 1. If x2 − 3 is reducible mod p, we treat
√

3 as that root (so
√

3 is some mod p integer!
Weird.) and bring the entire expression above into Fp. Since p | an,

(2 +
√

3)2n
+ (2−

√
3)2n

= 0

2If you’re really interested, it’s about looking at F[x] mod that irreducible polynomial, so it’s like Z mod
primes all over again but with a higher level of abstraction.



Multiply both sides by (2 +
√

3)2n
, then (2 +

√
3)2n+1

= −1 and thus 2n+2 is the order of
2 +
√

3 in Fp (see Problem 1 of the Exercises). Therefore 2n+2 | |Fp| − 1 = p− 1 and thus
2n+3 | p2 − 1.

Case 2. If x2− 3 is irreducible, work in the enlarged field F[
√

3], which has size p2. Similarly,
we get that the order of 2 +

√
3 is 2n+2. Therefore 2n+2 | |Fp[

√
3]| − 1 = p2 − 1. But this is

not enough... Let’s find some u ∈ Fp[
√

3] such that u2 = 2 +
√

3. If that’s the case then the
order of u is 2n+3 and it would work. Now 2(2 +

√
3) = (1 +

√
3)2 and so it suffices to find

some v such that v2 = 1
2 . Notice that in Fp[

√
3], an = 0 = 2a2

n−1 − 1 and thus a2
n−1 = 1

2 . �

4 Exercise

1. Prove that if F is a finite field, then x|F|−1 = 1 for any nonzero x ∈ F. Also if n is the order
of x (the smallest positive integer n such that xn = 1), then n divides |F| − 1. (Mimic the
proof for Fermat’s Little Theorem)

2. Prove that if p > 3 is a prime then p2 divides the numerator of

1
1
+

1
2
+

1
3
+ · · ·+ 1

p− 1
.

3. Prove that p divides the 2p(p2 − 1)-th Fibonacci number (F1 = F2 = 1, Fn+1 = Fn + Fn−1).

4. Prove that xp−1 + xp−2 + · · ·+ 1 is irreducible in Z[x].

5. Find the remainder of

p−1

∏
k=0

(k2 + 1)

when divided by p.
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