Field \mathbb{F}_{p}
Number Theory Handout
18 Dec 2022

Definition. A field is a set, equipped with two operations: an addition operation + , and a multiplication operation \cdot, such that the following properties are met:

1. $a+(b+c)=(a+b)+c$ and $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ (Associativity)
2. $a+b=b+a$ and $a \cdot b=b \cdot a$ (Commutativity)
3. There exists an additive identity (denoted by 0) that satisfies $a+0=a$
4. There exists a multiplicative identity (denoted by 1) that satisfies $a \cdot 1=a$
5. For each a there exists an additive inverse $-a$ such that $a+(-a)=0$
6. For each $a \neq 0$ there exists a multiplicative inverse a^{-1} such that $a \cdot a^{-1}=1$
7. $a \cdot(b+c)=(a \cdot b)+(a \cdot c)$

Properties 1 and 2 ensure we can do common sense arithmetic in the set; properties 5 and 6 ensure we can 'invert' elements; property 7 establishes a link between addition and multiplication. Informally,

A field is a set in which you can add, subtract, multiply and divide any two elements, except dividing by zero.

Some obvious fields are \mathbb{Q}, \mathbb{R} and \mathbb{C}. However, we did not require a field to have anything to do with \mathbb{R} or \mathbb{C}. The definition above allows us to talk about abstract sets where + , may not be exactly the same as those in \mathbb{C}. The operations,$+ \cdot$ are nothing more than two functions that takes two inputs and spits out an output (and hence, technically, we should write $+(a, b)$ instead of $a+b$, but it doesn't really matter), subject to the conditions required above.

1 The field \mathbb{F}_{p}

Let p be a prime. Consider the set $\{0, \cdots, p-1\}$. Normally, we would write $3+(p-1)=$ $p+2$, but let's be sneaky and talk under modulo p, and force $3+(p-1)=2$ (i.e. the outputs remain in the same set). This allows us to define a new kind of + and a new kind of \cdot, by

$$
\begin{aligned}
a+b & =(a+b \quad \bmod p) \\
a \cdot b & =(a \cdot b \quad \bmod p)
\end{aligned}
$$

where $\bmod p$ means we take its residue in $\{0, \cdots, p-1\}$. Is this set, under our new + and \cdot, considered a field? It certainly obeys properties $1,2,3,4,5,7$. How about property 6 ? Luckily we know for a fact that

If $p \nmid a$, then there exists b such that $a b \equiv 1(\bmod p)$. (Why?)

Now that makes this set a field! We denote this set as \mathbb{F}_{p}. We will also rename the elements as $\{\overline{0}, \overline{1}, \cdots, \overline{p-1}\}$ so that it is clear we are talking about a completely new collection of objects that interact in this new abstract modulo p sense.

Example. Consider $\mathbb{F}_{7}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$. Then

- $\overline{1}+\overline{4}=\overline{5}, \quad \overline{3}+\overline{6}=\overline{2}, \quad \overline{4} \cdot \overline{5}=\overline{6}$.
- $\overline{0}$ is the additive identity while $\overline{1}$ is the multiplicative identity.
- $\overline{2}$ and $\overline{4}$ are multiplicative inverses of each other.
- $\overline{2}$ and $\overline{5}$ are additive inverses of each other.

By abstractly defining a field, many properties that may seem obvious have to be re-proven to make sure the common intuition about \mathbb{R} or \mathbb{C} does not mislead us into thinking some property is true:

- $a \cdot 0=0$. Proof: $a \cdot 0=a \cdot(0+0)=a \cdot 0+a \cdot 0$. Add $-(a \cdot 0)$ on both sides.
- ${ }^{1}$ If $a b=a c$ and $a \neq 0$, then $b=c$. Proof: $b=a^{-1} a b=a^{-1} a c=c$.
- If $a b=0$ then $a=0$ or $b=0$. Proof: Say $a \neq 0$, then multiply a^{-1} on both sides to get $b=0$. (This property will be called no zero factors)

A quick explanation of why the mod 6 integers do not form a field is because $2 \cdot 3=0$ in that set, but 2 and 3 are not 0 , so it has zero factors!

For any set S, we define $S[x]$ to be the set of polynomials with coefficients in S, i.e. the set of elements in the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}
$$

where n is a nonnegative integer (A regular one! Not modulo anything!) and $a_{0}, \cdots, a_{n} \in S$.
Proposition. Let F be a field. $F[x]$ is not a field, but it does not have zero factors.
Proof. $F[x]$ is not a field obviously because $x \neq 0$ has no inverse element. To prove that it has no zero factors, let $f(x)=a_{n} x^{n}+\cdots$ and $g(x)=b_{m} x^{m}+\cdots$ be two nonzero polynomials. Hence $a_{n}, b_{m} \neq 0$. Then $f(x) g(x)=\left(a_{n} b_{m}\right) x^{n+m}+\cdots$, and $a_{n} b_{m} \neq 0$ because F has no zero factors! Thus $f(x) g(x)$ cannot be 0 .

[^0]Also, we can do usual long division on $F[x]$:
Proposition. If $f(x), g(x) \in F[x]$, then there exist unique $q(x)$ and $r(x)$ such that

$$
f(x)=g(x) q(x)+r(x)
$$

and $\operatorname{deg} r<\operatorname{deg} g$.
Proof. The existence part comes from the usual procedure of long division. Uniqueness is left as an exercise.

This leads to a useful theorem that not only applies to \mathbb{R} :
Theorem. If $r \in F, f(x) \in F[x]$ satisfies $f(r)=0$. then $f(x)=(x-r) g(x)$ for some $g(x) \in F[x]$.

Proof. By doing long division we get $f(x)=(x-r) q(x)+r(x)$ where $\operatorname{deg} r<1$ and thus r is a constant. r must be 0 since $f(r)=0$.

Theorem. If $f(x) \in F[x]$, then $f(x)=0$ has at most $\operatorname{deg} f$ solutions.
Proof. Say r is a root of $f(x)=0$. Then $f(x)=(x-r) g(x)$. If there were some other root $r_{2} \neq r$, then $f\left(r_{2}\right)=\left(r_{2}-r\right) g\left(r_{2}\right)=0$ implies $g\left(r_{2}\right)=0$ since F has no zero factors. But $\operatorname{deg} g=\operatorname{deg} f-1$. Induction (Every time we have a new root, degree falls by one).

Example. Let $p>2$ be prime. Prove that the coefficient of x^{p-2} in $(x-1) \cdots(x-p+1)$ is divisible by p.

Proof. Take $(x-1) \cdots(x-p+1)=x^{p-1}+a_{p-2} x^{p-2}+\cdots+a_{0}$ into $\mathbb{F}_{p}[x]$ by simply replacing 1 by $\overline{1}$ and so on. The resultant polynomial is

$$
(x-\overline{1})(x-\overline{2}) \cdots(x-\bar{p}+\overline{1})=\overline{1} x^{p-1}+\overline{a_{p-2}} x^{p-2}+\cdots+\overline{a_{0}} .
$$

However, we know that the polynomial $\overline{1} x^{p-1}-\overline{1}$ also has roots $\overline{1}, \cdots, \overline{p-1}$ by Fermat's Little Theorem. By comparing degrees we must have the following!

$$
(x-\overline{1})(x-\overline{2}) \cdots(x-\bar{p}+\overline{1})=\overline{1} x^{p-1}-\overline{1}
$$

That means $\overline{a_{0}}=-\overline{1}$ and $\overline{a_{1}}=\cdots=\overline{a_{p-2}}=0$. Taking back to \mathbb{Z} we must have $p \mid a_{p-2}$.
The above proof also immediately proves that $(p-1)!\equiv-1(\bmod p)$. Do you see why?
Eisenstein's Criterion for Irreducibility. If $f(x)=a_{n} x^{n}+\cdots+a_{0} \in \mathbb{Z}[x]$ satisfies

- $p \nmid a_{n} ;$
- $p \mid a_{n-1}, a_{n-2}, \cdots, a_{0} ;$
- $p^{2} \nmid a_{0}$,
then $f(x)$ is irreducible in $\mathbb{Z}[x]$.
Proof. Assume $f(x)=g(x) h(x)$. Bring into \mathbb{F}_{p} gives $\overline{a_{n}} x^{n}=\bar{g}(x) \bar{h}(x)$, so by looking at roots and degrees, $\bar{g}(x)=\bar{a} x^{k}$ and $\bar{h}(x)=\bar{b} x^{n-k}$. This means $g(x)=a x^{k}+($ multiples of p) and $h(x)=b x^{n-k}+($ multiples of $p)$. This is impossible if $\operatorname{deg} g, \operatorname{deg} h>0$ because otherwise p^{2} divides the constant term of $f(x)$.

2 Building Larger Fields

Given a field F, we can insert some new element and generate a bigger field. Such an element must be a root of an irreducible polynomial in $F[x]$. We won't explain this further ${ }^{2}$ except giving a few examples:

Example. Consider \mathbb{F}_{7}. Note that $x^{2}-\overline{3}$ is irreducible in $\mathbb{F}_{7}[x]$, so we can let $\sqrt{3}$ be a new element that is a root of $x^{2}-\overline{3}$ and add it into \mathbb{F}_{7}. Since we want a field we must also include all numbers of the form $a+b \sqrt{3}$ where $a, b \in \mathbb{F}_{7}$. Let's check that the set formed

$$
\mathbb{F}_{7}[\sqrt{3}]=\left\{a+b \sqrt{3} \mid a, b \in \mathbb{F}_{7}\right\}
$$

is a field. In fact, that's your job.
What if we add something like a root of $x^{2}-\overline{2}$? Unfortunately that's not possible, because $x^{2}-\overline{2}=(x-\overline{3})(x+\overline{3})$ and hence in the end you're just 'adding in $\overline{3}$ (or $\left.\overline{4}\right)^{\prime}$ after all, keeping \mathbb{F}_{7} as \mathbb{F}_{7}.

3 An IMO Example

IMOSL2003N7. The sequence $a_{0}, a_{1}, a_{2}, \cdots$ is defined as follows:

$$
a_{0}=2, \quad a_{k+1}=2 a_{k}^{2}-1 \quad \text { for } k \geq 0
$$

Prove that if an odd prime p divides a_{n}, then 2^{n+3} divides $p^{2}-1$.
Proof. By substituting $a_{n}=\cosh x_{n}$ we can simplify (try it) a_{n} to

$$
a_{n}=\frac{(2+\sqrt{3})^{2^{n}}+(2-\sqrt{3})^{2^{n}}}{2}
$$

Case 1. If $x^{2}-3$ is reducible $\bmod p$, we treat $\sqrt{3}$ as that root (so $\sqrt{3}$ is some $\bmod p$ integer! Weird.) and bring the entire expression above into \mathbb{F}_{p}. Since $p \mid a_{n}$,

$$
(2+\sqrt{3})^{2^{n}}+(2-\sqrt{3})^{2^{n}}=0
$$

[^1]Multiply both sides by $(2+\sqrt{3})^{2^{n}}$, then $(2+\sqrt{3})^{2^{n+1}}=-1$ and thus 2^{n+2} is the order of $2+\sqrt{3}$ in \mathbb{F}_{p} (see Problem 1 of the Exercises). Therefore $2^{n+2}| | \mathbb{F}_{p} \mid-1=p-1$ and thus $2^{n+3} \mid p^{2}-1$.

Case 2. If $x^{2}-3$ is irreducible, work in the enlarged field $\mathbb{F}[\sqrt{3}]$, which has size p^{2}. Similarly, we get that the order of $2+\sqrt{3}$ is 2^{n+2}. Therefore $2^{n+2}| | \mathbb{F}_{p}[\sqrt{3}] \mid-1=p^{2}-1$. But this is not enough... Let's find some $u \in \mathbb{F}_{p}[\sqrt{3}]$ such that $u^{2}=2+\sqrt{3}$. If that's the case then the order of u is 2^{n+3} and it would work. Now $2(2+\sqrt{3})=(1+\sqrt{3})^{2}$ and so it suffices to find some v such that $v^{2}=\frac{1}{2}$. Notice that in $\mathbb{F}_{p}[\sqrt{3}], a_{n}=0=2 a_{n-1}^{2}-1$ and thus $a_{n-1}^{2}=\frac{1}{2}$.

4 Exercise

1. Prove that if F is a finite field, then $x^{|F|-1}=1$ for any nonzero $x \in F$. Also if n is the order of x (the smallest positive integer n such that $x^{n}=\overline{1}$), then n divides $|F|-1$. (Mimic the proof for Fermat's Little Theorem)
2. Prove that if $p>3$ is a prime then p^{2} divides the numerator of

$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p-1}
$$

3. Prove that p divides the $2 p\left(p^{2}-1\right)$-th Fibonacci number $\left(F_{1}=F_{2}=1, F_{n+1}=F_{n}+F_{n-1}\right)$.
4. Prove that $x^{p-1}+x^{p-2}+\cdots+1$ is irreducible in $\mathbb{Z}[x]$.
5. Find the remainder of

$$
\prod_{k=0}^{p-1}\left(k^{2}+1\right)
$$

when divided by p.

[^0]: ${ }^{1}$ If the context is clear we will just write $a \cdot b$ as $a b$

[^1]: ${ }^{2}$ If you're really interested, it's about looking at $F[x] \bmod$ that irreducible polynomial, so it's like \mathbb{Z} mod primes all over again but with a higher level of abstraction.

