Primitive Roots

Number Theory Handout
12 Feb 2022

1 Prelude: Multiplicative Groups

Given a set that is closed under multiplication, such as any field, or the set of $\bmod n$ integers $\mathbb{Z} / n \mathbb{Z}$, we can look at the subset of all invertible elements. This subset allows us to do multiplication and division freely without any concerns, it is called the multiplicative group S^{\times}of the original set S.

- The multiplicative group of any field F is $F^{\times}=F \backslash\left\{0_{F}\right\}$. (Why?)
- The multiplicative group of $\mathbb{Z} / n \mathbb{Z}$ consists of those coprime to n. (Why?)

2 Orders

In this handout, we will focus on multiplicative groups that are commutative $a b=b a$. Don't worry, the examples given in section 1 are all commutative.

Definition. The order O_{x} of x is the smallest positive integer n such that $x^{n}=1$, if it exists.
Note. The definition above applies to elements x in any multiplicative group. For example, if $x \neq 1$ is a real number, then there is no order. Or if $x \in \mathbb{F}_{p}^{\times}$, then there is always an order. If x is complex, there is sometimes an order (when?). We will see other multiplicative groups afterwards. In fact, the 1 in the definition above should be specified as the identity element 1_{G} of the multiplicative group G, but we will abuse a little bit of notation - I will not draw bars above elements in \mathbb{F}_{p} either.

Exercise. Prove that if $x^{n}=1$ then $O_{x} \mid n$.
Exercise. Prove that if $x \in \mathbb{F}_{p}^{\times}$then $O_{x} \mid p-1$.
Proposition 1. If O_{x} and O_{y} are coprime, then $O_{x y}=O_{x} O_{y}$.
Proof. Since $(x y)^{O_{x} O_{y}}=\left(x^{O_{x}}\right)^{O_{y}} \cdot\left(y^{O_{y}}\right)^{O_{x}}=1$, we know $O_{x y} \mid O_{x} O_{y}$. On the other hand,

$$
\begin{aligned}
x^{O_{x y}} & =y^{-O_{x y}} \\
x^{O_{y} O_{x y}} & =y^{-O_{y} O_{x y}} \\
x^{O_{y} O_{x y}} & =1
\end{aligned}
$$

and thus $O_{x} \mid O_{y} O_{x y}$. But $\left(O_{x}, O_{y}\right)=1$, so $O_{x} \mid O_{x y}$. Similarly $O_{y} \mid O_{x y}$.

Proposition 2. If $n \mid O_{x}$, there exist another element y such that $O_{y}=n$.
Proof. Write $O_{x}=m n$. We claim that $O_{x^{m}}=n$. That $O_{x^{m}} \mid n$ is obvious. Conversely,

$$
1=\left(x^{m}\right)^{O_{x^{m}}}=x^{m O_{x^{m}}} \Rightarrow m n\left|m O_{x^{m}} \Rightarrow n\right| O_{x^{m}}
$$

and thus $O_{x^{m}}=n$.
Proposition 3. Let O_{x}, O_{y} be some orders, there exist another order $O_{z}=1 \mathrm{~cm}\left(O_{x}, O_{y}\right)$.
Proof. Write $O_{x}=\prod_{i} p_{i}^{\alpha_{i}}$ and $O_{y}=\prod_{i} p_{i}^{\beta_{i}}$. By proposition 2 there exist orders

$$
O_{x^{\prime}}=\prod_{i: \alpha_{i} \geq \beta_{i}} p_{i}^{\alpha_{i}} \quad \text { and } \quad O_{y^{\prime}}=\prod_{i: \alpha_{i}<\beta_{i}} p_{i}^{\beta_{i}}
$$

since they divide O_{x} and O_{y} respectively. But they're coprime and multiply to lcm (O_{x}, O_{y}) (verify!), so by proposition 1 we just pick $z=x^{\prime} y^{\prime}$.

By taking successive lcm, we can deduce the following:
Proposition 4. If we work in a finite multiplicative group, there exists an order that is equal to the 1 cm of all orders. This is called the universal order.

Exercise. Why does the universal order of \mathbb{F}_{p}^{\times}divide $p-1$?
Theorem 1. The universal order of \mathbb{F}_{p}^{\times}is, in fact, $p-1$.
Proof. The above exercise shows the universal order O divides $p-1$. Conversely, note that $x^{O}=1$ for all $x \in \mathbb{F}_{p}^{\times}$because O is a multiple of all orders. Therefore, the polynomial $x^{O}-1$ has $p-1$ roots in the field \mathbb{F}_{p}. By comparing degrees, $O \geq p-1$.

3 Primitive Roots

Theorem 1 is the culmination of this handout. It asserts that, there is an element with order $p-1 \bmod p$. We call such an element g a primitive root $\bmod p$ and write $\langle g\rangle=\mathbb{F}_{p}^{\times}$.

Exercise. g is a primitive root $\bmod p$ if and only if $\left\{1, g, g^{2}, \cdots, g^{p-2}\right\}=\mathbb{F}_{p}^{\times}$.
Example. 3 is a primitive root mod 5 because $\left(1,3,3^{2}, 3^{3}\right)=(1,3,4,2)$ in \mathbb{F}_{5}.
Exercise. Find all primitive roots mod 13.
You can safely quote the existence of primitive roots without proof. Primitive roots are extremely useful when we are studying multiplicative properties of mod p numbers. For example, given a $\bmod p$ integer written in the form g^{k}, we can see whether or not it has an n-th root $\bmod p$ by seeing whether $k+(p-1) m$ is a multiple of n for some m (Why?).

4 Another Perspective: Cyclotomic Polynomials

Denote $e^{2 \pi i k / n}=\zeta_{n}^{k}$.
Consider factoring polynomials in the form $X^{n}-1$ in $\mathbb{Z}[x]$:

$$
\begin{aligned}
X-1 & =X-1 \\
X^{2}-1 & =(X-1)(X+1) \\
X^{3}-1 & =(X-1)\left(X^{2}+X+1\right) \\
X^{4}-1 & =(X-1)(X+1)\left(X^{2}+1\right) \\
X^{5}-1 & =(X-1)\left(X^{4}+X^{3}+X^{2}+X+1\right) \\
X^{6}-1 & =(X-1)(X+1)\left(X^{2}+X+1\right)\left(X^{2}-X-1\right)
\end{aligned}
$$

The pattern may not look exactly obvious, but if we decompose these irreducible factors in $\mathbb{C}[x]$ there seems to be some pattern:

$$
\begin{aligned}
X+1 & =X-\zeta_{2}^{1} \\
X^{2}+X+1 & =\left(X-\zeta_{3}^{1}\right)\left(X-\zeta_{3}^{2}\right) \\
X^{2}+1 & =\left(X-\zeta_{4}^{1}\right)\left(X-\zeta_{4}^{3}\right) \\
X^{4}+X^{3}+X^{2}+X+1 & =\left(X-\zeta_{5}^{1}\right)\left(X-\zeta_{5}^{2}\right)\left(X-\zeta_{5}^{3}\right)\left(X-\zeta_{5}^{4}\right) \\
X^{2}-X-1 & =\left(X-\zeta_{6}^{1}\right)\left(X-\zeta_{6}^{5}\right)
\end{aligned}
$$

Hmm... 2 with $\{1\}, 3$ with $\{1,2\}, 4$ with $\{1,3\}, 5$ with $\{1,2,3,4\}, 6$ with $\{1,5\} \ldots$ They are the numbers coprime to it! We give the polynomials above a special name:

Definition. The polynomial

$$
\Phi_{n}(X)=\prod_{\substack{1 \leq k \leq n \\(k, n)=1}}\left(X-\zeta_{n}^{k}\right)
$$

is called the n-th cyclotomic polynomial.
It might not be entirely obvious that $\Phi_{n}(x) \in \mathbb{Z}[x]$ yet, but something you can show is
Exercise. $X^{n}-1=\prod_{d \mid n} \Phi_{d}(X)$.
Exercise. Use the above exercise to prove that $\Phi_{n}(x) \in \mathbb{Z}[x]$.
Proposition 5. $\Phi_{n}(x)$ is irreducible in $\mathbb{Z}[x]$.
Proof. Let $\Phi_{n}(X)=f(X) g(X)$ and f is irreducible. We prove that for all primes $p \nmid n$ we have that $f(z)=0 \Rightarrow f\left(z^{p}\right)=0$ (Why does this imply the result?). Suppose the contrary that $f(z)=0, f\left(z^{p}\right) \neq 0$, then $g\left(z^{p}\right)=0$, so z is a root of $g\left(X^{p}\right)$. But f is the minimal polynomial of z, so $f(X) \mid g\left(X^{p}\right)$. Note that a simple generalisation of $(a+b)^{p} \equiv a^{p}+b^{p}$ $(\bmod p)$ gives $g\left(X^{p}\right) \equiv g(X)^{p}(\bmod p)$. Therefore, reducing mod $p, \bar{f}(X) \mid \bar{g}(X)^{p}$. This
means \bar{f} and \bar{g} has a nontrivial common factor, but $\overline{\Phi_{n}}(X)$ does not have repeated roots as $\left(X^{n}-1\right)^{\prime}=n X^{n-1} \not \equiv 0(\bmod p)$!

Exercise. Let $a \in \mathbb{Z}$. If $\Phi_{n}(a) \equiv 0(\bmod p)$, then $a^{n} \equiv 1(\bmod p)$. (i.e. are you awake?)
The following result is why all of these matter in number theory:
Theorem 2. Let $a \in \mathbb{Z}$ and $p \nmid n$. If $\Phi_{n}(a) \equiv 0(\bmod p)$, then not only $a^{n} \equiv 1(\bmod p)$, but also n is the order of $a \bmod p$.

Proof. Suppose the contrary that the order of $a \bmod p$ is m (strictly divides n). Then $p \mid a^{m}-1$ and hence $\Phi_{d}(a) \equiv 0(\bmod p)$ for some $d|m| n$. Therefore

$$
\Phi_{n}(x)=\prod_{k \mid n} \Phi_{k}(x)
$$

has a double root a under $\bmod p$ (one in $\Phi_{d}(x)$, one in $\Phi_{n}(x)$), but

$$
\Phi_{n}^{\prime}(x)=n x^{n-1}
$$

has no common roots with $\Phi_{n}(x)$ as $p \nmid n$.
Corollary 2.1. If $a^{2} \equiv-1(\bmod p)$ then $p=2$ or $p \equiv 1(\bmod 4)$.
Proof. $\Phi_{4}(a) \equiv 0(\bmod p)$. By Theorem 2, either $p \mid 4$, or 4 is the order of $a \bmod p$, i.e. $4 \mid p-1$.

Corollary 2.2. There exists a primitive root $\bmod p$.
Proof. Consider $\Phi_{p-1}(x)$. It divides $x^{p-1}-1$ which splits completely into $(x-1)(x-$ 2) $\cdots(x-p+1) \bmod p$, therefore there must exist some $\Phi_{p-1}(a) \equiv 0(\bmod p)$.

5 General Primitive Roots

We found that there is a primitive root for \mathbb{F}_{p}^{\times}. How about for other moduli? For which n is there a primitive root for $(\mathbb{Z} / n \mathbb{Z})^{\times}$? Turns out it is:

Theorem 3. $(\mathbb{Z} / n \mathbb{Z})^{\times}$has a primitive root $\Leftrightarrow n=2,4, p^{k}$ or $2 p^{k}$ where p is an odd prime.
Proof. Fun exercise. Remember to use the trick $(g+m p)^{k} \equiv g^{k}+k m p g^{k-1}\left(\bmod p^{2}\right)$ etc.
Note. $\mathbb{F}_{p^{k}}$ and $\mathbb{Z} / p^{k} \mathbb{Z}$ are different sets! They are only isomorphic when $k=1$. Otherwise, the former is a field while the latter is not. The field $\mathbb{F}_{p^{k}}$ is something complicated that I will not talk about, but a sneak peek is that $\mathbb{F}_{p^{2}} \cong \mathbb{F}_{p}[\delta]$ where δ is a square root.

6 Problems.

1. Notice that the decimal expansions of $k / 7$ are cyclic shifts. Why?

- $1 / 7=0 . \overline{142857}$
- $3 / 7=0 . \overline{428571}$
- $5 / 7=0 . \overline{714285}$
- $2 / 7=0 . \overline{285714}$
- $4 / 7=0 . \overline{571428}$
- $6 / 7=0 . \overline{857142}$

2. How many primitive roots are there in \mathbb{F}_{p}^{\times}?
3. Find the remainder of

$$
1^{k}+2^{k}+\cdots+(p-1)^{k}
$$

when divided by p.
4. Find all positive integers n such that $n \mid 2^{n}-1$.
5. (IMOSL1997) Show that if an infinite arithmetic progression of positive integers contains a square and a cube, it must contain a sixth power.
6. (IMOSL2006) Prove that

$$
\frac{x^{7}-1}{x-1}=y^{5}-1
$$

has no integer solutions.
7. (USATST2008) Prove that $x^{7}+7$ cannot be a perfect square for all positive integers n.

References

[1] Olympiad Number Theory: An Abstract Perspective by Thomas J. Mildorf
[2] Orders Modulo A Prime by Evan Chen

