

## **Quadratic Residues**

Number Theory Handout 12 Feb 2022

## 1 Quadratic Residues

For simplicity, let *p* and *q* always denote **primes** in this handout.

Let *p* be an odd prime. Let's consider a quadratic equation mod *p*:

$$ax^2 + bx + c \equiv 0 \pmod{p}$$

To solve it, we can first complete the square.

$$\left(x + \frac{b}{2a}\right)^2 \equiv \frac{1}{a} \left(\frac{b}{2a}\right)^2 - \frac{c}{a} \pmod{p}$$

Therefore, it remains to study equations in the form

$$X^2 \equiv k \pmod{p}$$

**Definition.** A **quadratic residue mod** *p* is an integer  $k \equiv x^2 \pmod{p}$  for some integer *x*.

**Exercise.** *k* is a QR mod *p* if and only if  $x^2 - \overline{k}$  is irreducible in  $\mathbb{F}_p$ , i.e.  $\overline{k}$  has a square root.

**Exercise.** How many quadratic residues are there mod *p*?

**Definition.** For ODD prime *p*, the Legendre symbol is defined as

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } p \mid a \\ 1 & \text{if } a \not\equiv 0 \pmod{p} \text{ is a } QR \\ -1 & \text{if } a \not\equiv 0 \pmod{p} \text{ is not a } QR \end{cases}$$

**Proposition 1.**  $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}.$ 

*Proof.* For  $p \mid a$ , obvious. Assume  $a \in \mathbb{F}_p^{\times}$ . Note that  $a^{\frac{p-1}{2}} \equiv \pm 1 \pmod{p}$  as  $\left(a^{\frac{p-1}{2}}\right)^2 \equiv 1$ . If  $a \equiv x^2$  is a QR, then  $a^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 \pmod{p}$ . There are  $\frac{p-1}{2}$  QRs in  $\mathbb{F}_p^{\times}$ , and deg  $\left(X^{\frac{p-1}{2}} - 1\right) = \frac{p-1}{2}$ , so we are done. **Corollary.**  $\left(\frac{a}{p}\right) \left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$ . **Corollary.**  $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$ . Exercise. Prove Proposition 1 using primitive roots instead.

Proposition 1 is helpful, because it tells us that we don't have to list out all possible  $k^2$  for  $k = 1, \dots, p-1$  to know which are QRs and which are not. However, we can do better!

**Theorem 1.** The following are true:

• 
$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$$
.  
•  $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$ .  
•  $\left(\frac{p}{q}\right) \left(\frac{q}{p}\right) = (-1)^{\frac{(p-1)(q-1)}{4}}$  for odd primes  $p, q$ .

Before we prove this theorem, let's show how powerful the above theorem is.

Example. Is 69 a QR mod 101?

$$\begin{pmatrix} \frac{69}{101} \end{pmatrix} = \begin{pmatrix} \frac{23}{101} \end{pmatrix} \begin{pmatrix} \frac{3}{101} \end{pmatrix} = \begin{pmatrix} \frac{101}{23} \end{pmatrix} (-1)^{\frac{(101-1)(23-1)}{4}} \begin{pmatrix} \frac{101}{3} \end{pmatrix} (-1)^{\frac{(101-1)(3-1)}{4}} = \begin{pmatrix} \frac{101}{23} \end{pmatrix} \begin{pmatrix} \frac{101}{3} \end{pmatrix} = \begin{pmatrix} \frac{9}{23} \end{pmatrix} \begin{pmatrix} \frac{2}{3} \end{pmatrix} = 1 \cdot (-1)^{\frac{3^2-1}{8}} = -1$$

and hence 69 is NOT a QR mod 101.

Let's prove Theorem 1. The first property was already proven, so we focus on the second and third. For any odd p and any integer a, denote the *least residue*  $LR_p(a)$  to be the integer congruent to  $a \mod p$  but lies between -p/2 and p/2.

**Lemma.** Let 
$$\mu$$
 be the number of  $x \in \left[1, \frac{p-1}{2}\right]$  such that  $LR_p(ax) < 0$ . Then
$$\left(\frac{a}{p}\right) = (-1)^{\mu}.$$

Proof.

$$a \cdot 2a \cdot \dots \cdot \left(\frac{p-1}{2}\right) a \equiv LR_p(a) \cdot LR_p(2a) \cdot \dots \cdot LR_p\left(\left(\frac{p-1}{2}\right)a\right) \pmod{p}$$
$$a^{\frac{p-1}{2}} \left(\frac{p-1}{2}\right)! \equiv (-1)^{\mu} \left(\frac{p-1}{2}\right)! \pmod{p}$$
$$a^{\frac{p-1}{2}} \equiv (-1)^{\mu} \pmod{p}$$

and we are done since both sides are  $\pm 1$ .

We are ready to first prove  $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$ . The Lemma tells us we just have to count the parity of the number of  $1 \le x \le \frac{p-1}{2}$  such that  $LR_p(2x) < 0$ , i.e.

$$\frac{p+1}{2} \le 2x \le p-1 \quad \Leftrightarrow \quad \left\lceil \frac{p+1}{4} \right\rceil \le x \le \left\lfloor \frac{p-1}{2} \right\rfloor$$

which is just  $\left\lfloor \frac{p-1}{2} \right\rfloor - \left\lceil \frac{p+1}{4} \right\rceil + 1$ . It can be easily verified that

$$\left\lfloor \frac{p-1}{2} \right\rfloor - \left\lceil \frac{p+1}{4} \right\rceil + 1 \begin{cases} \text{is odd when } p \equiv 3,5 \pmod{8} \\ \text{is even when } p \equiv 1,7 \pmod{8} \end{cases}$$

and that  $\frac{p^2-1}{8}$  also satisfies this property, so we are done.

We now prove the third statement. Let  $\mu_p$  be the number of  $1 \le x \le \frac{p-1}{2}$  such that  $LR_p(qx) < 0$ . For every such x, there is hence a unique y such that -p/2 < qx - py < 0. All such y must satisfy qx/p < y < 1/2 + qx/p which is surely strictly between 0 and q/2. Therefore,  $\mu_p$  is also the number of lattice points in

$$\left\{ (x,y) \in \left[1, \frac{p-1}{2}\right] \times \left[1, \frac{q-1}{2}\right] : -\frac{p-1}{2} \le qx - py \le -1 \right\}$$

Let  $\mu_q$  be the number of  $1 \le y \le \frac{q-1}{2}$  such that  $LR_q(py) < 0$ . Similarly  $\mu_q$  is the number of lattice points in

$$\left\{ (x,y) \in \left[1, \frac{p-1}{2}\right] \times \left[1, \frac{q-1}{2}\right] : -\frac{q-1}{2} \le py - qx \le -1 \right\}$$

We want to find  $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\mu_p + \mu_q}$  and hence we need to find the parity of  $\mu_p + \mu_q$ . Combining the two lattice point sets above, we see that  $\mu_p + \mu_q$  is the number of lattice points in

$$\left\{ (x,y) \in \left[1,\frac{p-1}{2}\right] \times \left[1,\frac{q-1}{2}\right] : -\frac{p-1}{2} \le qx - py \le \frac{q-1}{2} \right\}$$

This set is in fact symmetric about the centre  $\left(\frac{p+1}{4}, \frac{q+1}{4}\right)$  of the rectangle (We leave this as an exercise). Therefore  $\mu_p + \mu_q$  is usually even, with the only exception being when  $\left(\frac{p+1}{4}, \frac{q+1}{4}\right)$  is itself in the set. Therefore

$$\mu_p + \mu_q \begin{cases} \text{is odd when } p \equiv q \equiv -1 \pmod{4} \\ \text{is even otherwise} \end{cases}$$

which is also obeyed by  $\frac{(p-1)(q-1)}{4}$ , so we are done.

## 2 Exercises

- 1. (Hong Kong 5th) Let *p* be a prime such that  $p \equiv 1 \pmod{4}$ . Find  $\sum_{k=1}^{p-1} \left\{ \frac{k^2}{p} \right\}$  where  $\{x\} = x |x|$ .
- 2. (Korea 16th)  $m \in \mathbb{N}$ . If  $2^{m+1} + 1 \mid 3^{2^m} + 1$ , show that  $2^{m+1} + 1$  is prime. Is the converse true?
- 3. (Austria 2007) Find all integers  $0 \le a < 2007$  so that  $x^2 + a \equiv 0 \pmod{2007}$  has exactly two roots that are less than 2007.
- 4. (Singapore 2004) Find all  $(a, b) \in \mathbb{N}^2$  such that  $a, b \leq 2004$  and  $x^2 + ax + b = 167y$  has integer solutions (x, y).
- 5. Find all primes *p* such that  $y^2 \equiv x^3 x \pmod{p}$  has exactly *p* solution pairs  $(x, y) \in \mathbb{N}^2$  such that  $0 \le x, y \le p$ .
- 6. Find a way to determine whether a residue is a cubic residue mod *p*.