Quadratic Residues
Number Theory Handout
12 Feb 2022

1 Quadratic Residues

For simplicity, let p and q always denote primes in this handout.
Let p be an odd prime. Let's consider a quadratic equation $\bmod p$:

$$
a x^{2}+b x+c \equiv 0 \quad(\bmod p)
$$

To solve it, we can first complete the square.

$$
\left(x+\frac{b}{2 a}\right)^{2} \equiv \frac{1}{a}\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a} \quad(\bmod p)
$$

Therefore, it remains to study equations in the form

$$
X^{2} \equiv k \quad(\bmod p)
$$

Definition. A quadratic residue $\bmod p$ is an integer $k \equiv x^{2}(\bmod p)$ for some integer x.
Exercise. k is a $Q R \bmod p$ if and only if $x^{2}-\bar{k}$ is irreducible in \mathbb{F}_{p}, i.e. \bar{k} has a square root.
Exercise. How many quadratic residues are there $\bmod p$?
Definition. For ODD prime p, the Legendre symbol is defined as

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{ll}
0 & \text { if } p \mid a \\
1 & \text { if } a \not \equiv 0 \\
-1 & \text { if } a \not \equiv 0
\end{array} \quad(\bmod p) \text { is a QR } \quad(\bmod p)\right. \text { is not a QR }
$$

Proposition 1. $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}}(\bmod p)$.
Proof. For $p \mid a$, obvious. Assume $a \in \mathbb{F}_{p}^{\times}$. Note that $a^{\frac{p-1}{2}} \equiv \pm 1(\bmod p)$ as $\left(a^{\frac{p-1}{2}}\right)^{2} \equiv 1$.
If $a \equiv x^{2}$ is a QR , then $a^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1(\bmod p)$.
There are $\frac{p-1}{2} \mathrm{QRs}$ in \mathbb{F}_{p}^{\times}, and $\operatorname{deg}\left(X^{\frac{p-1}{2}}-1\right)=\frac{p-1}{2}$, so we are done.
Corollary. $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$.
Corollary. $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}$.

Exercise. Prove Proposition 1 using primitive roots instead.
Proposition 1 is helpful, because it tells us that we don't have to list out all possible k^{2} for $k=1, \cdots, p-1$ to know which are QRs and which are not. However, we can do better!

Theorem 1. The following are true:

- $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}$.
- $\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}$.
- $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{(p-1)(q-1)}{4}}$ for odd primes p, q.

Before we prove this theorem, let's show how powerful the above theorem is.
Example. Is 69 a $Q R \bmod 101$?

$$
\begin{aligned}
\left(\frac{69}{101}\right) & =\left(\frac{23}{101}\right)\left(\frac{3}{101}\right) \\
& =\left(\frac{101}{23}\right)(-1)^{\frac{(101-1)(23-1)}{4}}\left(\frac{101}{3}\right)(-1)^{\frac{(101-1)(3-1)}{4}} \\
& =\left(\frac{101}{23}\right)\left(\frac{101}{3}\right) \\
& =\left(\frac{9}{23}\right)\left(\frac{2}{3}\right) \\
& =1 \cdot(-1)^{\frac{3^{2}-1}{8}}=-1
\end{aligned}
$$

and hence 69 is NOT a QR mod 101.
Let's prove Theorem 1. The first property was already proven, so we focus on the second and third. For any odd p and any integer a, denote the least residue $L R_{p}(a)$ to be the integer congruent to $a \bmod p$ but lies between $-p / 2$ and $p / 2$.

Lemma. Let μ be the number of $x \in\left[1, \frac{p-1}{2}\right]$ such that $L R_{p}(a x)<0$. Then

$$
\left(\frac{a}{p}\right)=(-1)^{\mu} .
$$

Proof.

$$
\begin{aligned}
a \cdot 2 a \cdot \ldots \cdot\left(\frac{p-1}{2}\right) a & \equiv L R_{p}(a) \cdot L R_{p}(2 a) \cdot \cdots \cdot L R_{p}\left(\left(\frac{p-1}{2}\right) a\right) \quad(\bmod p) \\
a^{\frac{p-1}{2}}\left(\frac{p-1}{2}\right)! & \equiv(-1)^{\mu}\left(\frac{p-1}{2}\right)!(\bmod p) \\
a^{\frac{p-1}{2}} & \equiv(-1)^{\mu}(\bmod p)
\end{aligned}
$$

and we are done since both sides are ± 1.
We are ready to first prove $\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}$. The Lemma tells us we just have to count the parity of the number of $1 \leq x \leq \frac{p-1}{2}$ such that $L R_{p}(2 x)<0$, i.e.

$$
\frac{p+1}{2} \leq 2 x \leq p-1 \quad \Leftrightarrow \quad\left\lceil\frac{p+1}{4}\right\rceil \leq x \leq\left\lfloor\frac{p-1}{2}\right\rfloor
$$

which is just $\left\lfloor\frac{p-1}{2}\right\rfloor-\left\lceil\frac{p+1}{4}\right\rceil+1$. It can be easily verified that

$$
\left\lfloor\frac{p-1}{2}\right\rfloor-\left\lceil\frac{p+1}{4}\right\rceil+1\left\{\begin{array}{l}
\text { is odd when } p \equiv 3,5 \quad(\bmod 8) \\
\text { is even when } p \equiv 1,7 \quad(\bmod 8)
\end{array}\right.
$$

and that $\frac{p^{2}-1}{8}$ also satisfies this property, so we are done.
We now prove the third statement. Let μ_{p} be the number of $1 \leq x \leq \frac{p-1}{2}$ such that $L R_{p}(q x)<0$. For every such x, there is hence a unique y such that $-p / 2<q x-p y<0$. All such y must satisfy $q x / p<y<1 / 2+q x / p$ which is surely strictly between 0 and $q / 2$. Therefore, μ_{p} is also the number of lattice points in

$$
\left\{(x, y) \in\left[1, \frac{p-1}{2}\right] \times\left[1, \frac{q-1}{2}\right]:-\frac{p-1}{2} \leq q x-p y \leq-1\right\}
$$

Let μ_{q} be the number of $1 \leq y \leq \frac{q-1}{2}$ such that $L R_{q}(p y)<0$. Similarly μ_{q} is the number of lattice points in

$$
\left\{(x, y) \in\left[1, \frac{p-1}{2}\right] \times\left[1, \frac{q-1}{2}\right]:-\frac{q-1}{2} \leq p y-q x \leq-1\right\}
$$

We want to find $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\mu_{p}+\mu_{q}}$ and hence we need to find the parity of $\mu_{p}+\mu_{q}$. Combining the two lattice point sets above, we see that $\mu_{p}+\mu_{q}$ is the number of lattice points in

$$
\left\{(x, y) \in\left[1, \frac{p-1}{2}\right] \times\left[1, \frac{q-1}{2}\right]:-\frac{p-1}{2} \leq q x-p y \leq \frac{q-1}{2}\right\}
$$

This set is in fact symmetric about the centre $\left(\frac{p+1}{4}, \frac{q+1}{4}\right)$ of the rectangle (We leave this as an exercise). Therefore $\mu_{p}+\mu_{q}$ is usually even, with the only exception being when $\left(\frac{p+1}{4}, \frac{q+1}{4}\right)$ is itself in the set. Therefore

$$
\mu_{p}+\mu_{q}\left\{\begin{array}{l}
\text { is odd when } p \equiv q \equiv-1 \quad(\bmod 4) \\
\text { is even otherwise }
\end{array}\right.
$$

which is also obeyed by $\frac{(p-1)(q-1)}{4}$, so we are done.

2 Exercises

1. (Hong Kong 5th) Let p be a prime such that $p \equiv 1(\bmod 4)$. Find $\sum_{k=1}^{p-1}\left\{\frac{k^{2}}{p}\right\}$ where $\{x\}=$ $x-\lfloor x\rfloor$.
2. (Korea 16th) $m \in \mathbb{N}$. If $2^{m+1}+1 \mid 3^{2^{m}}+1$, show that $2^{m+1}+1$ is prime. Is the converse true?
3. (Austria 2007) Find all integers $0 \leq a<2007$ so that $x^{2}+a \equiv 0(\bmod 2007)$ has exactly two roots that are less than 2007.
4. (Singapore 2004) Find all $(a, b) \in \mathbb{N}^{2}$ such that $a, b \leq 2004$ and $x^{2}+a x+b=167 y$ has integer solutions (x, y).
5. Find all primes p such that $y^{2} \equiv x^{3}-x(\bmod p)$ has exactly p solution pairs $(x, y) \in \mathbb{N}^{2}$ such that $0 \leq x, y \leq p$.
6. Find a way to determine whether a residue is a cubic residue $\bmod p$.
