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1 The Real Projective Plane

In three-dimensional vector space, for every nonzero vector v define a ray as the set of vectors kv (k ∈
R\{0}). The real projective plane RP2 is defined to be the set of all rays in three-dimensional space. Each
element of RP2 is called a point, while in reality it is just a ray in three-dimensional space. Hence each
point in RP2 has coordinates with three-entries not all zero.
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Even though RP2 is a three-dimensional concept, it is enough to imagine it as a two-dimensional plane,
including an extra line called the line at infinity `∞. Every point on `∞ is a point at infinity at which
every set of parallel lines concur. In this case, every pair of lines must intersect at a point.

2 Projective Transformations

A transformation on the projective plane that sends each line to a line is called projective. In other words,
a projective transformation (abbrv. PT) is a function T : L → L where L is the set of lines in RP2. As
such, PTs form a group: a composition of PTs is still a PT; each PT has its inverse. The well-known
affine transformations (rotations, translations, shear transforms) are obviously also PTs. Under a PT,
intersections and cross ratios are preserved. However, note that under a PT sending `1 to `2, the other
points in the plane may not preserve their positions as well. If so, why are PTs so useful then? Let’s look
at some examples of actions they can do.

Lemma 2.1. There is a PT that sends four points A,B,C,D (no three collinear) to any other four points
A∗, B∗, C∗, D∗ (no three collinear).

Proof. Apply a PT sending the line connecting AB ∩ CD and AD ∩ BC to `∞. That means T (A)B ‖
CD,AD ‖ BC are forced to hold, even though we do not know where these points are. Nonetheless, a
parallelogram is formed. Take an affine transformation to transform it into a square. Therefore, a PT can

transform any quadrilateral into a square S. If ABCD
T1−→ S and A∗B∗C∗D∗

T2−→ S, then

ABCD
T1−→ S

T−1
2−−→ A∗B∗C∗D∗

is indeed a projective transformation.
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Lemma 2.2. Under any PT, conics are sent to conics.

Proof. By definition, a conic is a projection of a circle.

Lemma 2.3. If we have a circle Γ and a line ` not intersecting Γ, then there is a PT that fixes Γ in place
and sends ` to any other line not intersecting Γ.

Proof. Apply a PT sending the ` to `∞. Then Γ is sent to another conic. It cannot be a parabola or a
hyperbola since they intersect `infty. Hence it is a circle or an ellipse. Take an affine transformation to
ensure it is a circle. Hence Γ→ Γ and `→ `∞. Then send `∞ back.

Lemma 2.4. If we have a circle Γ and a point P inside Γ, then there is a PT that fixes Γ in place and
sends P to any other point inside Γ.

Proof. This is the dual of the previous lemma using poles and polars.

We first try to prove some famous theorems:

Theorem 2.5. (Pappus) Let ABC and DEF be two lines. Then the points AE∩BD,AF ∩CD,BF ∩CE
are collinear.

Proof. Take a PT sending the line connecting AE ∩BD and AF ∩ CD to `∞. Then chase ratios.
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Theorem 2.6. (Desargues) Let ABC and DEF be two triangles. Then AD,BE,CF are concurrent if
and only if AB ∩DE,AC ∩DF,BC ∩ EF are collinear.

Proof. Take a PT sending the line connecting AB ∩DE and AC ∩DF to `∞. Chase ratios again.

Theorem 2.7. (Butterfly) Let Γ be a circle and P a point inside. Let AC,BD,EF be two chords passing
through P . If P is the midpoint of EF , then P is the midpoint of AB ∩ EF,CD ∩ EF .

Proof. Translate the midpoint condition into cross ratios. Initially, (E,F ;P, P∞EF ) = −1. Take a PT
sending P to the center of the circle. Since EF is now the diameter, we know P∞EF got sent to another
point at infinity. Then the midpoint result is obvious by symmetry.
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