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In this article we will look at Stirling Numbers.
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1 First Kind

Consider the group Sn of permutations of [n] = {1, · · · , n}. Any permutation σ ∈ Sn can be uniquely
decomposed into disjoint cycles, for example the permutation (1, 2, 3, 4, 5) 7→ (2, 5, 4, 3, 1) can be written
as (125)(34). This permutation has 2 cycles.

Definition. The number of permutations in Sn with k cycles is denoted by c(n, k).

For any positive n,

• c(n, n) = 1 because the only permutation with n cycles is (1)(2) · · · (n).

• c(n, 1) = (n− 1)! because there are n!/n cyclic permutations of [n].

• c(n, k) = 0 for k ≤ 0 or k > n.

Proposition 1.1. For any integers n, k, c(n, k) = c(n− 1, k − 1) + (n− 1) · c(n− 1, k).

Proof. For any permutation of [n] with k cycles, the cycle that contains n can contain one element (only
n), or more than one element. In the former case, those permutations have a one-to-one correspondence
with permutations of [n− 1] with k− 1 cycles. In the latter case, those permutations have a one-to-(n− 1)
correspondence with permutations σ′ of [n − 1] with k cycles because n can be slotted anywhere in the
cyclic decomposition of σ′. □

Proposition 1.2. x(x+ 1) · · · (x+ n− 1) =
∑
k

c(n, k)xk.
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Proof. Let x(x + 1) · · · (x + n − 1) =
∑
k

c0(n, k)x
k. Obviously c0(1, k) = c(1, k). By induction, it

remains to verify the recursive property:∑
k

c0(n, k)x
k = x(x+ 1) · · · (x+ n− 1)

= (x+ n− 1)
∑
k

c0(n− 1, k)xk

=
∑
k

(c(n− 1, k − 1) + (n− 1) · c(n− 1, k))xk. □

Proposition 1.3. x(x− 1) · · · (x− n+ 1) =
∑
k

(−1)n+kc(n, k)xk.

Proof. Using proposition 2,

x(x− 1) · · · (x− n+ 1) = (−1)n(−x)(−x+ 1) · · · (−x+ n− 1)

= (−1)n
∑
k

c(n, k)(−x)k

=
∑
k

(−1)n+kc(n, k)xk.

Definition. The numbers

[
n
k

]
= (−1)n+kc(n, k) are called Stirling Numbers of the First Kind.

Define x(n) = x(x− 1) · · · (x− n+ 1). From proposition 3,

x(n) =
∑
k

[
n
k

]
xk.

2 Second Kind

A set partition of [n] is a collection of a disjoint subsets of [n] whose union is [n]. For example,

{{1, 2, 3}, {4, 6}, {5}}

is a set partition of [6] = {1, 2, 3, 4, 5, 6}, with 3 parts.

Definition. The number of set partitions of [n] with k parts is denoted by

{
n
k

}
. These numbers are

called Stirling Numbers of the Second Kind.

For any positive n,

•
{
n
1

}
= 1 because the only set partition with 1 part is {{1, · · · , n}}.

•
{
n
n

}
= 1 because the only set partition with 1 part is {{1}, · · · , {n}}.

•
{
n
k

}
= 0 for k ≤ 0 or k > n.
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Proposition 2.1. For any integers n, k,

{
n
k

}
=

{
n− 1
k − 1

}
+ k

{
n− 1
k

}
.

Proof. For any set partition of [n] with k parts, the part that contains n can contain one element (i.e. {n}),
or more than one element. In the former case, those partitions have a one-to-one correspondence with set
partitions of [n − 1] with k − 1 parts. In the latter case, those partitions have a one-to-k correspondence
with set partitions σ′ of [n− 1] with k parts because n can be in any of the k parts of σ′. □

Proposition 2.2. xn =
∑
k

{
n
k

}
x(k).

Proof. For n = 1 it is true. Now,∑
k

{
n
k

}
x(k) = xn = x

∑
k

{
n− 1
k

}
x(k)

=
∑
k

{
n− 1
k

}
(x− k + k)x(k)

=
∑
k

(
k

{
n− 1
k

}
+

{
n− 1
k − 1

})
x(k)

so by induction it is true for all n. □

Proposition 2.3. If S and s are infinite matrices where Sij =

[
i
j

]
and sij =

{
i
j

}
, then Ss = I.

Proof. Since {xn} and {x(n)} are bases for the vector space R[x], proposition 1.3 and 2.2 shows that
S and s are just matrices of basis change between {xn} and {x(n)}, so they are inverses of each other. □

3 Examples

Example 1. Find

[
n+ 1
n

]
.

Solution.

[
n+ 1
n

]
=

[
n

n− 1

]
+ n

[
n
n

]
=

[
n

n− 1

]
+ n, so

[
n+ 1
n

]
= n+ (n− 1) + · · ·+ 1 =

n(n+ 1)

2
.

Example 2. Find

[
n+ 2
n

]
.

Solution.

[
n+ 2
n

]
=

[
n+ 1
n− 1

]
+ (n+ 1)

[
n+ 1
n

]
=

[
n+ 1
n− 1

]
+

n(n+ 1)2

2
, so

[
n+ 2
n

]
=

n∑
k=1

k(k + 1)2

2
=

n(n+ 1)(n+ 2)(3n+ 5)

24
.

Example 3. Find

{
n+ 1
n

}
.
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Solution.

{
n+ 1
n

}
=

{
n

n− 1

}
+ n

{
n
n

}
=

{
n

n− 1

}
+ n, so

{
n+ 1
n

}
= n+ (n− 1) + · · ·+ 1 =

n(n+ 1)

2
.

Example 3. Find

{
n+ 2
n

}
.

Solution.

{
n+ 2
n

}
=

{
n+ 1
n− 1

}
+ n

{
n+ 1
n

}
=

{
n

n− 1

}
+

n2(n+ 1)

2
, so

{
n+ 2
n

}
=

n∑
k=1

k2(k + 1)

2
=

n(n+ 1)(n+ 2)(3n+ 1)

24
.

Example 4. Find

{
n+ 3
n

}
.

Solution.

{
n+ 3
n

}
=

{
n+ 2
n− 1

}
+ n

{
n+ 2
n

}
=

{
n

n− 1

}
+

n2(n+ 1)(n+ 2)(3n+ 1)

24
, so

{
n+ 1
n

}
=

n∑
k=1

k2(k + 1)(k + 2)(3k + 1)

24
=

n2(n+ 1)2(n+ 2)(n+ 3)

48
.

4 Finite Difference and Finite Integration

This section requires knowledge from my previous article, Finite Differences.

Example 1. Find the value of
n∑

k=0

(−1)k
(
n

k

)
kn+1.

Solution. We basically want (I − E)nxn+1 = (−1)n∆nxn+1 evaluated at x = 0.

∆n(xn+1) = ∆n

(
x(n+1) +

{
n+ 1
n

}
x(n) + · · ·

)
= (n+ 1)(n)x(1) + n!

{
n+ 1
n

}
,

so the answer is

(−1)nn!

{
n+ 1
n

}
= (−1)nn! · n(n+ 1)

2
= (−1)n · (n+ 1)!n

2
. □

Example 2. Find the value of
n∑

k=0

(−1)k
(
n

k

)
kn+2.

Solution. We basically want (I − E)nxn+2 = (−1)n∆nxn+2 evaluated at x = 0.

∆n(xn+2) = ∆n

(
x(n+2) +

{
n+ 2
n+ 1

}
x(n+1) +

{
n+ 2
n

}
x(n) + · · ·

)
= (n+ 2)(n)x(2) + (n+ 1)(n)

{
n+ 2
n+ 1

}
x(1) + n!

{
n+ 2
n

}
,
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so the answer is

(−1)nn!

{
n+ 2
n

}
= (−1)nn! · n(n+ 1)(n+ 2)(3n+ 1)

24
= (−1)n · (n+ 2)!(3n+ 1)n

24
. □

Example 3. Find the value of
n∑

k=0

(−1)k
(
n

k

)
kn+3.

Solution. We basically want (I − E)nxn+3 = (−1)n∆nxn+3 evaluated at x = 0.

∆n(xn+3) = ∆n

(
x(n+3) +

{
n+ 3
n+ 2

}
x(n+2) +

{
n+ 3
n+ 1

}
x(n+1) +

{
n+ 3
n

}
x(n) + · · ·

)
= (n+ 3)(n)x(3) + (n+ 2)(n)

{
n+ 3
n+ 2

}
x(2) + (n+ 1)(n)

{
n+ 3
n+ 1

}
x(1) + n!

{
n+ 3
n

}
,

so the answer is

(−1)nn!

{
n+ 3
n

}
= (−1)nn! · n

2(n+ 1)2(n+ 2)(n+ 3)

48
= (−1)n · (n+ 2)!(n+ 1)(n+ 3)n2

24
. □

References

[1] Stirling Numbers of the First Kind
https://en.wikipedia.org/wiki/Stirling numbers of the first kind

[2] Stirling Numbers of the Second Kind
https://en.wikipedia.org/wiki/Stirling numbers of the second kind

[3] Finite Differences
https://tristanchaang.github.io/2022/01/22/finite-differences.html

5


